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A B S T R A C T

The mathematical study of the greedy algorithm provides a blueprint for the study of Dynamic Programming (DP),
whose body of knowledge is largely unorganized, remaining obscure to a large part of the software engineering
community. This study aims to structure this body of knowledge, narrowing the gap between a purely example-
based approach to DP and its scientific foundations. To that effect, matroid theory is leveraged through a pointfree
relation algebra, which is applied to greedy and DP problems. A catalogue of such problems is compiled, and a
broad characterization of DP algorithms is given. Alongside, the theory underlying the thinning relational operator
is explored.

K E Y W O R D S Greedy algorithm, Dynamic Programming, Algebra of Programming.
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R E S U M O

O estudo matemático do algoritmo ganancioso («greedy») serve como guia para o estudo da programação
dinâmica, cujo corpo de conhecimento permanece desorganizado e obscuro a uma grande parte da comunidade
de engenharia de software. Este estudo visa estruturar esse corpo de conhecimento, fazendo a ponte entre a
abordagem popular baseada em exemplos e os métodos mais teóricos da literatura científica. Para esse efeito,
a teoria dos matroides é explorada pelo uso de uma álgebra de relações pointfree, e aplicada a problemas
«greedy» e de programação dinâmica. Um catálogo de tais problemas é compilado, e é feita uma caraterização
geral de algoritmos de programação dinâmica. Em paralelo, é explorada a teoria do combinador relacional de
«thinning».

PA L AV R A S - C H AV E Algoritmo «greedy», programação dinâmica, álgebra da programação.
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Part I

I N T RO D U C T O RY M AT E R I A L



1

I N T R O D U C T I O N

1.1 C O N T E X T

Algorithms research is one of the cornerstones of computer science. Although much older than computers
themselves, interest in studying algorithms and their structure grew as computers became more powerful and
more widespread. Today, there is a vast body of scientific knowledge concerning the nature of algorithms, and a
wide market for applying this knowledge. Many researchers focus their study on the structure of algorithms and
their characterization. Examples of this type of work are the design and implementation of different algorithmic
techniques, the identification of complexity classes for algorithms, or the characterization of different approaches
tackling the same problem (e.g. parsing).

Dynamic Programming (DP) is an important area of work in algorithms research. The term, originally coined
by Richard Bellman in 1952 to refer to a mathematical optimization method for solving multi-stage decision
problems, is nowadays more commonly used in computer programming as an umbrella term for a collection of
techniques to solve certain types of recursive problems (Bellman, 1952, 1954, 1963, 2010).

As is to be expected, these two meanings are not divorced from each other. Richard Bellman’s Principle
of Optimality — stating that present decisions can be made with the assumption that future decisions follow
an optimal policy — correlates directly to a fundamental characteristic of DP problems: the presence of an
optimal substructure. An optimal substructure for a problem is one from which an optimal solution can be derived
from the optimal solution to its subproblems. If multiple subproblems rely on the same results, that is, if an
even smaller subproblem needs to be solved in order to solve both, then these are said to be overlapping
subproblems. As a programming discipline, Dynamic Programming is used to avoid repeated calculations of
overlapping subproblems, and this is an essential characteristic of the discipline.

Beyond this simple characterization of DP problems, there is also a characterization of DP techniques. A
common approach is to divide algorithms according to the type of strategy they use — either a ‘top-down’ or
a ‘bottom-up’ strategy (Cormen et al., 2009; Bird and Gibbons, 2020). The top-down strategy solves problems
recursively, considering larger problems first, and then their subproblems. ‘Memoization’ fits this description,
as it caches solutions to subproblems upon their first completed calculation, which are then requested by a
recursive call in a larger problem. The bottom-up strategy starts from the solution to the smallest problems, and
uses them to build solutions to larger problems. For instance, the ‘tabulation’ technique stores all previously

4



1.1. Context 5

calculated solutions in a table, trading space needed to store calculated solutions for the time needed to repeat
their calculation.

An alternative way to conceptualize Dynamic Programming is in relation to brute force algorithms and the so-
called greedy algorithm. The distinction, which is more relevant to combinatorial optimization problems, is in the
number of candidate solutions considered. In the brute force approach, every single candidate solution must be
considered. The greedy algorithm, on the other hand, only requires keeping track of a single solution. Dynamic
Programming is a middle ground between the two: the solution space can be culled by finding partial solutions
guaranteed not to result in the optimal solution (Bird and de Moor, 1997).

This description fits nicely with the way combinatorial optimization problems are typically specified, and their
solutions derived. Firstly, the solution space is defined as encompassing all feasible solutions. Then, an opti-
mization criterion is given, indicating which are the optimal solutions. For DP problems, the derivation consists
in showing that an optimal solution is still obtained even when a portion of the solution space is excluded from
consideration. For the greedy algorithm, it must show that disregarding all but one solution at each decision point
will still yield the optimal one.

Well-known problems such as, for instance, calculating Fibonacci numbers are DP problems: they can be
specified by a recurrence relation and thus exhibit optimal substructure, and this recurrence relation makes
subproblems overlap. However, these are not optimization problems, and so the conceptualization involving
solution spaces and optimization criteria cannot be straightforwardly applied. Moreover, by the nature of their
recurrence relation, these problems can potentially be solved by techniques, such as tupling (Pettorossi, 1984),
that seem to stray away from the intuitive notion of Dynamic Programming as considering multiple candidate
solutions, and culling a solution space.

Problems (or families of problems) exist that can be solved by the greedy algorithm or call for a DP approach
depending on the details of their formulation. For instance, the coin changing problem — making change with the
fewest coins possible — admits a greedy algorithm (for every possible input) only for ‘canonical’ coin systems,
while for others this algorithm fails (Cai, 2009). In fact, the previous statement is tautological: the notion of
canonicity for coin systems is defined exactly by whether or not the greedy algorithm yields the optimal solution.

The greedy algorithm has been extensively studied through the lens of matroid theory (Welsh and Society,
1976; Korte and Lovász, 1984; Helman et al., 1995; Vince, 2002). Matroid theory concerns itself with studying
matroidal structures in different areas of mathematics, such graph theory, lattice theory, and combinatorics, es-
tablishing links and generalizations among different mathematical fields. The greedy algorithm is an algorithmic
property of a matroid, for suitable objective functions (Welsh and Society, 1976). Korte and Lovász (1984) relax
the definition of a matroid to obtain greedoids and give sufficient conditions for the correctness of the greedy
algorithm under a greedoid. Helman et al. (1995) use matroid embeddings to prove the correctness of the
greedy algorithm for linear and bottleneck objective functions under certain set systems, and to characterize
different problems according to independence properties in terms of matroid theory. Vince (2002) gives a frame-
work based on a slightly different notion of a set system to prove the greedy algorithm for some linear weight
functions.
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Although mechanically similar, applications of the greedy algorithm for different problems are often justified
through different means. Curtis (2003) proposes a five-category classification for greedy algorithms, based on
four principles: ‘Best-Global’, ’Better-Global’, ’Best-Local’ and ’Better-Local’. These principles describe how
candidate solutions constructed from different choices relate to each other. For instance, the Better-Global
principle states that making a better choice always results in a better solution when the algorithm terminates.
This is not true for every problem for which the greedy algorithm gives the optimal solution, because only the
Best-Global principle — the best choice always results in a better solution upon termination — is true in every
case.

In contrast, the study of Dynamic Programming tends to be example-based, especially in the popular literature.
The process of designing algorithms often requires ‘eureka’ steps that may be hard to envision for someone not
experienced enough. For instance, tabulation methods need to determine appropriate dimensions for the table of
cached solutions, and there isn’t a unified approach for this. It is even possible to come up with different tabulation
schemes for the same problem, see e.g. (Boiten, 1992). Each problem comes with unique characteristics that
must be exploited to yield an efficient algorithm.

Nevertheless, there is a vast body of research which concerns itself with finding techniques and general
strategies to solve these problems. These may lead to the creation and adoption of mathematical tools to help
designing and implementing software systems which rely on DP algorithms.

A functional approach to data structures provides the necessary basic building blocks for constructing efficient
functional algorithms. Okasaki (2004) uses numeral representations as analogues for representations of con-
tainer structures, and structural decomposition and structural abstraction to derive implementations of functional
(persistent) data structures, guaranteeing better asymptotic complexity of common operations.

In the area of program transformation, there are some strategies to transform recursive, easy-to-prove-correct
algorithms for DP problems into equivalent and more efficient programs. Boiten (1992) describes a strategy
of “inverting the order of evaluation” as a means to derive efficient linear recursive and iterative functions using
tabulations. Pettorossi (1984) uses a “tupling” strategy to transform general recursive programs to linear recursive
programs, and ultimately iterative ones using other techniques.

In their “Algebra of Programming” (AoP) textbook, Bird and de Moor (1997) lay out an algebraic framework
based on relation algebra and use it to derive the design and implementation of DP algorithms for optimization
problems from their relational specification, conditioning their correctness on a set of appropriate conditions
generated by the process. The concept of thinning, introduced in the AoP textbook, gives rise to “thinning
algorithms”, which are characterized by the culling of the solution space to disregard partial solutions that are not
useful to solving the overall problem. Morihata et al. (2014) pair thinning with incrementalization — a technique
used to improve efficiency by re-using previously computed partial solutions (Liu and Stoller, 1999) — to describe
the processes behind DP algorithms.

Using this framework, some case studies have been developed. Bird et al. (2000) and Mu (2000) derive linear
time algorithms to the minimum height tree problem. Mu et al. (2010) generalize the thinning theorem of Bird
and de Moor (1997) to derive solutions for fully polynomial-time approximation scheme (FPTAS) algorithms in a
datatype-generic way. Mu and Oliveira (2012) added to this approach by devising a new combinator to express
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optimization processes in a relation-algebraic way. Metaphorisms, which express relationships between input
and output through shared observed properties, have been used to specify and solve some problems using this
framework, including recursive optimization problems (Oliveira, 2018).

Other parts of the literature also exploring optimization problems solved by the greedy algorithm and Dynamic
Programming use simpler frameworks to increase accessibility. For instance, Bird and Rabe (2019) make use
of “nondeterministic functions”, which produce multiple values, and give a theoretical framework with which to
reason about them, while Bird and Gibbons (2020) prefer the even simpler approach of using only pure functions
to specify and reason about problems.

1.2 A P P R O A C H

The history of software engineering is marked by increasing levels of abstraction in the way computer systems
are programmed. Starting from the manual input of machine code, programmers soon found ways to make
their jobs easier with assemblers, linkers, and ultimately compilers and interpreters for high level languages. A
number of programming paradigms emerged from the flurry of new programming languages being created in
the decades following the invention of modern electronic computers. Among them, the imperative and object-
oriented paradigms proved most influential, through languages such as C and Java. Their overarching goal was
to provide the programmer with tools to better express how a software system should work. This meant giving
the programmer the option of organizing the program’s code in modules and/or classes, in effect detailing the
different components of a system’s architecture, and how they should interact with each other.

Parallel to this trend, and with the realization of the link between mathematical proofs and computer programs,
termed the Curry-Howard correspondence, there was an effort to make software design more of an engineering
discipline, using scientific principles to design and implement large software systems. In the programming lan-
guage space, two important paradigms, functional programming and logic programming, were developed, with
the end result being a more declarative style of programming: instead of detailing how a system should work,
ideally, a programmer would only specify what it should do (Cohen, 1995).

Although less popular than imperative and object-oriented languages, functional programming languages are
widely used in research circles, and, in turn, have seen the greatest benefits from the more mathematical ap-
proach, aiming for a greater sense of generality with features such as first-class (higher-order) functions, type
polymorphism, algebraic datatypes, among others (Hudak, 1989). More recently, some of these features have
even made their way into other, non-functional languages, for instance pattern matching in Python 3.10 (Kohn
and van Rossum, 2020).

In some areas of software engineering, namely those concerned with the design of safety-critical computer
systems, the use of formal methods in software (and hardware) engineering is almost mandatory. As small
mistakes can make a catastrophic difference, the cost of ensuring dependability more than makes up for the
potential risk of operating a faulty system. Notable examples of the use of formal methods in industry setting
include aircraft manufacturing and maintenance (Cofer, 2012), hardware design (Kern and Greenstreet, 1999),
and the design and implementation of cryptographic protocols (Meadows, 1995).
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Engineers in these industries make use of formal methods tools developed by computer scientists based on
prior theoretical work. Among others, there are now tools that allow for formal verification of programs against
specifications, and even automatic program synthesis from specifications. However, many of these tools are
simply too complicated and involve too many technicalities to be of use for a large number of regular programmers.
It is often the case that, even for relatively simple programs, the user is tasked with proving trivial properties
through somewhat arcane methods, as the system is unable to automatically discharge their proof.

Moreover, these technicalities prevent programmers from understanding how programs work, when viewed
from outside. In fact, the usefulness of formal methods in software engineering comes not only from proving
programs correct and building correct programs, but also from understanding the reasons why indeed those
programs are correct.

In this setting, the work described in this dissertation will adopt the AoP mathematical framework. The power
and flexibility of relational algebra facilitates problem specification, and allows for a general exploration of recur-
sive structures in Greedy and Dynamic Programming problems. Another advantage of this framework is that
nondeterminism is automatically encoded within relations themselves. So, many derivations can be divided in
two parts: one where the essential concepts and properties of the problem are applied, and the other which
focuses on obtaining an executable function by eliminating nondeterminism or by directly implementing it.

Furthermore, the connection between matroid theory, the greedy algorithm, and dynamic programming will
be explored using the calculational approach of AoP. From problem specifications, structural properties will be
identified, encoded in relational algebra, and then used in to derive implementations.

In short, the main goal of this project is to expand the extent to which formal methods, specifically program
synthesis from a specification using the calculational style of AoP, can be used to derive Greedy and Dynamic
Programming algorithms, while aiming for generality and ease of understanding.

1.3 S T R U C T U R E O F T H E D I S S E R TAT I O N

Chapter 2 will cover the required relation algebra background, basic relation algebra, the notions of shrinking,
catamorphism, hylomorphism, and so on. It ends by presenting the main theorems related to Dynamic Program-
ming. Chapter 3 goes over several important inductive relations operating on lists. Relations for permutations,
subsequences and sublists are introduced, along with associated results and rules for monotonicity. Chapter 4
explores the algorithmic definition of the greedy algorithm through matroid theory. Chapter 5 expands on the
theory underlying the thinning relational operator, including preorder thinning and recursive thinning. Chapter 6
gives a characterization of Dynamic Programming algorithms and develops a couple of case studies that put the
contributions of the previous chapter into practice.

Appendix A gives a selection of problems in the greedy and DP problem space. To preserve the fluitity of the
main text, some proofs are deferred to Appendix B.



2

B A C K G R O U N D

This chapter will first cover the basic constructs and combinators of relational algebra, followed by inductive
(recursive) relations and their laws. Finally, it lays the groundwork for dealing with optimization problems by
introducing the shrinking operator (Mu and Oliveira, 2012), reviewing theorems used by Bird and de Moor (1997),
and introducing operators to handle nondeterminism.

2.1 B A S I C R E L AT I O N A L G E B R A

In functional programming, the most important objects are functions. They take an input and produce a single
output. In relation calculus, we generalize this to binary relations, which may produce multiple outputs. As we
will shortly see, this means that functions are simple relations.

Composing functions is a common and useful operation. Relational composition (R · S) takes into account
the multiple values that may be produced by S. It is defined as follows:

B ARoo CSoo

R·S

ee b(R · S)c ≡ 〈∃ a : b R a : a S c〉 (2.1)

In English, an element c is related to an element b by (R · S) if (and only if) there exists an element a related to
b by R, and such that c is related to it by S. This compact notation for relational composition allows us to deal
with existential quantification in a pointfree style in our proofs.

Unlike functions, which do not necessarily have corresponding converse functions, every relation B ARoo

has a converse A BR◦oo defined by:

b R a ⇔ a R◦ b (2.2)

Naturally, the converse of a converse is the relation itself — converse is an involution

(R◦)◦ = R (2.3)

and commutes with composition in a contravariant way:

(R · S)◦ = S◦ · R◦ (2.4)

9



2.1. Basic relation algebra 10

The following construct allowing the relation of different properties, given by the functions f and g, of two different
elements is useful when dealing with more complex types:

b (f ◦ · R · g) a ⇔ (f a) R (g b) (2.5)

It is particularly useful for the purposes of our work when f = g, so the abbreviation

Rf = f ◦ · R · f (2.6)

serves to make notation more compact. For example, (6)length compares the length of two lists. While function
equality can be done by extensionality

f = g ≡ 〈∀ a : a ∈ A : f a = g a〉

where A is the domain of f and g, there are two methods, besides direct equality, to prove relation equality:
circular inclusion, and indirect equality. Both of these rely on the notion of relation inclusion, defined as follows:

R ⊆ S ≡ 〈∀ a, b :: a R b⇒ a S b〉 (2.7)

Circular inclusion arrives at equality by proving, in both directions, that one relation is smaller than, or, at most,
equal to the other. This method is often called “ping-pong”, and in proofs of this type the two steps will be referred
to as the “ping” step and the “pong” step.

R = S ≡ R ⊆ S ∧ S ⊆ R (2.8)

In indirect equality, we prove that inclusion under one relation is equivalent to inclusion under the other. Alterna-
tively, we prove that all relations having R as a subset have S as a subset, and vice-versa.

R = S ≡ 〈∀ X :: (X ⊆ R ⇔ X ⊆ S)〉 (2.9)

≡ 〈∀ X :: (R ⊆ X ⇔ S ⊆ X)〉 (2.10)

Binary relations can be viewed as sets of pairs. As such, the notions of intersection and union exist in this
universe. The operators meet and join are defined (pointwise) as such:

a (R∩ S) b ⇔ a R b∧ a S b (2.11)

a (R∪ S) b ⇔ a R b∨ a S b (2.12)

Using relational inclusion, we can state the universal properties of meet and join in pointfree form:

X ⊆ R∩ S ≡ X ⊆ R ∧ X ⊆ S (2.13)

R∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X (2.14)
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On occasion, it is useful to deal with relational difference (−), which interacts with the meet and join operators

R ⊆ S∪ T ⇔ R− T ⊆ S (2.15)

R− S = R∩ ¬ S (2.16)

where ¬ is the relational negation operator:

¬ R = >− R (2.17)

As can be easily checked, converse is monotonous with meet and join:

(R∩ S)◦ = R◦ ∩ S◦ (2.18)

(R∪ S)◦ = R◦ ∪ S◦ (2.19)

Finally, bilinearity of relation composition with respect to relational join

R · (S∪ T) = (R · S) ∪ (R · T) (2.20)

(S∪ T) · R = (S · R) ∪ (T · R) (2.21)

as well as left semi-linearity with respect to relational meet

R · (S∩ T) ⊆ (R · S) ∩ (R · T) (2.22)

(S∩ T) · R ⊆ (S · R) ∩ (T · R) (2.23)

will be useful for some proofs. To strengthen these to equalities, side conditions are introduced:

R · (S∩ T) = (R · S) ∩ (R · T) ⇐ ker R · S ⊆ S ∨ ker R · T ⊆ T (2.24)

(S∩ T) · R = (S · R) ∩ (T · R) ⇐ S · img R ⊆ S ∨ T · img R ⊆ T (2.25)

So far, we have covered a few relational combinators and few ways to prove relation equality. What is missing
is the body of laws that governs how equations using these basic combinators can be transformed. In the rest of
this section, a selection of laws relevant to our work will be introduced.

The most fundamental properties of inclusion are transitivity

R ⊆ S ∧ S ⊆ T ⇒ R ⊆ T (2.26)

and monotonicity, which applies, among others, to the basic relational combinators of composition, converse,
meet and join:

R ⊆ S∧ T ⊆ U ⇒ R · T ⊆ S ·U (2.27)

R ⊆ S⇒ R◦ ⊆ S◦ (2.28)

R ⊆ S∧ T ⊆ U⇒ R∩ T ⊆ S∩U (2.29)
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R ⊆ S∧ T ⊆ U⇒ R∪ T ⊆ S∪U (2.30)

Due to transitivity of inclusion (2.26), we are able to prove R ⊆ S by finding a mid-point relation R⊆M⊆ S,
proving both that R ⊆ M and M ⊆ S. Since one these statements will be trivial, assumed or otherwise given
by another theorem, we shall use it as justification whenever we wish to reduce the proof to the other statement.
So, depending on which we choose, we can “lower the upper side”

R ⊆ S

⇐ { M ⊆ S }

R ⊆ M (2.31)

or “raise the lower side”:

R ⊆ S

⇐ { R ⊆ M }

M ⊆ S (2.32)

Bird and de Moor (1997) derive a modular law that combines these relational combinators, like so:

R · S∩ T ⊆ R · (S∩ R◦ · T) (2.33)

Per (2.28), we take the converse of each side (and rename) to get:

R · S∩ T ⊆ (R∩ T · S◦) · S (2.34)

These laws allow us to weaken or strengthen a condition by choosing either side as a mid-point between two
other relations, and applying (2.31) or (2.32).

To understand what they mean exactly, let us take a look at an example: take aRb to mean “person b has
driven a car a”, aSb to mean “person b knows person a”, and aTb to mean “person b owns a car a”. Then (2.34)
tells us that if a person c owns a car a, and knows some person b who has driven a, then we can say that person
c knows some person b who has driven a, and that person is known by some person d who owns car a. The
second statement is always true when the first one is, instantiating d to c to obtain the original.

TA X O N O M Y O F B I N A RY R E L AT I O N S Let us now define some basic properties of some relations,
which will be the starting point to describe more complex properties.

A relation is reflexive if and only if every element is related to itself:

R is reflexive ≡ id ⊆ R (2.35)

A relation is coreflexive if and only if it is a subset of the identity relation:

R is coreflexive ≡ R ⊆ id (2.36)
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binary relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection (isomorphism)

Figure 1.: Binary relation taxonomy

A relation is transitive if and only if c R a whenever c R b and b R a:

R is transitive ≡ R · R ⊆ R (2.37)

A preorder is a relation that is both reflexive and transitive. One such relation is the commonplace numerical
comparison operator6. Many proofs in later sections will rely on this operator’s properties as a preorder.

Additionally, a relation is:

• entire if it is defined for every element of its domain.

• injective if no two elements of its domain are related to the same element.

• surjective if, for every element of its range, there is at least one element related to it.

• simple if each element of its domain is related to at most one element.

To define these last four properties using relation algebra, we first introduce the notions of kernel and image

ker R = R◦ · R (2.38)

img R = R · R◦ (2.39)

as the kernel of R relates inputs that share outputs, and its image relates outputs that share inputs.

R injective: ker R ⊆ id (2.40)

R simple: img R ⊆ id (2.41)

R entire: id ⊆ ker R (2.42)

R surjective: id ⊆ img R (2.43)

Figure 1 shows a taxonomy of binary relations based on the combination of the previous four properties. The
properties of different kinds of relations have dualities under converse, that is:

R is a bijection ≡ R and R◦ are both functions (2.44)

R is injective ≡ R◦ is simple (2.45)

R is surjective ≡ R◦ is entire (2.46)
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By extension, the converse of a representation is an abstraction, the converse of an injection is a surjection,
and vice-versa.

Due to transitivity of inclusion (2.26), and the fact that a larger relation also has a larger (or at least equal)
kernel and image, making a relation bigger or smaller can preserve some of its properties, as follows:

S is injective (simple) ⇐ S ⊆ R and R is injective (simple) (2.47)

S is entire (surjective) ⇐ R ⊆ S and R is entire (surjective) (2.48)

T O P A N D B OT T O M The> (“top”) and⊥ (“bottom”) relations

b > a ≡ true (2.49)

b ⊥ a ≡ false (2.50)

are the upper and lower bound for all relations of a certain relational type, meaning that, for any relation

A BRoo :

⊥ ⊆ R ⊆ > (2.51)

(Note that true and false in the definitions above are logical constants, while in the rest of the text, they are
constant functions returning the values True and False respectively.)

These relations are the zero and identity elements of the relational join and meet operations:

R∪⊥ = R (2.52)

R∩⊥ = ⊥ (2.53)

R∪> = > (2.54)

R∩> = R (2.55)

If a relation is entire, then it is absorbed by> when composed to the right of it:

> · R = > ⇐ R is entire (2.56)

Since> is larger than any relation (2.51), it suffices to prove> ⊆ > · R:

> ⊆ > · R

⇐ { R is assumed entire (2.42), raising the lower side (2.32) }

> · R◦ · R ⊆ > · R

⇐ { monotonicity (2.27) }

> · R◦ ⊆ >

≡ { > above everything (2.51) }

true
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�

On the other hand, and by the very definition of relational composition, we have:

⊥ · R = R · ⊥ = ⊥ (2.57)

Let us lay out the precedence of operations for relation algebra (plus logical operators used to write theorems)

• Unary operators bind tighter than binary combinators;

• The converse unary operator binds tighter than the power transpose operator — ΛS◦ is parsed as Λ(S◦);

• Composition M ·N binds tighter than all other binary combinators, e.g. S · T �R is parsed as (S · T) �R;

• Combinators represented by symbols that are taken from other fields of mathematics are often chosen
because they share similar properties, and so take precedence over related operators in a similar way, for
example, multiplication and addition, so that the type specification A+A×B is parsed as A+(A×B);

• The division (/ and \), shrinking ( � ) and thinning ( � ) combinators take higher precedence than meet
and join (resp. ∩ and ∪ ), and the operators mentioned in the previous point;

• Meet and join take higher precedence than relation equality and inclusion (resp. = and⊆);

• Logical operators (∧,⇒,≡, etc.) bind less tightly than all others above, and take precedence over each
other in the conventional way.

• Underbraces (︸︷︷︸), besides giving a name to part of an expression, also act as a grouping symbol, so

R∪ S · T︸ ︷︷ ︸
X

·U should be treated as (R∪ S · T) ·U.

When dealing with functions, we can apply the ‘shunting’ laws — a function and its converse can be exchanged
between the two sides of an inclusion as follows:

f · R ⊆ S ≡ R ⊆ f ◦ · S (2.58)

R · f ◦ ⊆ S ≡ R ⊆ S · f (2.59)

Next, we cover some basic algebraic datatypes and their associated operations.

R E L AT I O N A L PA I R I N G S Relational pairing combines two relations A CRoo and B CSoo to
form a relation 〈R, S〉 (“split of R and S”), as shown in the following type diagram:

A A× B
π1oo π2 // B

C

〈R,S〉

OO

R

bb

S

<<
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This construct stipulates that both composite relations must have the same domain type, and its range is a
subset of the Cartesian product of both range types. As the type diagram suggests, the following universal
property holds:

X ⊆ 〈R, S〉 ≡
{

π1 ·X ⊆ R
π2 ·X ⊆ S

(2.60)

By shunting (2.58) and the universal property of meet (2.13), we have a closed-form definition of relational pairing:

〈R, S〉 = π◦1 · R∩ π◦2 · S (2.61)

From the universal law we also get the cancellation laws

π1 · 〈R, S〉 ⊆ R (2.62)

π2 · 〈R, S〉 ⊆ S (2.63)

which are strengthened to equalities when the relation from the opposite side is entire:

π1 · 〈R, S〉 = R ⇐ S is entire (2.64)

π2 · 〈R, S〉 = S ⇐ R is entire (2.65)

The following law allows us to fuse the converse of a pairing and a pairing into a relational intersection involving
their projections:

〈R, S〉◦ · 〈X, Y〉 = R◦ ·X ∩ S◦ · Y (2.66)

The projections π1 and π2 can be defined as the converse of a pairing, which will also be useful in some proofs:

π1 = 〈id,>〉◦ (2.67)

π2 = 〈>, id〉◦ (2.68)

The fusion law

〈R, S〉 · T = 〈R · T, S · T〉 ⇐ R · img T ⊆ R ∨ S · img T ⊆ S (2.69)

also holds if T is simple.

K RO N E C K E R P RO D U C T S F O R R E L AT I O N S In the category of relations, a Kronecker product can
be defined as a specific pairing:

R× S = 〈R · π1, S · π2〉 (2.70)
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Now, with relations A CRoo and B DSoo , we have the type diagram

A A× B
π1oo π2 // B

C

R

OO

C×D

R×S

OO

π1
oo

π2
// D

S

OO

showing how R and S operate on the two sides of the product. The Kronecker product interacts with relational
pairing through the following absorption law:

(R× S) · 〈P, Q〉 = 〈R · P, S ·Q〉 (2.71)

The free theorems of π1 and π2, proven as instances of Reynolds abstraction theorem in (Barbosa et al., 2008),
state that:

π1 · (R× S) ⊆ R · π1 (2.72)

π2 · (R× S) ⊆ S · π2 (2.73)

Contrary to what it might seem, R and S do not act completely independently of each other, so stating these laws
as equalities is not possible without imposing restrictions. The problem arises when a pair contains an element
outside a relation’s domain, and another that is part of opposite relation’s domain. To avoid this situation, we
stipulate that the excluded relations are entire.

π1 · (R× S) = R · π1 ⇐ S is entire (2.74)

π2 · (R× S) = S · π2 ⇐ R is entire (2.75)

Proof of (2.74):

π1 · (R× S)

= { π1 = 〈id,>〉◦ (2.67), Kronecker product definition (2.70) }

〈id,>〉◦ · 〈R · π1, S · π2〉

= { pairings (2.66),>◦ = > by (2.2) }

R · π1 ∩> · S · π2

= { > · S · π2 = > because S · π2 is entire (2.56) }

R · π1 ∩>

= { > is identity element of meet (2.55) }

R · π1

�

A similar reasoning applies symmetrically to the proof of (2.75).
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R E L AT I O N A L B I P RO D U C T S Relational products and coproducts are dual constructs in the category
of relations, meaning that they have the same structure, only the direction of the arrows is reversed.

A relational coproduct is a relation that produces a sum type A+B from relations C ARoo and C BSoo ,
and contains either a value of type A or B, accompanied by a tag. A + B represents the disjoint union of types
A and B. Its type structure is shown in the following diagram:

A
i1 //

R ""

A + B

[R,S ]
��

B
i2oo

S||
C

where i1 and i2 are the injections, which can be defined as:

i1 = [id ,⊥] (2.76)

i2 = [⊥ , id] (2.77)

Again, the diagram suggests the universal property:

X = [R , S] ≡
{

X · i1 = R
X · i2 = S

(2.78)

Note the difference to the universal property for pairings (2.60). Relational inclusion in pairing cannot be tightened
to equality, while relaxing the universal property for coproducts is possible:

X ⊆ [R , S] ≡
{

X · i1 ⊆ R
X · i2 ⊆ S

(2.79)

If we make X := [Y , Z] in either (2.78) or (2.79), we obtain laws for coproduct equality

[Y , Z] = [R , S] ≡
{

Y = R
Z = S

(2.80)

and relational inclusion:

[Y , Z] ⊆ [R , S] ≡
{

Y ⊆ R
Z ⊆ S

(2.81)

We can also define coproducts in closed form:

[R , S] = R · i◦1 ∪ S · i◦2 (2.82)

Because a coproduct is a join of two relations, it obeys a fusion law:

R · [S , T] = [R · S , R · T] (2.83)
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The dual construct to the relational coproduct, the relational product, can be obtained by inverting the direction
of the arrows in the type diagram:

A A + B
i◦1oo

i◦2 // B

C

[R ,S]◦
OO

S◦

<<

R◦

bb

making i◦1 and i◦2 projections from the sum type. Since [R , S]◦ = [R◦ , S◦] by virtue of (2.82) and (2.19), we
also have the closed form definition of a product:

[R , S]◦ = i1 · R◦ ∪ i2 · S◦ (2.84)

The following law simplifies composition between a coproduct and a product:

[R , S] · [T , U]◦ = R · T◦ ∪ S ·U◦ (2.85)

R E L AT I O N A L D I R E C T S U M As relational pairings give rise to the Kronecker product, a similar strategy

gives us the relation direct sum R + S. With relations C ARoo and D BSoo , we have:

A
i1 //

R
��

A + B

R+S
��

B

S
��

i2oo

C
i1
// C + D D

i2
oo

The relational direct sum can then be defined as a co-product:

R + S = [i1 · R , i2 · S] (2.86)

Essentially, this allows us to have different computational “tracks” for different types. The following absorption law

[S , Q] · (P + R) = [S · P , Q · R] (2.87)

allows us to extend the tracks and absorbs them into the coproduct. Naturally, one can also fuse two direct sums
into one

(S + Q) · (P + R) = S · P + Q · R (2.88)

and proving inclusion entails proving the inclusion on both sides separately:

S + Q ⊆ P + R ≡
{

S ⊆ P
Q ⊆ R

(2.89)
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It will be convenient to apply laws (2.87), (2.83) and (2.81) in a single step (“coproducts”), introducing factors id
or id + id where necessary:

P · [R , S] · (W + X) ⊆ Q · [T , U] · (Y + Z) ≡
{

P · R ·W ⊆ Q · T · Y
P · S ·X ⊆ Q ·U · Z

(2.90)

R E L AT I O N A L D I V I S I O N S Relational composition allows us to express existential quantification in a
pointfree style. Relational division, in turn, substitutes universal quantification in relation calculus:

c (R / S) a ⇔ 〈∀ b : a S b : c R b〉

c (S \ R) a ⇔ 〈∀ b : b S a : b R c〉

Left division R \ S (read “R under S”) and right division R / S (“R over S”) can also be defined by the Galois
connections

R ·X ⊆ S ⇔ X ⊆ R \ S (2.91)

X · R ⊆ S ⇔ X ⊆ S / R (2.92)

which prove extremely useful for the purposes of our work. Taking X as the divisions in their respective Galois
connection yields the two cancellation laws:

R · (R \ S) ⊆ S (2.93)

(S / R) · R ⊆ S (2.94)

One difficulty that typically arises when dealing with equations involving divisions is the fact that while division on
the right hand side can always be converted into composition on the left hand side, the opposite is not true. The
following rules will help us overcome this in some cases:

R \ S ⊆ R◦ · S ⇐ R is entire (2.95)

S / R ⊆ S · R◦ ⇐ R is surjective (2.96)

The proof of (2.95) is almost immediate (that of (2.96) is similar):

R \ S ⊆ R◦ · S

⇐ { cancellation (2.93) and monotonicity (2.31) }

R \ S ⊆ R◦ · R · (R \ S)

⇐ { monotonicity (2.27) }

id ⊆ R◦ · R

�
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The following equalities involving divisions are useful (Oliveira, 2019):

R · f = R/ f ◦ (2.97)

f \ R = f ◦ · R (2.98)

R/⊥ = > (2.99)

R/id = R (2.100)

(R \ S) · f = R \ (S · f ) (2.101)

f ◦ · (R / S) = f ◦ · R / S (2.102)

R / f ◦ · S = (R / S) · f (2.103)

R \ (f ◦ · S) = f · R \ S (2.104)

R \ > · S = ! ·R \ ! ·S (2.105)

R / (S∪ P) = R / S∩ R / P (2.106)

(R \ S)◦ = S◦ / R◦ (2.107)

All of these have short proofs, mostly reasoning by indirect equality. For example, the proof of (2.102) is laid out:

X ⊆ f ◦ · (R / S)

≡ { shunting (2.59) }

f ·X ⊆ R / S

≡ { right division (2.108) }

f ·X · S ⊆ R

≡ { shunting (2.59) }

X · S ⊆ f ◦ · R

≡ { right division (2.108) }

X ⊆ f ◦ · R / S

:: { indirect equality (2.9) }

f ◦ · (R / S) = f ◦ · R / S

�

Finally, it will be useful to work with divisions R \R and R / R for some relation A ARoo . Any such division
is necessarily a preorder.

R \ R is a preorder (2.108)

R / R is a preorder (2.109)
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Proof of (2.108):

R \ R is a preorder

≡ { definition of a preorder }{
id ⊆ R \ R
(R \ R) · (R \ R) ⊆ R \ R

≡ { left division (2.91) }{
R ⊆ R
R · (R \ R) · (R \ R) ⊆ R

⇐ { left division cancellation (2.93) }

R · (R \ R) ⊆ R

⇐ { left division cancellation (2.93) }

R ⊆ R

�

The proof of (2.109) is similar, using right division laws instead.

S Y M M E T R I C D I V I S I O N Following Freyd and Scedrov (1990), define S
R as:

S
R

= R \ S∩ R◦ / S◦ B

R $$

C

Szz

S
Roo

A

(2.110)

Clearly:

b
S
R

c ≡
{
〈∀ a : a R b : a S c〉
〈∀ a : a S b : a R c〉

≡ 〈∀ a :: a R c ⇔ a S b〉 (2.111)

One may easily verify other properties such as e.g. (Freyd and Scedrov, 1990):

f
g
= g◦ · f (2.112)(
S
R

)◦
=

R
S

(2.113){
⊥
R = R \ ⊥
R
⊥ = ⊥ / R◦

(2.114)

S
R
· Q

S
⊆ Q

R
(2.115)

f ◦ · S
R
· g =

S · g
R · f (2.116)
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f
id

= f ∧ id
f
= f ◦ (2.117){

>
R = R◦ />
R
> = > \ R

(2.118)

Symmetric divisions of the form f
f enjoy some special properties. First of all, they are equivalence relations: from

(2.115) we prove transitivity, and using (2.112) and shunting (2.58) it is straightforward to prove reflexivity and
symmetry. It is also easy to verify that applying ker and img to f

f results in the same relation:

ker
f
f
=

f
f

(2.119)

img
f
f
=

f
f

(2.120)

A R E L AT I O N O N F U N C T I O N S The so-called “Reynolds arrow” relational operator establishes a rela-
tion on two functions f and g parametric on two other arbitrary relations R and S:

f (R← S) g ≡ f · S ⊆ R · g A

f

��

BSoo

g

��

⊆

C D
R

oo

(2.121)

This is a powerful operator that satisfies many properties, for instance (Oliveira, 2019):

id← id = id (2.122)

(R← S)◦ = R◦ ← S◦ (2.123)

R← S ⊆ V ← U ⇐ R ⊆ V ∧U ⊆ S (2.124)

(R← V) · (S← U) ⊆ (R · S)← (V ·U) (2.125)

( f ← g◦)h = f · h · g (2.126)

k( f ← g)h ≡ k · g = f · h (2.127)

In case f and g are the same,

f · S ⊆ R · f A

f

��

ASoo

f

��
⊆

B B
R

oo

(2.128)

is abbreviated by R S
foo and we say that f has relational type R ← S. Pointwise: for all x and y,

x S y⇒ (f x) R (f y).
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F - M O N OT O N I C I T Y A relator F (Bird and de Moor, 1997) is a mathematical construction such that, for

any type A, type F A is defined and for any relation B ARoo , relation F B F AF Roo is defined such
that

F id = id (2.129)

F R◦ = (F R)◦ (2.130)

F (R · S) = (F R) · (F S) (2.131)

hold.
Every time f (h← F h) g holds — that is, f ·F h = h · g by (2.127), h is said to be a F-homomorphism.

A relation S is said to be F-monotone with respect to R if relational type R F RSoo holds, that is:

S ·F R ⊆ R · S (2.132)

holds.

P O W E R O B J E C T S Following Freyd and Scedrov (1990), a type T is a power object if its has a membership

relation A T A
∈Too such that

(a) ∈T is straight :

∈T

∈T

= id (2.133)

(b) ∈T is thick :

R
∈T

: T B← A is entire for any R : B← A (2.134)

Usually T is understood from the context and subscript T is omitted from ∈T. Such is the case when T is the
powerset.1 Note that, independently of (2.134), R

∈ : T B← A is always simple provided (2.133) holds:

R
∈ ·
(

R
∈

)◦
⊆ id

≡ { symmetric division converse (2.113); power object law (2.133) }
R
∈ ·
∈
R
⊆ ∈∈

≡ { symmetric division (2.115) }

true

�

1 This is the case all the way through in (Bird and de Moor, 1997).
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Thus (2.133,2.134) grant that

ΛR =
R
∈ (2.135)

is a function, the pointwise

y = ΛR a ⇔ 〈∀ b :: b ∈ y ⇔ b R a〉

becomes

ΛR a = {b | b R a} (2.136)

in the case of the powerset membership.
We shall refer to (2.135) as the T-transpose of R. Following Oliveira (2016), by (2.116) we immediately get

the fusion law:

ΛR · g = Λ(R · g) (2.137)

Since ΛR is a function, we reason:

f = ΛR

≡ { power-transpose definition (2.135); functional equality by (2.8) }

f ⊆ R
∈

≡ { symmetric division definition (2.110) }

∈ · f ⊆ R∧ f · R◦ ⊆ ∈◦

≡ { converses (2.28, 2.4, 2.3); shunting (2.59) }

∈ · f ⊆ R∧ R ⊆ ∈ · f

≡ { equality by circular inclusion (2.8) }

∈ · f = R

�

So we have the universal property of transposition

f = ΛR ≡ ∈ · f = R (2.138)

and therefore cancellation,

∈ ·ΛR = R (2.139)
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reflection,

Λ∈ = id (2.140)

which, together with a property on functions

Λ(R · f ) = ΛR · f (2.141)

gives us

Λ(∈ · f ) = f (2.142)

Put in another way: (∈·) and (∈ ) are isomorphisms (inverse of each other) between relations of type B← A
and functions of type T B← A.

Transposing a coproduct is the same as transposing its individual alternatives:

Λ[R , S] = [ΛR , ΛS] (2.143)

The smallest relation⊥ of its type is such that

Λ⊥ = ∈ \ ⊥ (2.144)

following (2.135) and (2.114). That it is a constant function yielding the empty set follows from (2.101). At the
other end of the spectrum

Λ> = ∈◦ /> (2.145)

which is also a constant function yielding the largest set of all sets of outputs.
All relational symmetric divisions can be turned into the division of the two set-valued functions obtained by

transposing the relations:

S
R

=
ΛR
ΛS

(2.146)

The power relator P is a useful tool to generalize the concept of “mapping” in functional programming lan-

guages. With relation B ARoo , a (P R) b is true if every element of a relates to some element of b by R,
and conversely. Its definition

P R = ∈ \ R · ∈ ∩ ∈◦ · R / ∈◦ (2.147)

leads directly to the following rules:

P R ⊆ ∈ \ R · ∈ (2.148)

P R ⊆ ∈◦ · R / ∈◦ (2.149)
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A relator distributes over composition:

P (R · S) = P R ·P S (2.150)

When applied to a function h, the power relator can be expressed through the power transpose:

P h = Λ(h · ∈) (2.151)

This law is a special instance of

Λ(h · S) = P h ·ΛS (2.152)

which leads to an interesting absorption law for coproducts and direct sums:

P [f , g] ·Λ(R + S) = [P f ·ΛR , P g ·ΛS] (2.153)

The free theorem of ∈

∈ ·P R ⊆ R · ∈ (2.154)

can also be stated conversely:

P R · ∈◦ ⊆ ∈◦ · R (2.155)

(Apply the free theorem of ∈, converses, and rename R := R◦.)
The union of a set of singletons is the original set

µ ·P η = id (2.156)

from which it is easy to prove the following:

µ ·P (η · R) = P R (2.157)

Finally, an element belongs to a union of sets if and only if it belong to one of the inner sets:

∈ · µ = ∈ · ∈ (2.158)

G UA R D S , C O R E F L E X I V E S A N D M C C A RT H Y ’ S C O N D I T I O N A L There is a special notation

for expressing a coreflexive relation that is only defined for values satisfying a predicate Bool A
poo

φp = id∩ true
p

= id∩ p
true

(2.159)

which gives two very useful laws:

φp ⊆ id (2.160)
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φp ⊆
true

p
(2.161)

If the predicate is a negation ¬ p, we can use the false function instead:

φ¬ p = id∩ false
p

= id∩ p
false

(2.162)

Naturally, coreflexives are idempotent:

φp · φp = φp (2.163)

A common pattern involving functions can be simplified:

f · φp·f = φp · f (2.164)

Since φp is simple, statements involving relational division (universal quantification) can be transformed into
statements involving relational composition (existential quantification), making sure to catch the cases where p
does not hold:

R / φp = R∪ p
false

⇐ R is connected (2.165)

Proof: see Appendix B.
If a relation R is entire and surjective, i.e. if R◦ is also entire, then it can be merged with a coreflexive.

R∩ p
true

= R · φp ⇐ R is entire and surjective (2.166)

R∩ true
p

= φp · R ⇐ R is entire and surjective (2.167)

For the proof of the first equality, see Appendix B. The proof for the second is almost identical, so it is omitted.
This notation for coreflexive relations is useful for representing conditional expressions. A particularly useful

conditional expression is McCarthy’s conditional

p→ R, S = [R , S] · p? (2.168)

where p? is a guard — a relational product which tags a value according to condition p:

p? = [φp , φ¬ p]
◦ (2.169)

This construct can be directly translated to a guard function in Haskell:

p? x = if p x then i1 x else i2 x

By biproduct absorption (2.85), we have a more friendly definition:

p→ R, S = R · φp ∪ S · φ¬ p (2.170)
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It follows by (2.160) that a McCarthy condition is smaller than the union of its branches:

p→ R, S ⊆ R∪ S (2.171)

D O M A I N A N D R A N G E The domain and range of a relation R are the coreflexives containing all pairs
(a, a) such that a is in R’s domain and range, respectively. These can be defined through the ker and img
operations:

δ R = ker R∩ id (2.172)

ρ R = img R∩ id (2.173)

Each operation is associated with a Galois connection:

δ R ⊆ S ≡ R ⊆ > · S (2.174)

ρ R ⊆ S ≡ R ⊆ S · > (2.175)

As expected, any relation can be composed with its domain, or compose with its range, without altering it:

R = R · δ R (2.176)

R = ρ R · R (2.177)

Some coreflexives can be better expressed as the domain of another relation:

φp·f = δ (φp · f ) (2.178)

When a function is constant, composition to the right will only limit its domain, and so:

f · S = f · δ S ⇐ f is constant (2.179)

When S is entire (δ S = >), we have:

f · S = f ⇐ f is constant and S is entire (2.180)

The true and false functions are constant and have disjoint ranges, so:

true
false

= ⊥ =
false
true

(2.181)

true
true

= > =
false
false

(2.182)

¬ true
p

=
false

p
(2.183)

¬ p
true

=
p

false
(2.184)
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2.2 S H R I N K I N G

One approach to solving optimization problems is to generate a set of candidate solutions and then select an
optimal solution, that is, one which yields the optimal value under the appropriate objective function. To express
this idea in relation algebra, Mu and Oliveira (2012) introduce the shrinking relational operator ( � ), serving a
similar purpose to the min R optimizing relation of Bird and de Moor (1997). Given relations S : A ← B and
R : A← A, the relation S �R : A← B, pronounced “S shrunk by R”, is defined as:

X ⊆ S �R ≡
{

X ⊆ S
X · S◦ ⊆ R

cf. diagram:

B

S
��

S�R

��
A A

R
oo

(2.185)

Here, we can think of S as relating instances of the optimization problem to the candidate solutions, we say it
“produces” candidate solutions. R is a relation, typically a preorder, which compares these candidate solutions
to each other. Then, the universal property of shrinking states that S � R must only contain elements from the
original relation S, and, for each of its inputs, the chosen outputs must be optimal under R when compared to
other candidate solutions produced by S. In effect, the original relation is “shrunk“ to include only the optimal
solutions to each input.

By indirect equality, (2.185) is equivalent to the closed definition:

S �R = S∩ R / S◦ (2.186)

P RO P E RT I E S O F S H R I N K I N G Immediate from (2.185) one draws the cancellations:

S �R ⊆ S (2.187)

(S �R) · S◦ ⊆ R (2.188)

Cancellation (2.187) can be made into an equality adding the condition that img S ⊆ R:

S = S �R ≡ img S ⊆ R (2.189)

If R is reflexive (id ⊆ R), and since all functions are simple (img f ⊆ id), we have:

f �R = f ⇐ id ⊆ R (2.190)

We can move functions outside a shrinking relation, or fuse them with it, like so:

(S · f ) �R = (S �R) · f (2.191)

( f · S) � R = f · (S � R f ) (2.192)
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where Rf = f ◦ · R · f . The proofs of (2.191,2.192) can be found in Appendix A of (Mu and Oliveira, 2012). Law
(2.192) allows us to adjust the optimizing relation to the appropriate context. Also note that making S, f :=∈, ΛS
in (2.191), applying power-transpose cancellation (∈ ·ΛS = S), yields

S �R = (∈ �R) ·ΛS (2.193)

providing a short notation for a commonly used pattern. The shrunk membership relation ∈ �R is what Bird and
de Moor (1997) call min R (getting the minima of a set).

Shrinking observes monotonicity on the optimizing relation (a very useful property in the sequel):

S �Q ⊆ S �R ⇐ Q ⊆ R (2.194)

Proof:

S �Q ⊆ S �R

≡ { universal property (2.185) }{
S �Q ⊆ S
(S �Q) · S◦ ⊆ R

≡ { cancellation (2.187) }

(S �Q) · S◦ ⊆ R

≡ { lower upper side (2.31) with Q ⊆ R }

(S �Q) · S◦ ⊆ Q

≡ { cancellation (2.188) }

true

�

On the relation itself, monotonicity is side-conditioned:

T �R ⊆ S �R ⇐
{

T ⊆ S
(T �R) · S◦ ⊆ R

(2.195)

Proof:

T �R ⊆ S �R

≡ { universal property (2.185) }{
T �R ⊆ S
(T �R) · S◦ ⊆ R

⇐ { shrinking cancellation (2.187) }
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T ⊆ S
(T �R) · S◦ ⊆ R

�

Moreover:

S � (Q∩ R) ⊆ (S �Q) �R (2.196)

Proof:

S � (Q∩ R) ⊆ (S �Q) �R

≡ { universal property (2.185) }{
S � (Q∩ R) ⊆ S �Q
(S � (Q∩ R)) · (S �Q)◦ ⊆ R

⇐ { shrinking monotonicity with Q∩ R ⊆ R (2.194); shrink cancellation (2.187) }

(S � (Q∩ R)) · S◦ ⊆ R

⇐ { shrink cancellation (2.188) }

Q∩ R ⊆ R

≡ { trivial }

true

�

With a specific optimizing relation and S an entire relation, shrinking can be eliminated by imposing post-
condition q on S (Mu and Oliveira, 2012):

S � (φq · >) = φq · S ⇐ S is entire (2.197)

Laws enabling shrinking of relation joins are often useful, e.g. Moreover, the “function competition” rule

( f ∪ g) � S = ( f ∩ S · g) ∪ (g ∩ S · f ) (2.198)

tells how two functions compete with each other to produce optimized results. (Recall that S/g◦ = S · g.) Other
laws enabling shrinking of relation joins are often useful, e.g.

(P ∪ S) � R = (P � R) ∪ (S � R) ⇐ P · S◦ ⊆ ⊥ (2.199)

which is a corollary of

(R ∪ S) �Q = (R �Q) ∩Q/S◦ ∪ (S �Q) ∩Q/R◦ (2.200)

Proof: see (Oliveira and Ferreira, 2013).
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Shrinking distributes through other relational constructs in the way one would expect:

[S , T] � R = [S � R , T � R] (2.201)

Proof: see (Mu and Oliveira, 2012).
For shrinking to distribute through relational direct sums, the optimization criterion must operate independently
on the resulting types, i.e. it must be a direct sum as well:

(S + T) � (R + Q) = S �R + T �Q (2.202)

Proof: see Appendix B.
Generalizing from exercise 7.15 from Bird and de Moor (1997) on pairing shrinking:

〈S �R, T �Q〉 ⊆ 〈S, T〉 � (R×Q) (2.203)

Proof: see Appendix B.

2.3 R E C U R S I V E R E L AT I O N S

This section introduces two general recursion patterns and their associated laws and properties. Along the way,
a few examples of how common functions can be expressed using them are given.

2.3.1 Catamorphisms and anamorphisms

A catamorphism is a general construct allowing the transformation of a recursive datatype into any other type,
usually in a destructive process, as the word’s origin κατά (Greek for “downwards”) indicates. An anamorphism
is the converse of a catamorphism 2 , which means it is able to generate a complex structure from a simpler one.

A ‘recursive‘ datatype, in this sense, is a datatype T for which there exists an initial F-algebra T F T
inoo .

As the two are so intimately related, we can write type T as µF. An F-algebra is any relation of type A← F A,
and an initial F-algebra for (initial) type T, which can thought of as its constructor, is when there exists a unique

relation of type A← T, written L R M, for any other F-algebra A F ARoo , the “gene” of the catamorphism,
such that

L R M · in = R ·F L R M (2.204)

2 In category theoretic terms, an anamorphism is the unique homomorphism from a coalgebra to the final coalgebra of a
functor, while a catamorphism is the unique homomorphism from its initial algebra to another algebra. So, using the term
‘anamorphism’ for the converse of a catamorphism is only acceptable when initial algebras and final coalgebras coincide,
ie. have the same carrier. By Theorem 3.8 of (Hasuo et al., 2007), the initial F-algebra in Sets yields the final F-coalgebra
in Rel, under rather mild conditions on functor F. Therefore, it makes sense in Rel to use the term ‘anamorphism’ as a
synonym of converse of a catamorphism.
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holds. Catamorphisms, also called folds in some of the literature, exhibit the following universal property,

X = L R M ≡ X · in = R · (F X)

T

L R M
��

F T
inoo

F L R M
��

B F B
R

oo

(2.205)

The base relator F of type T captures its recursive pattern. For instance, for finite lists which hold elements of
type A, one has{

F X = 1 + A×X
F f = id + id× f

(2.206)

in = [nil , cons] (2.207)

where

nil = [ ]

cons (h, t) = h : t

and nil and cons have disjoin ranges:

cons◦ · nil = ⊥ (2.208)

The following are useful examples of relational catamorphisms over lists: the list-prefix relation

� : A∗ ← A∗ (2.209)

� = L [nil , cons∪ nil] M (2.210)

the subsequence relation

(v) : A∗ ← A∗

(v) = L [nil , cons∪ π2] M (2.211)

and, for non-empty lists, where{
F X = A + A×X
F f = id + id× f

in = [wrap , cons]

the membership relation

ε+ : A← A+

ε+ = L [id , π1 ∪ π2] M (2.212)
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Two properties stem from (2.205) that prove particularly useful in calculations about L R M, namely fusion

S · L R M = L Q M ⇐ S · R = Q ·F S (2.213)

and cancellation, already given above (2.204). Fusion provides a sufficient condition on S, R and Q for merging
S · L R M into L Q M. This is incredibly useful for program derivation, because any catamorphism can be imple-
mented as a computer program, a consequence of a result known as the Eilenberg-Wright Lemma, which we
introduce at the end of this section.

By indirect equality one derives, from cata-cancellation:

X ⊆ L R M ⇐ X · in ⊆ R ·F X (2.214)

L R M ⊆ X ⇐ R ·F X ⊆ X · in (2.215)

These lead to “weaker" versions of cata-fusion:

Q · L S M ⊆ L R M ⇐ Q · S ⊆ R ·F Q (2.216)

L R M ⊆ Q · L S M ⇐ R ·F Q ⊆ Q · S (2.217)

2.3.2 Hylomorphisms

A hylomorphism is a more expressive recursive pattern than a catamorphism, because it is the composition of a
catamorphism with an anamorphism,

H = L R M · L S M◦ (2.218)

which can be thought of as phases of the hylomorphism. With F-algebras A F ARoo and B F BSoo ,

A BHoo can be diagrammed as:

B

H

��

F BSoo

µF

L R M
��

L S M

OO

F µF
inoo

F L R M
��

F L S M

OO

A F A
R

oo

The intermediate type µF produced by the anamorphism is known as the virtual data structure of the hylomor-
phism. H is the least fixpoint of the relational equation

X = R ·F X · S◦ (2.219)
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and, as such, any hylomorphism on either side of a relational inequality can be substituted by its least fixpoint,
leading to

L R M · L S M◦ ⊆ X ⇐ R ·F X · S◦ ⊆ X (2.220)

X ⊆ L R M · L S M◦ ⇐ X ⊆ R ·F X · S◦ (2.221)

in effect requiring proof that the statement holds through one recursive step of the hylomorphism, which includes
both phases.

While the membership of non-empty finite lists, A A+ε+oo , is, as we have seen, a catamorphism, the
same is not true for (possibly empty) finite lists, A A∗εoo . The enticing definition ε = L [⊥ , π1 ∪ π2] M is
incorrect because the base case (the empty list) is not defined, and so the relation “bottoms-out”:

L [⊥ , π1 ∪ π2] M = ⊥

≡ { circular equality (2.8);⊥ below everything (2.51) }

L [⊥ , π1 ∪ π2] M ⊆ ⊥

⇐ { cata fusion (2.215) }

[⊥ , π1 ∪ π2] ·F ⊥ ⊆ ⊥ · in

≡ { coproducts (2.90) }{
⊥ ⊆ ⊥ · nil
(π1 ∪ π2) · (id×⊥) ⊆ ⊥ · cons

≡ { ⊥ is zero of composition (2.57) (twice) }

(π1 ∪ π2) · (id×⊥) ⊆ ⊥

≡ { (id×⊥) = π◦1 · π1 ∩ π◦2 · ⊥ · π2 = π◦1 · π1 ∩⊥ = ⊥ }

(π1 ∪ π2) · ⊥ ⊆ ⊥

≡ { ⊥ is zero of composition (2.57) }

⊥ ⊆ ⊥

�

Instead, a definition is given by stating that either an element of a list is the head of the list, or it is contained
in its tail, expressed relationally by

ε = Hd∪ ε · Tl (2.222)

where Hd = π1 · cons◦ and Tl = π2 · cons◦. This is an example of a tail-recursive relational hylomorphism,
where F X = A + X:

ε = L [id , id] M · L [Hd◦ , Tl◦] M◦ (2.223)
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The following equation helps simplify proofs involving finite list membership:

ε · in = [⊥ , π1 ∪ ε · π2] (2.224)

Proof:

ε · in = [⊥ , π1 ∪ ε · π2]

≡ { def-ε (2.222) ; in = [nil , cons] (2.207) }

(Hd∪ ε · Tl) · [nil , cons] = [⊥ , π1 ∪ ε · π2]

≡ { join bilinearity (2.21); coproduct equality (2.80) }{
(Hd∪ ε · Tl) · nil = ⊥
(Hd∪ ε · Tl) · cons = π1 ∪ ε · π2

≡ { Hd = π1 · cons◦, Tl = π2 · cons◦; join bilinearity (2.21) }{
(π1 ∪ ε · π2) · cons◦ · nil = ⊥
(π1 ∪ ε · π2) · cons◦ · cons = π1 ∪ ε · π2

≡ { (2.208); cons is injective, ker cons = id }{
⊥ = ⊥
π1 ∪ ε · π2 = π1 ∪ ε · π2

�

2.4 I M P L E M E N T I N G R E L AT I O N C A L C U L U S W I T H F U N C T I O N S

So far, some constructs which use relations have been introduced with the aim of specifying DP problems and
allowing us to easily deal with non-determinism algebraically. The typical method for most programmers in
implementing DP algorithms using non-determinism is to explicitly manipulate a collection of solutions between
iterations of the algorithm. However, this can be done implicitly using monads, specifically the powerset monad.
In this section, rules for transforming these relational constructs into functional ones using the powerset monad
are introduced.

T H E P O W E R S E T M O N A D A monad is defined by three things: a datatype T, a unit function T A A
ηoo ,

and a multiplication function T A T2 A
µoo . In the case of the powerset monad, the datatype T is P (pow-

erset) and the unit and multiplication functions are the singleton and the union, respectively:

ηP a = {a} (2.225)

µP =
⋃

(2.226)
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The equivalent of regular relation composition, monadic composition T C A
f•goo , with monadic arrows

T B A
goo and T C B

foo , is defined as:

f • g = µ ·T f · g (2.227)

In Haskell, monadic composition can be encoded using the bind operator (>>=) or the syntactically friendlier do
notation facilitating the “chaining” of operations in an imperative style:

(f • g) x = g x >>= f = do {a← g x; f a} (2.228)

In the powerset monad, monadic composition is the composition of two set-valued functions. Each element in
the set produced by g is turned into a new set by the application of f , resulting in a set of sets which is then
unified into a single set containing all elements. To make use of this, we must turn our relations into set-valued
functions. This is done using the power transpose operator:

ΛR a = {b | b R a} (2.229)

Any set type forms a monoid, i.e. there is an associative binary operation plus with an identity element zero.
In Haskell, this is implemented via the MonadPlus type class, with the mplus (⊕ ) operator and the mzero
constant function. For the powerset, they are defined as the set union binary operator and its identity element,
the empty set:

x⊕ y = x ∪ P y (2.230)

mzero = { } (2.231)

A few rules involving common operations will be used in the final part of the process of deriving algorithmic
solutions from specifications. In addition to general rules involving relatively simple constructs introduced earlier,
it is also important to be able to transpose other types of relations, including more complex ones such as relational
union, intersection and division:

Λ(R · S) = ΛR •ΛS (2.232)

Λid = η (2.233)

Λf = η · f (2.234)

Λ⊥ = mzero (2.235)

Λ(S∪ R) a = (ΛS a)⊕ (ΛR a) (2.236)

Λ(f ∪ g) a = { f a, g a} (2.237)

Λ(R∩ S) a = {b | b ∈ ΛR a ∧ b ∈ ΛS a} (2.238)

Λ(R / S) a = {b | 〈∀ c : c ∈ ΛS◦ a : b ∈ ΛR c〉} (2.239)

Λ(R× S) (a, b) = {(c, d) | c ∈ ΛR a ∧ d ∈ ΛR b} (2.240)
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Upon application of these rules, b ∈ ΛR a may be implicitly converted to the equivalent expression b R a if R
doesn’t need to be transposed in the given context.

The last rule is often used with R := id, which yields c = a on the right side. This can be simplified through
the use of a one-point rule: given a relational expression E(x) and a relational predicate P(x), we have:

{E (a) | a = b ∧ P (a)} ≡ {E (b) | P (b)} (2.241)

As a first example of transposition we calculate the popular function elems : P A← A∗ that yields the set of all
elements of a finite list, which arises as

elems = Λε (2.242)

By transposing both sides of (2.224) we obtain the usual, inductive definition:

Λ(ε · in) = Λ[⊥ , π1 ∪ ε · π2]

≡ { (2.141); elems = Λε; coproduct power-transpose (2.143) }

elems · in = [Λ⊥ , Λ(π1 ∪ ε · π2)]

≡ { coproducts; go pointwise; Λ⊥ = mzero = { } }{
elems [ ] = { }
elems (h : t) = Λ(π1 ∪ ε · π2) (h, t)

≡ { (2.236); (2.141); elems = Λε; Λf = η · f }{
elems [ ] = { }
elems (h : t) = {h} ∪ P elems t

A coreflexive relation can be naturally represented by a set-valued function — a singleton if the condition holds,
or the empty set if it doesn’t. This is commonly known as the guard function.

Λφp = guard p = p→ η, mzero (2.243)

Proof:

Λφp

= { φp = i◦1 · p? since p? = [φp , φ¬ p]
◦ (2.169) }

Λ(i◦1 · p?)

= { i◦1 = [id ,⊥] (2.76) }

Λ([id ,⊥] · p?)

= { Λ(R · f ) = ΛR · f (2.137) }

Λ[id ,⊥] · p?

= { power-transpose of coproduct (2.143) }
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[Λid , Λ⊥] · p?

= { Λid = η (2.233); Λ⊥ = mzero (2.235) }

[η , mzero] · p?

= { McCarthy conditional (2.168) }

p→ η, mzero

�

T H E E I L E N B E R G - W R I G H T L E M M A A set-valued catamorphism must have a gene that forms a set
from recursively calculated sets. The Eilenberg-Wright Lemma establishes a relation between relational and
functional catamorphisms by doing precisely this:

X = L R M ≡ ΛX = L Λ(R ·F ∈) M (2.244)

This arises as corollary of the adjoint-fold theorem of (Oliveira, 2019) instantiated to the adjunction underlying
the powerset transpose construction (2.138).

This lemma is useful wherever refinement from relational catamorphisms does not shrink to a function, making
it necessary to encode the resulting catamorphism in terms of a set-valued function. The particular case of
relational catamorphisms over lists pops up so often that it is useful to expand the Eilenberg-Wright encoding for
this data type:

X = L R M

≡ { Eilenberg-Wright Lemma (2.244) }

ΛX = L Λ(R ·F ∈) M

≡ { F R = id + id× R assumed, then R := [R1 , R2] }

ΛX = L Λ[R1 , R2 · (id×∈)] M

≡ { coproduct power-transpose (2.143) }

ΛX = L [ΛR1 , Λ(R2 · (id×∈))] M

≡ { universal property (2.205) }{
ΛX · nil = ΛR1

ΛX · cons = Λ(R2 · (id×∈)) · (id×ΛX)

≡ { power-transpose of composition (2.232) }{
ΛX · nil = ΛR1

ΛX · cons = ΛR2 •Λ(id×∈) · (id×ΛX)

≡ { go pointwise }
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ΛX [ ] = ΛR1

ΛX (h : t) = (ΛR2 •Λ(id×∈)) (h, ΛX t)

≡ { introduce do notation (2.228) and simplify }{
ΛX [ ] = ΛR1 ()

ΛX (h : t) = do {b← ΛX t; ΛR2 (h, b)}

Summing up:

X = L [R1 , R2] M ≡
{

ΛX [ ] = ΛR1 ()

ΛX (h : t) = do {b← ΛX t; ΛR2 (h, b)}
(2.245)

2.5 M E TA P H O R S A N D M E TA P H O R I S M S

Substituting R := id in (2.5) and renaming, we get a metaphor g◦ · f ,

b (g◦ · f ) a ⇔ g b = f a (2.246)

conveying the preservation of some property, observed by f on the input and by g on the output. A metaphor
can be expressed as a symmetric division (Oliveira, 2018), so we have the following notation:

f
g

= g◦ · f (2.247)

Since a metaphor is a symmetric division, previously introduced properties also hold in metaphors. Applying
properties (2.116) and (2.117) to functions results in the following property on metaphors:

id
g
· h

k
· f

id
=

h · f
k · g (2.248)

A shrinking metaphor is a useful pattern for specifying some optimization problems:

M =
f
g
�Rh

T

T

g ��

Rh

??

V

f��

M
__

g◦·foo

A

(2.249)

The inner metaphor represents the algorithm’s invariant, while the optimizing relation Rh indicates the best
solution, ordering elements through a measure given by function h. For example, Oliveira (2018) specifies the
problem of building trees of minimum height as tips

tips � (6)height, where tips is a function that builds the sequence
of a tree’s leaves.
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If, instead of a function, a relation is used in either side of the metaphor, it will be shrunk to its deterministic
fragment R � id (Mu and Oliveira, 2012):

R
g
= g◦ · (R � id) (2.250)

f
R

= (R � id)◦ · f (2.251)

P O S T- C O N D I T I O N E D M E TA P H O R S Pattern of metaphor shrinking from (Oliveira, 2018)

f
g
�

true
q

(2.252)

indicating that only the outputs satisfying q are regarded as good enough. Oliveira (2018) shows that (2.252) is
equivalent to

φq ·
f
g

(2.253)

a pattern referred to as a postconditioned metaphor.

M E TA P H O R I S M S Metaphorisms are simply metaphors in which f and g (here renamed) are catamor-
phisms:

L f M
L g M

= L g M◦ · L f M (2.254)

Note the difference to hylomorphisms. Here, reading composition as existential quantification (2.1) is useful: for
every input-output pair, there must exist a value that is both observed by L f M on the input and observed by L g M
on the output. This is the invariant property specified by the metaphorism.

As with metaphors, there is a similar shrinking metaphorism pattern, which now divides the problem into an
invariant on inductive types and an optimization phase. The specification for the minimum height tree problem
given before, tips

tips � (6)height, is actually an example of a shrinking metaphorism, as tips can be defined as a
catamorphism.

Metaphorisms of the form f
f , where f = L g M, are F-congruences on the initial algebra of f :

in ·F f
f
⊆ f

f
· in (2.255)

Proof:

in ·F f
f
⊆ f

f
· in

≡ { (2.112); shunting (2.58); catamorphism (2.204) (twice) }

g ·F f ·F (f ◦ · f ) ⊆ g ·F f
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≡ { functors; f is simple, so img f = id (2.41) }

g ·F f ⊆ g ·F f

�

2.6 A L G E B R A O F P R O G R A M M I N G

2.6.1 The converse of a function theorem

Some problems are easily specified by the converse of a function. For instance, the square root is the converse
of the square function sq x = x2, i.e. Sqrt = sq◦. Provided some conditions hold, one can transform function
converses into relational catamorphisms.

Theorem 2.1. Let T F Tinoo and T A
foo be given. Then, with R : A← F A surjective:

f ◦ = L R M ⇐ f · R ⊆ in ·F f (2.256)

Proof: see theorem 6.4 in (Bird and de Moor, 1997). �

2.6.2 The Greedy Theorem

The Greedy Theorem can be applied to problems where a greedy strategy arrives at the optimal solution, that
is, where choosing the best solution out of all possible candidate solutions can be done by maintaining, at each
step of the algorithm, a single candidate solution, specifically, the one that results from a locally optimal decision.

Theorem 2.2. Greedy theorem:

L S �R M ⊆ L S M �R (2.257)

holds provided R is transitive and S is monotonic with respect to R◦ (2.132).

Proof: see theorem 7.2 in (Bird and de Moor, 1997). �

2.6.3 Dynamic Programming Theorems

It is almost always advantageous to reduce complexity by reasoning with simpler constructs. A shrinking hy-
lomorphism can be refined to a least fixed point not involving the catamorphism or anamorphism, provided no
candidate solutions are excluded from consideration in the resulting equation. Additionally, monotonicity with
respect to the optimizing relation must hold.
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Theorem 2.3. With H = L S M · L T M◦ over functor F, we have:

〈µ X :: S ·F X · T◦ �R〉 ⊆ H �R (2.258)

provided S is monotonic with respect to R, and δ T ⊆ δ (S ·F M).

Proof: see theorem 2 in (Mu and Oliveira, 2012) �

(Reminder: the expression S ·F X · T◦ �R is same as (S ·F X · T◦) �R due to composition binding tighter
than any other binary combinator.)

When S is a function h monotonic with respect to R, the domain restriction is automatically satisfied.

Theorem 2.4. Given H = L h M · L T M◦ and R F Rhoo . Then

〈µ X :: h ·F X · T◦ �R〉 ⊆ H �R (2.259)

Proof: see theorem 9.1 in (Bird and de Moor, 1997)

An optimal solution can be extracted from an intermediate structure if we find an optimization relation for the
intermediate structure that is consistent: an optimal structure under this relation will result in an optimal solution
under the original optimization relation.

Theorem 2.5. Let H = L S M · L T M◦ where S is a simple relation We have

〈µ X :: S ·FX · (T◦ �Q)〉 ⊆ H � R

provided S is monotonic on R and S · FH · Q◦ ⊆ R◦ · S · FH, cf. the following type diagram where

R◦S abbreviates S◦ · R◦ · S:

A
T◦�Q

//

T◦

**

H�R

~~

H

��

FA

δ S·F H

��

FA
Q◦

oo

FH

��

FH

��
B BRoo FBSoo FB

R◦Soo

S

jj

The diagram assumes the following rule, valid for S simple:

S · R ⊆ T ≡ δ S · R ⊆ S◦ · T (2.260)

Proof: see (Mu and Oliveira, 2012).3

�

Finally, the following theorem gives a condition for proving monotonicity under a relation expressed as fold,
which is helpful in applying the other theorems.

3 This is a slight generalization of theorem 10.1 of (Bird and de Moor, 1997).
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Theorem 2.6. Let R = L I M where in ⊆ I. Then R is monotone with respect to in:

in ·F R ⊆ R · in ⇐ in ⊆ I (2.261)

Proof: see (Mu and Oliveira, 2012). �

2.7 T O W A R D S E X E C U TA B I L I T Y

One consequence of using shrinking to specify and refine relational inductive relations is that non-determinism is
reduced by the implicit optimization and one is lead to runnable inductive relations, e.g. functional catamorphisms.
It often happens, though, that the process does not end in a function, meaning that the only way to implement
the outcome is to transpose it, recall (2.193) and (2.141),

Λ(S �R) = Λ(∈ �R) ·ΛS (2.262)

that is:

P B P B
Λ(∈�R)oo AΛSoo

For finite B, power-type P B can be implemented in several ways, e.g. by B∗, in which case ε = Hd ∪ ε · Tl
— recall (2.222).

Let us see how to implement Λ(ε �R), using theorem 2.4. By (2.222), F R = id + R and h = [id , id]

and pre-condition R F Rhoo clearly holds provided R is reflexive. By (2.259):

〈µ X :: ([id , id] · (id + X) · [Hd◦ , Tl◦]◦) �R〉 ⊆ ε �R

≡ { definition of Hd and Tl (3.7, 3.8); coproduct fusion (2.83); converse }

〈µ X :: ([id , id] · (id + X) · [π◦1 , π◦2 ]
◦ · cons◦) �R〉 ⊆ ε �R

⇐ { shrink monotonicity (2.195); direct sum and biproduct absorption (2.87, 2.85) }

〈µ X :: [⊥ , π1 ∪X · π2] · [nil , cons]◦ �R〉 ⊆ ε �R

≡ { function shrinking (2.191) }

〈µ X :: ([⊥ , π1 ∪X · π2] �R) · out〉 ⊆ ε �R

≡ { coproduct shrinking (2.201) }

〈µ X :: [⊥ , (π1 ∪X · π2) �R︸ ︷︷ ︸
S

] · out〉 ⊆ ε �R

Thus we reach the inductive relation X such that

X · in = [⊥ , S]
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As is evident below, S can be transformed in a way that will enable the definition of the power transpose of X as
a catamorphism:

(π1 ∪X · π2) �R

= { X = ∈ ·ΛX (2.139) }

(π1 ∪ ∈ ·ΛX · π2) �R

= { free theorems of π1 and π2 (2.74, 2.75) }

(π1 · (id×ΛX) ∪ ∈ · π2 · (id×ΛX)) �R

= { function shrinking (2.191) }

(π1 ∪ ∈ · π2) �R︸ ︷︷ ︸
T

·(id×ΛX)

where T unfolds to

T = π1 ∩ R / (∈ · π2)◦ ∪ ∈ · π2 ∩ R · π1

by (2.200).
We finish off by taking taking the transpose of both sides of the equation giving us a functional implementation

of the least prefix point of ε �R:

X · in = [⊥ , S]

= { Λ is an isomorphism }

ΛX · in = Λ[⊥ , S]

= { coproduct power-transpose (2.143) }

ΛX · in = [Λ⊥ , ΛS]

= { use (2.141) as (id×ΛX) is a function }

ΛX · in = [Λ⊥ , ΛT · (id×ΛX)]

= { F X = id + id×X }

ΛX · in = [Λ⊥ , ΛT] ·F ΛX

= { cata }

ΛX = L [Λ⊥ , ΛT] M

It remains to implement ΛT. With the power transpose laws for relational division (2.239) and intersection
(2.238), we have:

Λ(R / ∈◦) x = {b | 〈∀ c : c ∈ x : b R c〉}

Λ(∈ · π2 ∩ R · π1) (a, x) = {b | b ∈ x ∧ b R a}
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The set resulting from the transpose of the division can be calculated because, by intersecting with π1, we limit
the set of values that can belong to the set to a single one. Joining the two sets, we get:

ΛT (x, xs) = y∪ {x′ | x′ ∈ xs ∧ x′ R x}
where

y = if 〈∀ x′ : x′ ∈ xs : x R x′〉 then {x} else { }

Finally, we implement the shrink function, satisfying

Λ(∈ �R) ⊇ shrink R (2.263)

by representing sets as finite lists, and carrying out set union inside the branches of the if expression:

shrink r = L [[ ] , step] M where

step (x, xs) =
let xs′ = filter (λa→ r a x) xs
in if all (λa→ r x a) xs

then x : xs′

else xs′

Unlike the minlist function of (Bird and de Moor, 1997), this implementation does not require R to be a connected
preorder, it is sufficient for R to be reflexive. However, it has O(n2) time complexity in the worst case, whereas
minlist is linear. Since, in practice, the input of shrink is generally a very reduced list of candidate solutions,
the impact of this inefficiency is small.

2.8 S U M M A R Y

This chapter covered some theoretical aspects useful to the work ahead. Specifically, after going over basic
concepts of relation algebra, three main constructs were introduced: the shrinking operator, crucial in specifying
optimization processes; recursive relations, namely, catamorphisms and hylomorphisms, and their associated
properties; and useful theorems for solving optimization problems, mostly adapted from (Bird and de Moor,
1997).
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I N D U C T I V E R E L AT I O N S O N L I S T S

Lists are among the simplest and most useful collection datatypes. This work addresses problems which make
much use of them. In this chapter, the finite list datatype is defined, followed by useful inductive relations on lists:
permutations, subsequences and sublists. Finally, some useful monotonicity rules are given.

3.1 T H E L I S T D ATAT Y P E

This section defines the finite list datatype in relation to an initial algebra and its base relator, and describes some
basic laws to manipulate lists in a relational context. We define the base binary relator B of finite lists, from which
the previously defined functor F can be derived:

B (X, Y) = 1 + X× Y (3.1)

Recalling the initial algebra A F Ainoo

in = [nil , cons]

we aim to prove useful property of these functions. The membership relation on lists (ε), first introduced in the
section on relational hylomorphisms, satisfies the equation

ε · in = [⊥ , π1 ∪ ε · π2]

allowing us to state:

ε · nil = ⊥ (3.2)

ε · cons = π1 ∪ ε · π2 (3.3)

In the next sections, a few important results involving membership will be proven using this equation.
A common operation on lists is to apply an operation to each element, preserving its initial order in the list —

the map operation:

R∗ = L in ·B (R, id) M (3.4)

49
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When R is a function f , f ∗ is also a function, and is injective or surjective if and only if f is injective or surjective,
respectively. A useful property of the cons function, called its ‘free theorem’ for the way it can be derived
automatically from its type, involves this operation:

cons · (R× R∗) ⊆ R∗ · cons (3.5)

What follows is a collection of laws and definitions used in proofs throughout this work when dealing with finite
lists:

null = true · nil◦ ∪ false · cons◦ (3.6)

Hd = π1 · cons◦ (3.7)

Tl = π2 · cons◦ (3.8)

φnull = nil · nil◦ (3.9)

φ¬ null = cons · cons◦ (3.10)

φnull · nil = nil (3.11)

3.2 P E R M U TAT I O N S

A permutation of a list is a list containing the same elements with the same multiplicity for each element. A
concise relational definition, given in (Bird and de Moor, 1997), is the metaphorism

Perm =
bag
bag

(3.12)

where bag, the multiset containing all elements of a list and their multiplicities, can be defined as a higher-
order catamorphism over lists giving the function which calculates the multiplicity of an element in the list1. The
definition simply states that any two permutations have the same bag of elements. As a consequence of this
definition, we have that

Perm = Perm◦ (3.13)

and

Perm · cons = Perm · cons · (id× Perm) (3.14)

which follows from Theorem 2 of (Oliveira, 2018) and the fact that a metaphorism f
f (where — recall — f is a

fold) is a F-congruence on the initial algebra of f (2.255). From this we can also state that the only permutation
of the empty list is itself:

Perm · nil = nil (3.15)

1 As this definition is rarely needed, it is only given in (B.1), where it is most useful.
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Perm · φnull = φnull (3.16)

The free theorem of Perm

Perm · R∗ ⊆ R∗ · Perm (3.17)

can be strengethed to an equality when R is a function f :

f ∗ · Perm = Perm · f ∗ (3.18)

Proof:

f ∗ · Perm = Perm · f ∗

⇐ { free theorem of Perm (3.17) leaves only }

f ∗ · Perm ⊆ Perm · f ∗

≡ { shunting (2.58, 2.59) }

Perm · (f ∗)◦ ⊆ (f ∗)◦ · Perm

≡ { converses; Perm = Perm◦ (3.13) }

Perm · f ∗ ⊆ f ∗ · Perm

≡ { free theorem of Perm (3.17) }

f ∗ · Perm ⊆ f ∗ · Perm

�

S E L E C T I N G E L E M E N T S Let us define the Select relation that picks an element from a given list, pro-
ducing pairs of elements and corresponding lists which can be combined to form a permutation of the original
one. The Discard relation ignores the selected element, giving a list with one fewer element:

Select = cons◦ · Perm (3.19)

Discard = π2 · Select = π2 · cons◦ · Perm (3.20)

A useful result states that selecting an element from a list and immediately adding it at the head yields a permu-
tation:

cons · Select ⊆ Perm (3.21)

(Just shunt cons in (3.19) to the left.) Moreover, if a list is non empty, then there is a selection that is neutralized
by cons:

φ¬ null ⊆ cons · Select (3.22)
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Proof:

φ¬ null ⊆ cons · Select

≡ { definition of Select }

φ¬ null ⊆ cons · cons◦ · Perm

≡ { (3.10); monotonicity (2.31) }

id ⊆ Perm

≡ { Perm is reflexive (2.35) }

true

�

Select “absorbs” permutations on either side of it:

Select · Perm = Select = (id× Perm) · Select (3.23)

The first equality is immediate from the fact Perm · Perm = Perm (because Perm is both transitive and
reflexive, i.e. a preorder). The proof of the second equality also demonstrates the upside of defining Select in
terms of cons and Perm:

Select

= { definition of Select (3.19) }

cons◦ · Perm

= { converse; Perm = Perm◦ (3.13) }

(Perm · cons)◦

= { (3.14) }

(Perm · cons · (id× Perm))◦

= { converse; Perm = Perm◦ (3.13) }

(id× Perm) · cons◦ · Perm

= { definition of Select (3.19) }

(id× Perm) · Select

�

Since Select is only defined for non-empty lists, the following equality holds:

Select · φ¬ null = Select (3.24)
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Additionally, we can be sure that any selected element is a member of the list, and that the result of discarding
an element leaves a smaller list:

π1 · Select ⊆ ε (3.25)

ε ·Discard ⊆ ε (3.26)

The related SelectBy R relation

SelectBy R = Select �Rπ1 (3.27)

which selects elements based on some order R, can be refined to a function if R is connected:

SelectBy R ⊇ selectMin R = 〈π1,	〉 · 〈minlist R, id〉 ⇐ R is connected (3.28)

where A∗ A×A∗	oo is the function which, given an element and a list, removes the first occurrence of
the element in the list. The proof of this statement, including accompanying definitions, is laid out in Appendix B.

Perm A S A N A N A M O R P H I S M We can also express Perm in terms of the Select relation, specifically
as an anamorphism

Perm = L T◦ M◦

for some T of type F A AToo . Proof:

Perm = L T◦ M◦

≡ { converses ; Perm is symmetric }

Perm = L T◦ M

≡ { let T := [T1 , T2]
◦ }

Perm · [nil , cons] = [T1 , T2] · (id + id× Perm)

≡ { choose T1 := nil }

Perm · cons = T2 · (id× Perm)

≡ { converses }

Select = (id× Perm) · T◦2
≡ { choose T2 := Select◦ }

Select = (id× Perm) · Select

≡ { (3.23) }

true

�
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And so we have successfully proven that Perm is the anamorphism:

Perm = L [nil , Select◦] M◦ (3.29)

Since nil and Select◦ have disjoint ranges, it is possible to obtain an alternative representation of T, which will
ultimately be easier to manipulate into a functional implementation.

T = (nil + Select) · null? (3.30)

Proof:

[nil , Select◦]◦

= { (3.11); (3.24), converse }

[φnull · nil , φ¬ null · Select◦]◦

= { direct sum absorption (2.87) }

[φnull , φ¬ null] · (nil◦ + Select)◦

= { converse }

(nil + Select) · [φnull , φ¬ null]
◦

= { definition of guard (2.169) }

(nil + Select) · null?

�

With this, we can prove the following result, stating that any member of a list is a member of any of its permuta-
tions:

ε · Perm = ε (3.31)

Proof: see Appendix B.

S TA B L E F U N C T I O N S A so-called stable2 function f is one that produces the same value for all permu-
tations of its input:

f · Perm = f ≡ f is stable (3.32)

Because of this, any relation defined on the value of f , i.e. Rf , will relate two lists if and only if all permutations
of those lists are themselves related.

Perm · Rf = Rf = Rf · Perm (3.33)

2 This terminology is taken from (Korte and Lovász, 1984).



3.3. Subsequences and sublists 55

It suffices to prove one of these equalities to show how (3.32) is required by all of them:

Perm · Rf

= { abbreviation (2.6) }

Perm · f ◦ · R · f

= { converse; Perm = Perm◦ }

(f · Perm)◦ · R · f

= { f is stable (3.32); abbreviation (2.6) }

Rf

�

If a predicate Bool A∗
poo is stable, then a coreflexive on that predicate has the following property:

φp · Perm = Perm · φp (3.34)

Proof: see Appendix B.

3.3 S U B S E Q U E N C E S A N D S U B L I S T S

This section covers two important preorders on lists: the subsequence (v) and sublist (E) relations. These will
help specify optimization problems and derive functional implementations using their definitions and properties.

S U B S E Q U E N C E S A subsequence of a list is a smaller list containing only elements from the original list,
and so that the relative ordering of the elements is maintained. The subsequence relation, (v), is the relational
catamorphism

(v) = L [nil , cons∪ π2] M

which, with each new element, chooses whether to include or exclude from the resulting list. By the definition of
a catamorphism (2.204), we have:

(v) · nil = nil (3.35)

(v) · cons = (cons∪ π2) · (id× (v)) (3.36)

With regards to membership, (v) produces a list with fewer elements, so any element of a subsequence is an
element of the full list:

ε · (v) ⊆ ε (3.37)

Proof: see Appendix B.
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We will need laws that state how the Select and Discard relations interact with (v). The relation that selects
an element from a subsequence is same as one that selects an element and produces subsequences of the
resulting list:

Select · (v) = (id× (v)) · Select (3.38)

Proof: see Appendix B.
The subsequence of a list from which an element has been discarded is a permutation of a subsequence of

the original list:

(v) ·Discard ⊆ Perm · (v) (3.39)

Proof: see Appendix B.
Some basic properties can be observed about whether a list is empty or non-empty, which is expressed

through relational statements involving φnull and φ¬ null. The only subsequence of the empty list is the empty
list itself:

(v) · φnull = φnull (3.40)

Proof:

(v) · φnull ⊆ φnull

≡ { φnull = nil · nil◦ (3.9) }

(v) · nil · nil◦ ⊆ φnull

≡ { (v) · nil = nil (3.35) }

nil · nil◦ ⊆ φnull

≡ { φnull = nil · nil◦ (3.9) }

true

�

Going in the other direction, if a subsequence of a list is non-empty, then the original list is also non-empty:

φ¬ null · (v) ⊆ (v) · φ¬ null (3.41)

Finally, we prove that (v) is F-compatible for F X = id + id×X

(v) F (v)inoo (3.42)

which unfolds into two conditions:

nil ⊆ (v) · nil
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cons · (id× (v)) ⊆ (v) · cons

The first condition is immediate from (3.35). The second is almost as simple:

cons · (id× (v)) ⊆ (v) · cons

≡ { (3.36) }

cons · (id× (v)) ⊆ (cons∪ π2) · (id× (v))

⇐ { monotonicity (2.31) }

cons · (id× (v)) ⊆ cons · (id× (v))

�

S U B L I S T S A sublist can be defined as a subsequence of any permutation of the original list, since the
relative ordering of elements need not be fixed here.

(E) = (v) · Perm = L [nil , cons∪ π2] M · L [nil , Select◦] M◦ (3.43)

This definition automatically gives us (E) as a hylomorphism, where the intermediate structure is a permutation,
and the anamorphism and catamorphism genes represent the two phases of the process: non-deterministically
selecting an element from the list, and then producing all sublists containing and not containing that element in
that position. The following diagram represents the recursion scheme of the hylomorphism:

A∗

(E)

��

1 + A×A∗
[nil ,Select◦]oo

F (E)

��
A∗ 1 + A×A∗

[nil ,cons∪π2]
oo

Let us prove that (E) is F-compatible (on finite lists). From

(E) F (E)inoo (3.44)

two conditions arise:

nil ⊆ (E) · nil (3.45)

cons · (id× (E)) ⊆ (E) · cons (3.46)

The first condition is trivially true from (3.15) and (3.35). The second condition follows from Perm being a
congruence and (v) being F-compatible itself:

cons · (id× (E))
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= { definition of (E);× is a bifunctor }

cons · (id× (v)) · (id× Perm)

⊆ { (v) is F-compatible (3.42) }

(v) · cons · (id× Perm)

⊆ { Perm is a congruence (3.14) }

(v) · Perm · cons

= { definition of (E) }

(E) · cons

�

An alternate definition of (E) is as a permutation of a subsequence, meaning that a subsequence of a permuta-
tion is a permutation of a subsequence, and vice-versa:

(v) · Perm = Perm · (v) (3.47)

See the proof in Appendix B.

3.4 M O N O T O N I C I T Y R U L E S

Establishing monotonicity with respect to a preorder is an important step in refining relational specifications of
optimization problems. For finite lists, we wish to establish monotonicity of the initial algebra in, so that we may
prove results where element are added to a list. For some element type A, and taking F to be the functor for
finite lists (F X = 1 + A×X) and G A = A×X, we have that:

R F Rinoo ≡

 R idniloo

R G Rconsoo
(3.48)

Proof:

R F Rinoo

≡ { definition (2.132) }

in ·F R ⊆ R · in

≡ { in = [nil , cons], coproducts (2.90) }{
nil ⊆ R · nil
cons ·G R ⊆ R · cons

≡ { definition (2.132) (twice) }
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R G Rconsoo

�

For preorders evaluated on a function h, written as Rh, we may instantiate h to obtain specific more laws. With
h := f ∗, we rely on the free theorem of cons (3.5) to get a sufficient condition for monotonicity (under the G

functor):

Rf ∗ G Rf ∗
consoo ⇐ R G Rconsoo (3.49)

For h := L g M, a functional catamorphism, we infer monotonicity on a fold by monotonicity on its gene, g:

SL g M F SL g M
inoo ⇐ S F S

goo (3.50)

The proofs of (3.49) and (3.50) are present in Appendix B.
Let us use the above laws to to prove monotonicity of cons with respect a preorder evaluated on a linear

objective function h := sum · f ∗:

(>)sum·f ∗ G (>)sum·f ∗
consoo (3.51)

We reason:

(>)sum·f ∗ G (>)sum·f ∗
consoo

⇐ { Rf ·g = Sg where S = Rf , (3.49) }

(>)sum G (>)sum
consoo

⇐ { (3.48) }

(>)sum F (>)sum
inoo

⇐ { sum = L [0, add] M (3.50) }

(>) F (>)
[0 ,add]oo

≡ { definition (2.132) }

[0, add] ·F (>) ⊆ (>) · [0, add]

≡ { coproducts (2.90) }{
0 ⊆ (>) · 0
add · (id× (>)) ⊆ (>) · add

⇐ { monotonicity (2.27); (>) is reflexive (2.35), monotonicity (2.32) }

add · ((>)× (>)) ⊆ (>) · add
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≡ { monotonicity of addition with respect to (>) }

true

�

3.5 S U M M A R Y

In this chapter, the finite list datatype was introduced and a few associated relations were defined. The permuta-
tion relation Perm was proven to be a congruence which can be expressed as an anamorphism. Sublists were
defined as subsequences of permutations — (v) ·Perm — or vice-versa, which means the sublist relation (E)
is F-compatible. Finally, some useful monotonicity rules for preorders of the form Rf were given.



4

T H E G R E E DY A L G O R I T H M

This chapter proposes a general form for the greedy algorithm, explores its the algorithmic properties through
the theory of matroids, and then uses a simple case study to demonstrate these ideas.

The greedy algorithm is an algorithm which makes locally optimal choices to arrive at a globally optimal
solution. The most important aspect of its operation is the fact that only a single solution is considered at each
step. It is up to the algorithm designer to find a criterion of local optimality for the given problem. They need to
prove that, at each step, the constructed solution using that criterion is optimal considering only the part of the
input so far processed, and so, when the whole input is processed, the complete solution is guaranteed to be
optimal.

In imperative programming languages, the greedy algorithm can be implemented using a while loop. Starting
with the empty solution, parts of the input are considered in descending order of usefulness according to the
local optimality criterion. Then, the solution is successively augmented with each considered part if it results in a
feasible solution, that is, one that obeys the restrictions set by the problem specification. In the end, an optimal
solution is obtained for the entire input.

4.1 A G E N E R A L F O R M

In this section, a general form for the greedy algorithm will be proposed, implementing the imperative-style while
loop in a relational context. This will allow for a more calculational approach to deriving the greedy algorithm.

In essence, the while loop implementing the greedy algorithm is a two-phase process: a locally optimal choice
is made, and then the current solution is augmented based on such choice. This suggests a hylomorphism as a
possible general form for the greedy algorithm, segregating the two types of decisions into the two phases of the
hylomorphism. The divide phase makes the locally optimal choice to determine the order by which the input is
considered, while the conquer phase constructs the optimal solution by processing the virtual data structure in
order.

Out of the known shrinking and thinning theorems in the literature, the Greedy Theorem (Theorem 2.2) deals
only with catamorphisms, while others involving hylomorphisms (Theorems 2.3, 2.4, 2.5) rely on strict monotonic-
ity conditions.

61
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The following fixpoint equation,

〈µ X :: (S �R) ·F X · (T �Q)〉 ⊆ M (4.1)

is meant to be a starting point from which to derive the greedy algorithm for specific problems, where

• M = H �R and H = L S M · L T◦ M◦;

• Q is a preorder representing the criterion for making an ‘initial choice’;

• shrinking is to be performed in both the divide and the conquer phases of the hylomorphism.

The following type diagram illustrates the structure of the two hylomorphisms in play, and how they interact.

F A

F M

��

A
T◦�Qoo T◦ //

H

��

M

��

F A

F H

��

Q

uu

F B
S�R

// B B

R

gg F B
S

oo

Note that, due to the use of shrinking, there is only one solution under consideration in each phase. The challenge
lies in obtaining an appropriate definition of Q, such that the final optimization ( �R) can be made efficiently and
the hylomorphism can be refined to a functional implementation.

4.2 M AT R O I D S A N D G R E E D O I D S

In this section, matroids are defined in terms of set systems and the notion of feasibility1 over a set system.
Then, some important properties are described and expressed in relational algebra. With no loss of generality,
we represent sets as finite lists when expressing them.

S E T S Y S T E M S A set system (S, C) consists of a base set of elements S, and a collection C of subsets
of S, which defines the notion of feasibility. A set X is feasible if and only if X ∈ C. This set can be defined by a
feasibility condition p, meaning that a set is feasible if and only if p X is true.

A set system is accessible if it obeys the trivial axiom — the empty set (list) is feasible —

φp · nil = nil (4.2)

1 This terminology was chosen over ‘independence‘, as seen in some of the literature, due to being conceptually similar to
restricting the solution space in optimization problems.
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and the accessibility axiom: if a non-empty set X is feasible, then ∃ x ∈ X such that X− {x} is feasible. A
hereditary set system is one in which every subset of a feasible set is also feasible:

(E) · φp ⊆ φp · > (4.3)

In the sequel, a weaker property will be useful,

φp · cons ⊆ cons · (id× φp) (4.4)

because it leads to the following equality

φp · cons = φp · cons · (id× φp) (4.5)

whose proof can be found in Appendix B.
A matroid, then, is a hereditary set system that obeys the augmentation axiom: if X and Y are feasible sets

and |X| = |Y|+ 1 then ∃ x ∈ X−Y such that Y∪ {x} is feasible. A greedoid is a relaxation of a matroid: it
obeys the augmentation axiom, but it need not be a hereditary set system. In the rest of the chapter, a matroidal
structrure is assumed.

G R E E DY P O S T- C O N D I T I O N I N G In general, for any algebra A F ASoo of a container structure
of type A such that (generic) feasibility holds for “smaller” structures

φp · S ⊆ S ·F φp (4.6)

we can prove the following greedy post-conditioning rule:

φp · L S M = L φp · S M (4.7)

Proof:

φp · L S M = L φp · S M

⇐ { cata fusion (2.216) }

φp · S = φp · S ·F φp

≡ { F φp ⊆ id; monotonicity }

φp · S ⊆ φp · S ·F φp

≡ { φp ·X ⊆ Y ≡ φp ·X ⊆ φp · Y }

φp · S ⊆ S ·F φp

≡ { assumption (4.6) }

true

�
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For instance, for S := [nil , cons∪ π2] (the gene of (v)), assumption (4.6) results in:

φp · [nil , cons∪ π2] ⊆ [nil , cons∪ π2] ·F φp

≡ { coproducts (2.90) }{
φp · nil ⊆ nil
φp · (cons∪ π2) ⊆ (cons∪ π2) · (id× φp)

⇐ { (4.2); join bilinearity (2.20), universal property (2.14); monotonicity (2.31) (twice) }{
φp · cons ⊆ cons · (id× φp)

φp · π2 ⊆ π2 · (id× φp)

≡ { (4.5); Kronecker product cancellation (2.75) }

true

�

This allows us to state

φp · L [nil , cons∪ π2] M = L [nil , φp · cons∪ π2] M (4.8)

Proof:

φp · L [nil , cons∪ π2] M

= { (4.7) }

L φp · [nil , cons∪ π2] M

= { coproduct fusion (2.83); (4.2) }

L [nil , φp · (cons∪ π2)] M

= { claim: see page 131 }

L [nil , φp · cons∪ π2] M

�

G R E E DY AU G M E N TAT I O N Now, from a non-deterministic augmentation relation S = [nil , φp · cons∪
π2] obtained from (4.8), we wish to derive a function by optimization (shrinking). And indeed we can: let
f = sum ·wt∗, where weight function wt is positive-valued; by equational reasoning, we prove (in Appendix B,
p. 132) that S �R, for R = (>)f is the function

S �R = [nil , aug] (4.9)

where

aug = p · cons→ cons, π2 (4.10)
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is the function which augments a solution given a new element of the list, including it only if the larger list is
feasible.

4.3 O P T I M A L I T Y O F T H E G R E E DY A L G O R I T H M

Using the theory of matroids, generalized to greedoids, Korte and Lovász (1984) prove the correctness of the
greedy algorithm for certain classes of problems. Specifically, they prove that an optimization problem with a
greedoid as the underlying set system and an objective function — the function whose value we wish to optimize
— satisfying a few consistency conditions, the greedy algorithm gives the optimal solution.

In the rest of this section, a few general statements about the greedy algorithm under a matroidal structure
and a linear objective function, for some nonnegative weight function wt, will be proven. We assume the linear
objective function

f = sum ·wt∗

in the definition of M,

M = φp · E︸ ︷︷ ︸
H

� (>)f︸︷︷︸
R

(4.11)

which optimizes over the solution space represented by A∗ A∗Eoo under some assumptions:

• E is restricted by feasibility condition Bool A∗
poo , that is, only outputs of E satisfying this condition

are considered for optimization;

• E is F-compatible on finite lists, that is,

cons · (id× E) ⊆ E · cons (4.12)

holds;

• H satisfies the following condition:

H · cons = H · cons · (id×H) (4.13)

• E produces lists which are no better (according to R) than the input. That is, f has relational type

(6) E
foo , meaning:

f · E ⊆ (6) · f (4.14)
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Under these assumptions, which will have to be ensured for each specific problem, we are able to prove the
following general statement:

If, after running the greedy algorithm to obtain a partial solution it is possible to augment it with a
new element, then the resulting list is the optimal solution when considering the full list.

In relational algebra, we state this as

φp · cons · (id×M) ⊆ M · cons (4.15)

and proceed with its proof:

φp · cons · (id×M) ⊆ M · cons

≡ { (4.11); function shrinking (2.191) }

φp · cons · (id×M) ⊆ H · cons �R

≡ { universal property of shrinking (2.185) }{
φp · cons · (id×M) ⊆ H · cons
φp · cons · (id×M) · (H · cons)◦ ⊆ R

The first condition is straightforward:

φp · cons · (id×M) ⊆ H · cons

⇐ { shrinking cancellation (2.187); monotonicity (2.32, 2.27) }

cons · (id× E) ⊆ E · cons

≡ { (4.12) }

true

�

The second condition relies on our assumptions and the fact that f is a linear objective function:

φp · cons · (id×M) · (H · cons)◦ ⊆ R

⇐ { monotonicity (2.32) }

cons · (id×M) · (H · cons)◦ ⊆ R

≡ { (4.13) }

cons · (id×M) · (H · cons · (id×H))◦ ⊆ R

⇐ { converse;× is a bifunctor; shrinking cancellation (2.188) }

cons · (id× R) · cons◦ ·H◦ ⊆ R

≡ { since R = (>)sum·v∗ , we apply (3.51) }

R · cons · cons◦ ·H◦ ⊆ R
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⇐ { monotonicity (2.32) (twice) }

R · E◦ ⊆ R

≡ { R is transitive (2.37), so it is enough to prove }

E◦ ⊆ R

≡ { converses; definition of R; shunting (2.58) }

f · E ⊆ (6) · f

≡ { (4.14) }

true

�

Another important statement relates to the order by which the solution is augmented. By picking the smallest
element to add last and computing the optimal solution of the rest of the list first, then, if we are unable to add the
last element to the resulting solution, it is guaranteed to be the optimal solution for the entire list too. In relation
algebraic terms:

δ (φ¬ p · cons) · (id×M) · (Select � (6)v·π1) ⊆ π◦2 ·M (4.16)

Informal proof:2 suppose that having picked the smallest element to add last, we find that the solution computed
on the rest of the list (which is necessarily feasible) is not the optimal one, and that adding the last element does
not result in a feasible solution; then, the chosen element must be part of the optimal solution, and at least one
element of the calculated one must be excluded; however, since the chosen element is the smallest, the total
value of the solution cannot increase by any such substitution; nor can other elements from the original list be
included as to increase the size of the solution, because the augmentation axiom would dictate that one of those,
or the chosen element, could be added to the computed solution to get a feasible list, resulting in a contradiction
(the chosen element cannot be added), or in a better computed solution, which is, by definition, not possible; this
implies the calculated solution is, in fact, optimal, which is a contradiction.

4.4 T H E C O L O R P R O B L E M

This section presents a case study3 in the derivation of the greedy algorithm under a matroidal structure.

D E S C R I P T I O N Consider a list of items S, each with a measure and a dimension. For the color problem,
the measure is a nonnegative numeric value, and the dimension is the color of the item. Select a list of items
maximizing the total value, while making sure that no two items have the same color, and that all the colors in
the given list S can be found in the outcome.

2 See section 7.2 for more about this.
3 This particular instance of the problem was taken from (Guimarães, 2021).
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To specify the problem relationally, we first specify the solution space, which, in this case, is made of all sublists
of S:

E = (E) = (v) · Perm

Then, with c : Color← Item being the function that tells the color of an item, we impose the post-condition that
no colors can repeat in the output sets,

P = φp where p = noRepeats · c∗

and the invariant stating the preservation of the color set:

I =
Cs
Cs

where Cs = ε · c∗

Finally, we maximize by the objective function, where v : Value← Item is the weight function on items:

R = (>)value where value = sum · v∗

These four parts combined give us a relational specification that can be suited to describe many problems:

M = (P · E∩ I) �R (4.17)

Consider the set system where the base set is the set of all possible items, and the feasible sets are those
that don’t contain items with the same color. This set system is a matroid: every subset contains fewer colors,
therefore it is feasible if the original set is; and for two sets of different sizes, there is an item in the bigger set
which we can add to the smaller one to form a feasible set, because at least one color will be missing from the
smaller one.

Since we are dealing with a (stable) linear objective function and a matroidal structure, we know that the
greedy algorithm gives the optimal solution. We now wish to calculationally prove this for the color problem,
obtaining a functional implementation in the process.

Let us now state a few useful properties of p = noRepeats · c∗ and R = (>)value themselves. Firstly, if
a list has no two items with the same color, adding an element such that the resulting list repeats colors means
that the new item’s color is present in the original list. To express this in relational algebra, it is convenient to
make use of coreflexives:

p xs ∧ ¬ p (cons x xs)⇒ 〈∃ a : a ε xs : c x = c a〉

⇒ { strengthen antecedent; introduce (x, xs) as argument using π1 and π2 }

y = (x, xs) ∧ (p · π2) (x, xs) ∧ (¬ p · cons) (x, xs)

⇒ 〈∃ a : a (ε · π2) (x, xs) : (c · π1) y = c a〉

≡ { convert to pointfree }

(id× φp) · φ¬ p·cons ⊆
c

c · π1
· ε · π2
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≡ { symmetric division (2.112) }

(id× φp) · φ¬ p·cons ⊆ (c · π1)
◦ · c · ε · π2 (4.18)

And since we are dealing with nonnegative numeric values, we can state that any list is better than its tail:

y = cons x xs⇒ y R xs

≡ { π2 (x, xs) = xs; convert to pointfree }

cons ⊆ R · π2 (4.19)

D E R I VAT I O N By (3.43), E is a hylomorphism. The plan is to prove that H = P ·E is also a hylomorphism,
then obtain a candidate solution C by refining a modified version of the specification where the invariant I is
missing

C ⊆ P · E �R︸ ︷︷ ︸
M′

and finally proving that C conforms to the original specification, i.e. C ⊆ M. To prove that P · E is a hylomor-
phism, we simply apply the greedy post-conditioning rule to fuse the post-condition P with the catamorphic part
of E:

P · E

= { definitions of P and E }

φp · (v) · Perm

= { greedy post-conditioning for (v) (4.8) }

L [nil , φp · cons∪ π2] M · Perm

Now that we have expressed P · E as the hylomorphism (note the alternative definition of Perm (3.30))

P · E = L [nil , φp · cons∪ π2]︸ ︷︷ ︸
S

M · L ((nil + Select) · null?)◦︸ ︷︷ ︸
T

M◦ (4.20)

we wish to obtain the greedy algorithm over the solution space it represents. Let us elaborate on (4.1) to obtain
the criterion for the initial choice Q:

〈µ X :: (S �R) ·F X · (T◦ �Q)〉 ⊆ M′

⇐ { hylomorphism least fixpoint (2.220); converse }

(S �R) ·F M′ · (T◦ �Q) ⊆ M′

≡ { universal property of shrinking (2.185) }{
(S �R) ·F M′ · (T◦ �Q) ⊆ H
(S �R) ·F M′ · (T◦ �Q) ·H◦ ⊆ R
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⇐ { shrinking cancellation (2.187) (three times) }{
S ·F H · T◦ ⊆ H
(S �R) ·F M′ · (T◦ �Q) ·H◦ ⊆ R

⇐ { hylomorphism least fixpoint (2.220) }

(S �R) ·F M′ · (T◦ �Q) ·H◦ ⊆ R

≡ { (4.9); definition of T, converse }

[nil , aug] ·F M′ · ((nil + Select) · null? �Q) ·H◦ ⊆ R

⇐ { function shrinking (2.191); make Q := id + U and promote shrinking into direct sum (2.202) }

[nil , aug] ·F M′ · (nil + Select �U) · null? ·H◦ ⊆ R

≡ { coproducts (2.90) }

[nil , aug · (id×M′) · (Select �U)] · null? ·H◦ ⊆ R

≡ { biproduct absorption (2.85); bilinearity (2.21); universal property of join (2.14) }{
nil · φnull ·H◦ ⊆ R
aug · (id×M′) · (Select �U) · φ¬ null ·H◦ ⊆ R

The first condition states that the empty list has a smaller or equal value than any of its sublists. This is true
because the only sublist of the empty list is itself, and R is reflexive (2.35). The proof is shown in Appendix B.
The second condition is divided in two statements by expanding the definition of aug, a McCarthy conditional
(2.170), and the properties of join (2.21, 2.14):{

cons · φp·cons · (id×M′) · (Select �U) ·H◦ ⊆ R
π2 · φ¬ p·cons · (id×M′) · (Select �U) ·H◦ ⊆ R

The first statement asks us to prove the correctness of the greedy algorithm when the smallest element is
successfully added to the list:

cons · φp·cons · (id×M′) · (Select �U) ·H◦ ⊆ R

≡ { f · φp·f = φp · f (2.164) }

φp · cons · (id×M′) · (Select �U) ·H◦ ⊆ R

⇐ { φp · cons · (id×M′) ⊆ M′ · cons (4.15) }

M′ · cons · (Select �U) ·H◦ ⊆ R

⇐ { shrinking cancellation; cons · Select ⊆ Perm (3.21) }

M′ · Perm ·H◦ ⊆ R

≡ { converse; H · Perm = φp · (v) · Perm · Perm = φp · (v) · Perm = H }

M′ ·H◦ ⊆ R
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≡ { shrinking cancellation (2.188) }

true

�

To establish (4.15) for the color problem, we note that (E) is F-compatible on finite lists (3.44), and verify the
remaining conditions given earlier in this chapter:

φp · (E) · cons = φp · (E) · cons · (id× φp · (E)) (4.21)

sum · v∗ · φp · (E) ⊆ (6) · sum · v∗ (4.22)

The first essentially states that a feasible solution can be constructed incrementally — for any feasible solution,
it is possible to construct a feasible solution from all elements but one, and then determine whether to include it
or not. The second condition states that any feasible solution smaller in size will also be smaller in value. This is
true because v does not produce negative values. The proof of these statements are present in Appendix B.

The second statement above relates to the case where it is not possible to augment the current solution using
the element under consideration. This being the smallest element, it is assured that the optimal solution is given
by the current one, calculated by the greedy algorithm up to that point:

π2 · φ¬ (p·cons) · (id×M′) · (Select �U) ·H◦ ⊆ R

⇐ { apply shrinking cancellation (2.188) by proving }

π2 · φ¬ (p·cons) · (id×M′) · (Select �U) ⊆ M′

≡ { (2.178); shunting (2.58) }

δ (φ¬ p · cons) · (id×M′) · (Select �U) ⊆ π◦2 ·M′

Since R = (>)f where f = sum · v∗, by making U := (6)v·π1 , we get (4.16). So we have

C = L [nil , aug] M · [((nil + SelectBy (6)) · null?)] (4.23)

which can be shown to satisfy the complete specification including the invariant I:

C ⊆ (P · E∩ I) �R︸ ︷︷ ︸
M

Please see Appendix B, p. 144 for details.
We finish the calculation of T◦ �Q by exploiting the fact we are dealing with a connected preorder:

T◦ �Q

= { T◦ = (nil + Select) · null? }

(nil + Select) · null? �Q

= { function shrinking (2.191) }
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((nil + Select) �Q) · null ?

= { make Q = id + (6)v·π1 ; direct sum shrinking (2.202); function shrinking (2.190) }

(nil + Select � (6)v·π1) · null ?

⊇ { (6) is a connected preorder, so apply (3.28) }

(nil + selectMin (6)v) · null?

And so:

C ⊇ L [nil , aug] M · [((nil + selectMin (6)v) · null?)]

In Haskell:

p l = length l ≡ length (nubBy (λx y→ c x ≡ c y) l)

aug = p · cons→ cons, π2

selectMin r = 〈π1, d̂elFirst〉 · 〈minlist r, id〉
colors = hyloList g h where

h = (nil + selectMin (6)v) · null?
g = [nil , aug]

4.5 S U M M A R Y

In this chapter, a few important concepts and statements were expressed in relation-algebraic terms, which,
using a proposed hylomorphic general form, allowed the derivation of the greedy algorithm for the color problem.
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T H I N N I N G

This chapter develops the theory of the thinning operator, useful for the derivation of many Dynamic Programming
algorithms. It covers the basic properties of thinning, along with laws for preorder thinning and recursive thinning.

5.1 T H I N N I N G

From an algorithmic perspective, the mechanics of the shrinking operator are analogous to the greedy strategy
– only a single result is collected at each stage, leaving no option to consider seemingly suboptimal choices.
Thinning (Bird and de Moor, 1997) provides a way to consider multiple results at each stage of the algorithm,
and a dynamic programming strategy can be implemented by excluding only those from which an optimal solution
is impossible.

As suggested by Oliveira (2018), a notation similar to S �R can be adopted for thinning,

S �R = ∈ \ S∩ (∈◦ · R) / S◦ (5.1)

where ∈ P
Boo B and P B A

S�Roo is a set-valued relation: x (S � R) a holds for exactly those sets
x ⊆ ΛS a and x is lower-bounded with respect to R, as in the type diagram:

B

P B

∈

OO

∈
��

A
S�Roo

S
��

S
aa

B B
R

oo

The universal property of S �R arises by indirect equality:

X ⊆ S �R ≡
{
∈ ·X ⊆ S
X · S◦ ⊆ ∈◦ · R

(5.2)

73
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Clearly drawn from (5.1), S �R is monotonic on the optimization criterion:

S �R ⊆ S �Q ⇐ R ⊆ Q (5.3)

Note that S � R corresponds to that part of S � R whose outputs are singletons containing minima, η · (S �
R) ⊆ S �R where η b = {b}.1

B A S I C P RO P E RT I E S O F T H I N N I N G This section proves useful (new or not proved in the literature)
results about thinning. We start by the cancellation of the universal property, that is, by making X := S � R in
(5.2):

∈ · (S �R) ⊆ S (5.4)

(S �R) · S◦ ⊆ ∈◦ · R (5.5)

These laws can also be expressed using relational divisions (2.91) and (2.108):

S �R ⊆ ∈ \ S (5.6)

S �R ⊆ (∈◦ · R) / S◦ (5.7)

The first cancellation law tells us that thinning a relation only includes elements which already exist in the original
relation. In other words, an element of a set resulting from thinning a relation S must be related to its correspond-
ing input by S. The second tells that, wherever x (S � R) a and b S a hold, then some b′ ∈ x is such that
b′ R b.

Not surprisingly, shrinking and thinning share similar laws, cf. (Oliveira, 2018).

(S · f ) �R = (S �R) · f (5.8)
f
g
�R = (

id
g
�R) · f (5.9)

S �R = S � (R∩ img S) (5.10)

S � id = ΛS (5.11)

⊥ �R = Λ⊥ (5.12)

[S , Q] �R = [S �R , Q �R] (5.13)

S �R ⊆ (∈ · (S �R)) �R (5.14)

S �R = (∈ �R) ·ΛS (5.15)

Proof of (5.8):

X ⊆ (S · f ) �R

≡ { universal property (5.2) }

1 See (5.18) later on.
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∈ ·X ⊆ S · f
X · (S · f )◦ ⊆ ∈◦ · R

≡ { converse (2.4), shunting (2.59) }{
∈ ·X · f ◦ ⊆ S
X · f ◦ · S◦ ⊆ ∈◦ · R

≡ { universal property (5.2) }

X · f ◦ ⊆ S �R

≡ { shunting (2.59) }

X ⊆ (S �R) · f

:: { indirect equality (2.9) }

(S · f ) �R = (S �R) · f

�

Proof of (5.9):

f
g
�R

= { definition of metaphor (2.247) }

(g◦ · f ) �R

= { thinning fusion (5.8) }

(g◦ �R) · f

= { definition of metaphor (2.247) with f := id gives id
g = g◦ }

(
id
g
�R) · f

�

Proof of (5.10) by circular inclusion (“ping-pong”): S � (R∩ img S) ⊆ S �R comes straight from (5.3), since
R∩ img S ⊆ R. The “ping“ part is not so immediate:

S �R ⊆ S � (R∩ img S)

≡ { universal property (5.2); cancellation (5.4) }

(S �R) · S◦ ⊆ ∈◦ · (R∩ img S)

≡ { unfolding definition (5.1) }

(∈ \ S∩ ∈◦ · R / S◦) · S◦ ⊆ ∈◦ · (R∩ img S)

⇐ { left semi-linearity of meet (2.23); cancellation (2.94) }

(∈ \ S) · S◦ ∩ ∈◦ · R ⊆ ∈◦ · (R∩ img S)
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⇐ { modular law (2.33) }

∈◦ · (∈ · (∈ \ S) · S◦ ∩ R) ⊆ ∈◦ · (R∩ img S)

⇐ { cancellation (2.93) }

∈◦ · (S · S◦ ∩ R) ⊆ ∈◦ · (R∩ img S)

≡ { trivia }

true

�

Proof of (5.11):

S � id

= { thinning definition (5.1) }

∈ \ S∩ ∈◦ / S◦

= { symmetric division definition (2.110) }
S
∈

= { power transpose definition (2.135) }

ΛS

�

Proof of (5.12):

⊥ �R

= { (5.1) ; (2.99) }

∈ \ ⊥

= { (2.144) }

Λ⊥

�

Proof of (5.13):

X ⊆ [S , Q] �R

≡ { substitute X := [X1 , X2] }

[X1 , X2] ⊆ [S , Q] �R

≡ { universal property of thinning (5.2) }
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∈ · [X1 , X2] ⊆ [S , Q]

[X1 , X2] · [S , Q]◦ ⊆ ∈◦ · R

≡ { coproduct fusion (2.83; biproduct absorption (2.85) }{
[∈ · X1 ,∈ · X2] ⊆ [S , Q]

X1 · S◦ ∪ X2 ·Q◦ ⊆ ∈◦ · R

≡ { coproduct inclusion (2.81); universal property of join (2.14) }
∈ · X1 ⊆ S
∈ · X2 ⊆ Q
X1 · S◦ ⊆ ∈◦ · R
X2 ·Q◦ ⊆ ∈◦ · R

≡ { universal property of thinning (5.2) twice }{
X1 ⊆ S �R
X2 ⊆ Q �R

≡ { coproduct inclusion (2.81); X := [X1 , X2] }

X ⊆ [S �R , Q �R]

:: { indirect equality (2.9) }

[S , Q] �R = [S �R , Q �R]

�

Proof of (5.14):

S �R ⊆ (∈ · (S �R)) �R

≡ { universal property (5.2) }{
∈ · (S �R) ⊆ ∈ · (S �R)
(S �R) · (∈ · (S �R))◦ ⊆ ∈◦ · R

⇐ { thin cancellation (5.4) }

(S �R) · S◦ ⊆ ∈◦ · R

⇐ { thin cancellation (5.5) }

true

�

Proof of 5.15:

(∈ �R) ·ΛS

= { thinning fusion (5.8) }
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∈ ·ΛS �R

= { power transpose cancellation (2.139) }

S �R

�

Thinning ∈ �R distributes over union (see proof in Appendix B),

µ ·P (∈ �R) ⊆ (∈ �R) · µ (5.16)

which leads to the following partitioning rule:

µ ·P (S �R) ·ΛT ⊆ S · T �R (5.17)

Proof:

S · T �R

= { (5.15) }

(∈ �R) ·Λ(S · T)

= { transpose of composition (2.232); Kleisli composition (2.227) }

(∈ �R) · µ ·P ΛS ·ΛT

⊇ { (5.16) }

µ ·P (∈ �R) ·P ΛS ·ΛT

= { power relator (2.150); (5.15) }

µ ·P (S �R) ·ΛT

�

Another step from thinning to shrinking is the following thin-elimination refinement step:

η · (S �R) ⊆ S �Q ⇐ R∩ img S ⊆ Q (5.18)

Proof of (5.18):

η · (S �R) ⊆ S �Q

≡ { universal property (5.2) }{
∈ · η · (S �R) ⊆ S
η · (S �R) · S◦ ⊆ ∈◦ ·Q

≡ { ∈ · η = id; shrink cancellation (2.187); shunting (2.58); converse (2.4) }

(S �R) · S◦ ⊆ (∈ · η)◦ ·Q



5.2. Preorder thinning 79

⇐ { ∈ · η = id, R∩ img S ⊆ Q }

(S �R) · S◦ ⊆ R∩ img S

≡ { shrinking cancellation (2.188) }

R ⊆ R∩ img S

≡ { universal property (2.13) }

true

�

5.2 P R E O R D E R T H I N N I N G

For R a preorder, which is generally the case in optimization problems, a number of laws of the thinning operator
come in handy. All laws laid out in the rest of this chapter deal with preorders, unless a weaker condition is
specified (e.g. “R is reflexive”).

The least such relation is the identity (R = id). When the thinning relation is the identity, there is no restriction
on the outputs to select and thus S � id = ΛS, recall (5.11). From (5.11) and thinning-monotonicity (5.3) one
draws

ΛS ⊆ S �R ⇐ R is reflexive (5.19)

Thus, for reflexive R, S � R is always larger than function ΛS. Since larger than entire is entire (2.48), we
conclude that S �R is always entire for reflexive R.

From (5.19) we get S ⊆ ∈ · (S �R) and therefore:

∈ · (S �R) = S ⇐ R reflexive (5.20)

For reflexive thinning relations, the identity always thins to “return" (in the powerset monad):

id �R = η ⇐ R is reflexive (5.21)

Proof: η ⊆ id �R is immediate because R is reflexive and thus η = Λid ⊆ id �R by (5.19). The proof for
the ping step id �R ⊆ η is less immediate:

id �R ⊆ η

≡ { thinning definition (5.1); η = id
∈ etc }

∈ \ id∩ ∈◦ · R ⊆ ∈ \ id∩ ∈◦

≡ { thinning definition (5.1); η = id
∈ etc }

∈ \ id∩ ∈◦ · R ⊆ ∈◦

⇐ { ignore R (raise the lower side) (2.32) }
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∈ \ id∩ ∈◦ · > ⊆ ∈◦

⇐ { modular law (2.34) }

∈◦ · (∈ · (∈ \ id) ∩>) ⊆ ∈◦

⇐ { > above everything (2.51); division cancellation (2.93) }

∈◦ · id ⊆ ∈◦

≡ { trivial }

true

�

Then, by thinning fusion (5.8), thinning a function is “returning it” (in the powerset monad):

f �R = η · f ⇐ R is reflexive (5.22)

Proof:

f �R

= { thinning fusion (5.8) }

(id �R) · f

= { identity thinning (5.21) }

η · f

�

For preorders, shrinking can be expressed in terms of thinning:

S �R = (∈ �R) · (S �R) (5.23)

This is useful to convert a shrinking problem into a thinning problem. Indeed, many problems specified by
shrinking have a dynamic programming solution calculated via thinning. The proof of (5.23) is discharged by
ping-pong. The ping step makes use of the power transpose:

S �R ⊆ (∈ �R) · (S �R)

⇐ { R is reflexive; monotonicity (2.31) }

S �R ⊆ (∈ �R) · (S � id)

≡ { thinning by identity (5.11) }

S �R ⊆ (∈ �R) ·ΛS

≡ { shrinking fusion with power transpose by (5.19) and (5.23) }

S �R ⊆ S �R

�
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The pong step is a simple application of the universal property and cancellation laws of thinning and shrinking:

(∈ �R) · (S �R) ⊆ S �R

≡ { universal property (5.2) }{
(∈ �R) · (S �R) ⊆ S
(∈ �R) · (S �R) · S◦ ⊆ R

⇐ { shrinking and thinning cancellation (2.187,5.5) }{
∈ · (S �R) ⊆ S
(∈ �R) · ∈◦ · R ⊆ R

⇐ { shrinking and thinning cancellation (2.188,5.4) }

R · R ⊆ R

≡ { R is assumed transitive (2.37) }

true

�

The proof above is easily extended to

S �R = (∈ �R) · (S �Q) ⇐ Q ⊆ R (5.24)

which itself extends the rule called thin-introduction in (Bird and de Moor, 1997). As mentioned before, shrinking
the membership, ∈ � R, is what Bird and de Moor (1997) call min R. The corresponding for thinning, ∈ � R is
termed thin R. By cancellation (5.6), thin R is a subrelation of ∈ \ ∈, i.e. it is smaller than set inclusion. By
(5.8) and (2.139):

S �R = (∈ �R) ·ΛS (5.25)

5.3 R E C U R S I V E T H I N N I N G

The following theorem, first presented by Bird and de Moor (1997), will allow us to promote thinning into a
catamorphism by showing that it is possible, subject to conditions, to perform the thinning step in each recursive
invocation, instead of at the end. Here we present the full proof, using the thinning combinator proposed by
Oliveira (2018).

Theorem 5.1. For preorder R and S F-monotonic with respect to R◦, we have:

L (S ·F ∈) �R M ⊆ L S M �R (5.26)
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Diagram, where X abbreviates L (S ·F ∈) �R M and Y abbreviates L S M �R

T A

X,Y

((

L S M

��

F (T A)

in
vv

F L S M

��
B BRoo F BSoo

P B

∈

OO

F (P B)

F ∈

OO

(S·F ∈)�R
oo

Proof.

L (S ·F ∈) �R M ⊆ L S M �R

≡ { universal property (5.2) }{
∈ · L (S ·F ∈) �R M ⊆ L S M
L (S ·F ∈) �R M · L S M◦ ⊆ ∈◦ · R

Handling ∈ · L (S ·F ∈) �R M ⊆ L S M:

∈ · L (S ·F ∈) �R M ⊆ L S M

⇐ { cata-fusion (2.213) }

∈ · ((S ·F ∈) �R) ⊆ S ·F ∈

⇐ { thin cancellation (5.4) }

S ·F ∈ ⊆ S ·F ∈

�

Handling L (S ·F ∈) �R M · L S M◦ ⊆ ∈◦ · R:

L (S ·F ∈) �R M · L S M◦ ⊆ ∈◦ · R

⇐ { hylomorphism least fixpoint (2.220) }

((S ·F ∈) �R) ·F (∈◦ · R) · S◦ ⊆ ∈◦ · R

≡ { functors (2.130) }

((S ·F ∈) �R) ·F ∈◦ ·F R · S◦ ⊆ ∈◦ · R

⇐ { assumption: S is monotonic on R◦, (2.132) applies }

((S ·F ∈) �R) ·F ∈◦ · S◦ · R ⊆ ∈◦ · R

≡ { converse (2.4) }



5.3. Recursive thinning 83

((S ·F ∈) �R) · (S ·F ∈)◦ · R ⊆ ∈◦ · R

⇐ { thin cancellation (5.5) }

∈◦ · R · R ⊆ ∈◦ · R

⇐ { R is assumed transitive }

∈◦ · R ⊆ ∈◦ · R

�

�

Corollary 5.1. For a preorder R, Q ⊆ R and assuming S F-monotonic with respect to Q◦, we have:

(∈ �R) · L (S ·F ∈) �Q M ⊆ L S M �R (5.27)

Diagram, where X abbreviates L (S ·F ∈) �Q M:

T A

X

��

L S M

��

L S M�R

}}

F (T A)

in
vv

F L S M

��
B BRoo F B

S,Qoo

P B

∈

OO

∈�R

aa

F (P B)

F ∈

OO

(Q·F ∈)�R
oo

Proof:

(∈ �R) · L (S ·F ∈) �Q M

⊆ { extract thinning from catamorphism (5.26) }

(∈ �R) · (L S M �Q)

⊆ { monotonicity of thinning criterion (5.3), Q ⊆ R assumed }

(∈ �R) · (L S M �R)

= { thinning introduction (5.23) }

L S M �R

�

In the case of a shrinking hylomorphism, optimization is possible if we can avoid constructing a complete
solution in each recursive call. If we can find a measure that allows us to conclude, at the intermediate stage,
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that the candidate solution to be generated will not be the optimal one, then we can exclude it outright and avoid
actually generating it.

Theorem 5.2. Let H = L h M · L T M◦ and M = H �R. We have:

〈µ X :: (h · ∈ �R) ·P F X · (T◦ �Q)〉 ⊆ M (5.28)

provided h is monotonic with respect to R and h ·F H ·Q◦ ⊆ R◦ · h ·F H.

Proof: see Appendix B.

�

5.4 I M P L E M E N T I N G T H I N N I N G

This section provides a theoretical framing for an efficient implementation of thinning, which is taken from (Mu
et al., 2010). Relations involving thinning are more often than not nondeterministic. So, in general, there are
many possible implementations of thinning. One may wish to obtain a function from the general specification

∈ �Q ⊇ thin Q (5.29)

but, for the purposes of this work, it will suffice to take Q :=R∩ S, forR = (>)f and a preorder S, and assume
the input is (descendingly) ordered with respect to R, such that:

(∈ � (R∩ S)) · φorderedBy R ⊇ bump f S (5.30)

The bump function is linear time algorithm which sequentially processes adjacent pairs. For each pair of ele-
ments x and y, it determines whether either can be excluded from the result.

Given the specification, we can assume f x > f y, and so we are left with three main cases:

• when x S y holds, x Q y also holds and y can be excluded;

• otherwise, if f x = f y, y Q s holds and x can be excluded;

• otherwise, f x > f y but y S x, so neither x Q y nor y Q x hold, and neither is excluded.

When y is excluded, the algorithm proceeds by comparing x and the element succeeding y. The algorithm ends
when the list is empty or has a single element.

bump f g [ ] = [ ]

bump f g [x ] = [x ]
bump f g (x : y : xs)
| x ‘g‘ y = bump f g (x : xs)
| vx ≡ vy = bump f g (y : xs)
| vx > vy = x : bump f g (y : xs)

where (vx, vy) = (f x, f y)
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5.5 S U M M A R Y

In this chapter, the theory underlying the thinning operator was expanded, showing that thinning and shrinking
share many of the basic properties. Thinning introduction and elimination laws interacting with shrinking, preorder
thinning, and recursive thinning law were also covered.



6

DY N A M I C P R O G R A M M I N G

This chapter describes Dynamic Programming (DP) problems and proposes an algorithmic characterization of
the problem space. The role of thinning in DP is discussed, and its application demonstrated through two case
studies.

We begin by delving into important concepts in Dynamic Programming, characterizing the problem space by
the types of algorithms used to solve DP problems, and giving some examples taken from the problem catalogue
given in Appendix A. Recall from chapter 1 that DP problems are characterized by two essential properties:
optimal substructure and overlapping subproblems. A problem with an optimal structure, also said to follow
the ‘Principle of Optimality’, is one in which the optimal policy for the current decision rests on the existence
of an optimal policy for all future decisions. Overlapping subproblems are problems of smaller size which are
necessary to solve multiple larger problems. So, ideally, they should not be recalculated.

Problems exhibiting optimal substructure but any without overlapping subproblems are not solved by DP tech-
niques. Dynamic Programming necessarily implies the use of optimal substructure to avoid repeated calculations
of overlapping subproblems. Instead, a divide and conquer approach is taken, which leads to an efficient and
parallelizable algorithm.

It is more productive to refer to algorithms rather than problems when characterizing Dynamic Programming.
This is because some problems, although they fit squarely in the DP problem space, may be solved by different
types of algorithms. For instance, calculating Fibonacci numbers is a classic DP problem, but one particular
implementation, which uses the tupling strategy to maintain only the previous two numbers in the sequence, is
more akin to a greedy algorithm than a DP one.

Although this tupling strategy may seem like a variation of a tabulation method, the two are fundamentally
different. The main difference is what is known before runtime in each case. Where only a tabulation method
is possible, the resulting table contains entries which may or may not be useful in calculating the final result.
Moreover, the order in which they will be used is only determined at runtime. In the tupling strategy, it has been
statically determined that only a constant number of memory cells are needed, because there is an underlying
order by which solutions are computed. This algorithm resembles the greedy algorithm, only changing how many
solutions are calculated at each step of the process.

T H I N N I N G The concept of thinning is very important to Dynamic Programming. Most problems do not re-
quire searching over the whole solution space, because they possess properties which allow its culling. Thinning

86
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does just this. It is the technique utilizing these properties to exclude solutions which are not useful for calculating
the optimal one.

Not every DP algorithm makes use of thinning. Some problems with optimal substructure and overlapping
subproblems still require a full search of the solution space. This search is optimized by trading space for time,
most commonly through a tabulation scheme. An example of this is the problem of building minimum cost trees,
formulated as a specific instance of the “optimal bracketing problem” (section A.15).

Other algorithms may use thinning as a starting point, but, in the end, operate by a logic of partitioning the
problem into multiple maximization problems. The “paths in a layered network” (A.10) and “shortest paths on a
cylinder” (A.7) problems illustrate this strategy, as only a single path per vertex (in the current set) is considered,
and at the end the best one is chosen. The difference between this so-called ‘partitioning’ strategy and a divide
and conquer algorithm, is that the generated solutions are complete, and so only one will be chosen, while in the
latter each division is a solution to only part of the problem, and needs to be combined with the others to obtain
the result.

Finally, we single out two different but related ways to do thinning: ‘decomposition’ thinning and ‘explicit’
thinning. Decomposition thinning consists in restricting the ways in which new solutions are generated (in other
words, of choosing only useful decompositions). This type of method is common in problems specified by the
converse of a function, for example, the “string edit problem” (A.14). Explicit thinning, on the other hand, uses
a modified criterion to compare all generated solutions, and at the end of each step, exclude those that are not
useful. The “knapsack problem” (A.3) is the classic example of this type of algorithm. In general, it is preferable
to act earlier and exclude decompositions from consideration, avoiding generating more solutions and having to
compare them to others to determine their usefulness.

6.1 K N A P S A C K

The 0-1 knapsack problem is a good example of a combinatorial optimization problem. This section presents a
solution to the knapsack problem as laid out by Bird and de Moor (1997), followed by a generalized specification
and derivation method for the problem.

Consider a set of N items, two functions, respectively named wt and val, that give the weight and
the value of a given item, and a weight limit w > 0. The value/weight of a set of items is the sum
of the value/weight of each of its items. Determine the subset of items with the highest value, while
still abiding by the weight limit, that is, its weight should be no greater than w.

Representing sets of items as sequences, the problem is specified as the selection of greatest valued subse-
quence, post-conditioning the generating relation by the appropriate predicate within w:

Knapsack = φwithin w · (v) � (>)value where
(v) = L [nil , cons∪ π2] M
value = sum · val∗
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within w x = weight x (6) w
weight = sum ·wt∗

The set system underlying the knapsack problem is hereditary, as the empty list is below capacity, and every
sublist has lower weight than the original. This means that both (4.2) and (4.5) hold for p := within w.

Applying the thinning theorem (5.26) will exclude candidate solutions that are strictly worse than others. The
optimizing relation used needs to be stronger than (>)value, so

(4) := (>)value ∩ (6)weight (6.1)

meets the requirement. For the main derivation, with p := within w, we have:

φp · L [nil , cons∪ π2] M � (>)value

= { cata-fusion (2.213) — details below }

L [nil , φp · cons∪ π2] M � (>)value

⊇ { thin-introduction (5.24); thinning theorem (5.26) }

(∈ � (>)value) · L [nil , φp · cons∪ π2] ·F ∈ � (4) M

= { F R = id + id× R for cons lists, direct sum absorption (2.87) }

(∈ � (>)value) · L [nil , (φp · cons∪ π2) · (id×∈)] � (4) M

= { bilinearity of composition with join (2.21) }

(∈ � (>)value) · L [nil , φp · cons · (id×∈) ∪ π2 · (id×∈)] � (4) M

= { product cancellation (2.73) }

(∈ � (>)value) · L [nil , φp · cons · (id×∈) ∪ ∈ · π2] � (4) M

= { thinning coproduct (5.13); function thinning (5.22) }

(∈ � (>)value) · L [η · nil , (φp · cons · (id×∈) ∪ ∈ · π2) � (4)] M

The fusion step involves finding a relation S satisfying

φp · [nil , cons∪ π2] = S ·F φp

which can be derived by factoring the left-hand side:

φp · [nil , cons∪ π2]

= { coproduct fusion (2.83) }

[φp · nil , φp · (cons∪ π2)]

= { trivial axiom (4.2); right linearity of join (2.20) }

[nil , φp · cons∪ φp · π2]

= { (4.5); Kronecker product cancellation (2.75) }
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[nil , φp · cons · (id× φp) ∪ π2 · (id× φp)]

= { left linearity of join (2.21) }

[nil , (φp · cons∪ π2) · (id× φp)]

= { direct sum absorption (2.87) }

[nil , φp · cons∪ π2]︸ ︷︷ ︸
S

·F φp

Next, we refine (φp · cons · (id×∈) ∪ ∈ · π2) � (4) to a set-valued function:

(φp · cons · (id×∈) ∪ ∈ · π2) � (4)

= { (5.25) }

(∈ � (4)) ·Λ(φp · cons · (id×∈) ∪ ∈ · π2)

⊇ { refine using φorderedBy R ⊆ id (2.160); (5.30) }

bump value ((6)weight) ·Λ(φp · cons · (id×∈) ∪ ∈ · π2)

The resulting equation for the Knapsack relation

Knapsack = (∈ � (>)value) · L [η · nil , bump value ((6)weight) ·Λ(φp · cons · (id×∈) ∪ ∈ · π2)] M

can be implemented as a function over the powerset monad, using the non-determinism to manage the set of
solutions at each point of the algorithm.

ΛKnapsack

= { definition of Knapsack }

Λ((∈ � (>)value) · L [η · nil , bump value ((6)weight) ·Λ(φp · cons · (id×∈) ∪ ∈ · π2)] M)

= { Λ(R · f ) = ΛR · f (2.141) }

Λ(∈ � (>)value) · L [η · nil , bump value ((6)weight) ·Λ(φp · cons · (id×∈) ∪ ∈ · π2)] M

⊇ { shrink R ⊆ Λ(∈ �R) (2.263) }

(shrink (>)value) · L [η · nil , bump value ((6)weight) ·Λ(φp · cons · (id×∈) ∪ ∈ · π2)] M

Finally, we calculate the functional implementation of the transpose by introducing variable arguments:

Λ(φp · cons · (id×∈) ∪ ∈ · π2) (a, xs)

= { power-transpose of join (2.236) }

(Λ(φp · cons · (id×∈)) (a, xs))⊕ (Λ(∈ · π2) (a, xs))

= { power-transpose cancellation (2.142); π2 (x, y) = y }

(Λ(φp · cons · (id×∈)) (a, xs))⊕ xs

= { power-transpose of relation composition (2.232) }
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((Λ(φp · cons) •Λ(id×∈)) (a, xs))⊕ xs

= { introduce do notation (2.228) }

(do {(b, x)← Λ(id×∈) (a, xs); Λ(φp · cons) (b, x)})⊕ xs

= { product transpose (2.240); one-point rule (2.241) }

(do {x← xs; Λ(φp · cons) (a, x)})⊕ xs

= { Λ(R · f ) = ΛR · f (2.141); power transpose of coreflexive (2.243) }

(do {x← xs; guard (within w) (a : x)})⊕ xs

We now have a function knapsack, which we directly convert into Haskell code:

guard r = r→ return, nil

within w x = weight x 6 w

r a b = value a > value b
q a b = weight a 6 weight b

knapsack w = shrink r · L [return · nil , step] M where
step (a, xs) = bump value q (newK (a, xs)⊕ xs)
newK (a, xs) = do {x← xs; guard (within w) (a : x)}

The correctness of the algorithm is guaranteed by making the internal representation of powerset monad a list
with the solutions sorted by the descending order of their value (as required by (5.30), otherwise the whole relation
bottoms out). Morihata et al. (2014) achieve this result through incrementalization by making ⊕ = merge the
union operation on lists of candidates.

G E N E R A L I Z E D D E R I VAT I O N Substituting (E) = (v) · bag
bag for (v) in the first specification, we

obtain a generalized one, which considers all feasible solutions from the start.

Knapsack = φwithin w · (E) � (>)value

The rest of this section shows how to get a specification in the form of the original one from the generalized one.
This corresponds to proving that disregarding permutations will still yield an optimal solution. In relational algebra
terms, we reason:

φwithin w · (E) � (>)value

= { definition of (E) (3.43) }

φwithin w · (v) · Perm � (>)value

⊇ { shrinking monotonicity (2.195) }

φwithin w · (v) � (>)value
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To justify the use of (2.195), we must prove the following two conditions:{
φwithin w · (v) ⊆ φwithin w · Perm · (v)
(φwithin w · (v) � (>)value) · (φwithin w · Perm · (v))◦ ⊆ (>)value

Since Perm = bag
bag is reflexive, the first condition is easily satisfied. The second asks us to prove that an optimal

solution is reachable with the reduced number of candidate solutions.

(φwithin w · (v) � (>)value) · (φwithin w · (v) · Perm)◦ ⊆ (>)value

≡ { (v) · Perm = Perm · (v) (3.47) }

(φwithin w · (v) � (>)value) · (φwithin w · Perm · (v))◦ ⊆ (>)value

≡ { within w is stable, so φwithin w · Perm = Perm · φwithin w (3.34) }

(φwithin w · (v) � (>)value) · (Perm · φwithin w · (v))◦ ⊆ (>)value

≡ { converse }

(φwithin w · (v) � (>)value) · (φwithin w · (v))◦ · Perm ⊆ (>)value

⇐ { shrinking cancellation (2.188) }

(>)value · Perm ⊆ (>)value

≡ { value is stable, so Rvalue · Perm = Rvalue (3.33) }

true

�

With this, we have proven that the commonly used specification is a valid specialization of the one provided here.
It relies on the fact that neither the objective function nor the criterion of feasibility depend on the ordering of the
elements in the list. But, as seen in the previous section, it is not always fruitful to disregard this ordering, so
having a more general specification may help solve other problems with similar structure.

6.2 G E N E R A L L AY E R E D N E T W O R K S

It is possible to generalize the “paths in a layered network” problem tackled by Bird and de Moor (1997) and
included in Appendix A. The original problem has the following description:

A layered network is a non-empty sequence of sets of vertices. A path in a layered network is a
sequence of vertices constructed by choosing a single vertex from each set, and its cost is the sum
of the weight of each transition between adjacent vertices. Determine the path of least cost.

To generalize this problem, a layered network, instead of a non-empty sequence of sets containing vertices, can
be some structure T parameterized on sets. And instead of choosing a ‘path’ in such a network, we can think of
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the problem as selecting, or electing, proxies for the sets in the structure. This generalized version of the problem
is specified as follows:

Elect = T ∈ � (6)cost

where

T X ∼= B (X, T X)

is a type functor for a recursively defined structure containing elements of type X, possibly under some conditions.
This type functor is defined as being isomorphic to a specific bifunctor, allowing for the application of bifunctor
laws in the derivation. The T ∈ tells us that the topology of the structure remains the same provided all sets
of Es are non-empty, which is also assumed in the original problem. For instance, this structure can be a tree
representing some hierarchical organization, where each node is a group of individuals in a team, and there is a
need to pick a team leader. The optimizing criterion (6)cost, as in the original problem, must utilize a notion of
adjacency, with pairs of elements being attributed a score. In the following type diagram, with basic types E(ntity)
and Weight,

W E× Erankoo π2 // E P E∈oo

(E× E)∗ T E

cost

SS

graphoo

(6)cost
��

T P ET ∈oo

Elect{{
T E

the graph function generates an adjacency graph, and rank is the cost function per element pair. In the case of
a hierarchical organization, there may be many ways to judge the cost of electing team leaders. A hierarchy can
be represented by a nonempty rose tree:

RTree A = A + A× (RTree A)+

in = [tip , node]

Suppose that for each pair of employees an interpersonal friction score is attributed, and cost considers only
links between immediate superiors and their subordinates. Using Haskell notation:{

cost (Tip a) = 0
cost (Node a xs) = sum [rank a (atRoot x) | x← xs ]

where atRoot is the function giving the element at the root of the tree, regardless of it being a tip or a node. This
type of relation arises in the study of generalized notions of membership (Barbosa and Oliveira, 2006). For this
specific structure, atRoot satisfies the following equation:

atRoot · in = [id , π1] (6.2)
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D E R I VAT I O N The crux of the matter is the choice of relation Q involved in the application of thinning laws,
with the guarantee that when thinning is eliminated (5.18), correctness is preserved.

T ∈ � (6)cost

= { definition of T (3.4) }

L in ·B (∈, id) M � (6)cost

= { introduce thinning (5.27) }

∈ � (6)cost · L in ·B (∈,∈) �Q M

⊇ { (6)cost is connected so refine shrinking to the minlist function }

minlist (6)cost · L in ·B (∈,∈) �Q M

Isolating the thinning part, we reason:

in ·B (∈,∈) �Q

⊇ { bifunctors; thinning partitioning rule (5.17) }

µ ·P (in ·B (id,∈) �Q) ·ΛB (∈, id)

⊇ { thinning elimination (5.18) }

µ ·P (η · (in ·B (id,∈) � (6)cost)) ·ΛB (∈, id)

= { (2.157) }

P (in ·B (id,∈) � (6)cost) ·ΛB (∈, id)

= { (2.193) }

P ((∈ � (6)cost) ·Λ(in ·B (id,∈))) ·ΛB (∈, id)

⊇ { (6)cost is connected so refine shrinking to the minlist function }

P (minlist (6)cost ·Λ(in ·B (id,∈))) ·ΛB (∈, id)

The choice of (6)cost as the shrinking criterion in the thinning elimination step signals the intention to prove that
we can partition the problem into multiple instances of the same problem, allowing us to use, for each partition,
the same optimization criterion as the one used to obtain the optimal complete solution.

The Q relation will determine how this partition is made. We wish to partition the problem in such a way that
only a single solution per element in the set at the root of the tree is “passed on” to larger problems. This can be
done by setting

Q = (6)cost ∩
atRoot
atRoot

determining that when two trees share their root element (b ( atRoot
atRoot ) a ⇔ atRoot b = atRoot a), only the

one with the lower cost is needed to generate the optimal solution for the entire tree.
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To prove that this logic works, it suffices to prove the conditions arising from introducing (5.27) and eliminating
(5.18) thinning, which give upper and lower bounds for Q:

(6)cost ∩ img (in ·B (id,∈)) ⊆ Q ⊆ (6)cost

Given the definition of Q, it is trivially true that Q ⊆ (6)cost. The proof of the rest of the statment makes use of
atRoot property (6.2):

(6)cost ∩ img (in ·B (id,∈)) ⊆ (6)cost ∩
atRoot
atRoot

⇐ { monotonicity (2.29) }

img (in ·B (id,∈)) ⊆ atRoot
atRoot

≡ { symmetric division (2.112); shunting (2.58, 2.59); definition of img · (2.39); converse }

atRoot · in ·B (id,∈) ·B (id,∈◦) · (atRoot · in)◦ ⊆ id

≡ { (6.2) (twice) }

[id , π1] ·B (id,∈) ·B (id,∈◦) · [id , π1]
◦ ⊆ id

≡ { bifunctors; direct sum absorption (2.87); biproduct absorption (2.85) }

id∪ π1 · (id×∈ · ∈◦) · π◦1 ⊆ id

⇐ { relational join (2.14); free theorem of π1 (2.72) }

π1 · π◦1 ⊆ id

≡ { π1 is simple (2.41) }

true

�

The final program

gln = minlist (6)cost · L P (minlist (6)cost ·Λ(in ·B (id,∈))) ·ΛB (∈, id) M (6.3)

is better understood by separating the catamorphism’s gene into a coproduct of functions base and step:

P (minlist (6)cost ·Λ(in ·B (id,∈))) ·ΛB (∈, id)

= { definitions of in and B }

P (minlist (6)cost ·Λ([tip , node] · (id + id×∈))) ·Λ(∈+ ∈× id)

= { direct sum absorption (2.87) }

P (minlist (6)cost · [Λtip , Λ(node · (id×∈))]) ·Λ(∈+ ∈× id)

= { function transpose (2.234); coproduct fusion (2.140); minlist R · η = id }

P [tip , minlist (6)cost ·Λ(node · (id×∈))] ·Λ(∈+ ∈× id)
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= { (2.153); Λ∈ = id (2.140) }

[P tip , P (minlist (6)cost ·Λ(node · (id×∈))) ·Λ(∈× id)]

The program is now implemented in Haskell representing sets as (nonempty) lists. This means the power relator
P is implemented by fmap on lists, and Λ(node · (id×∈)) and Λ(∈× id) by appropriate list comprehen-
sions.

Λ(∈× id) (s, tss) = [(a, tss) | a← s ]

Λ(node · (id×∈))) (a, tss) = [node (a, ts) | ts← tss ]

These equalities follow from the equivalent of laws (2.240) and (2.241) for lists.

r a b = cost a 6 cost b
cost (Tip a) = 0
cost (Node a xs) = sum [rank a (atRoot x) | x← xs ]
atRoot = [id , π1] · out
gln = minlist r · L [base , step] M where

base = fmap tip
step (s, tss) = fmap minExtend [ (a, tss) | a← s ]

minExtend (a, tss) = minlist r [node (a, ts) | ts← tss ]

6.3 S U M M A R Y

In this chapter, a characterization of Dynamic Programming encompassing the concept of relational thinning
was proposed. A few types of algorithms were identified, ones in which thinning is not possible, others where the
problem is partitioned into multiple maximization subproblems, and then two methods of thinning: ‘decomposition’
thinning and ‘explicit’ thinning. Lastly, two case studies were developed, aiming to generalize their treatment in
the current literature.



7

C O N C L U S I O N S

The dawn of the modern computer era led to a boom in algorithm research. Computer scientists strove not only
to devise algorithms that work, but also to understand their structure. Formal methods in software engineering
achieve this by using mathematics both as a human and a machine language, putting theoretical understanding
in service of practical application.

Using the Algebra of Programming framework based on a pointfree relation calculus, the initial purview of
this work was investigating the importance of the metaphorism specification pattern (Oliveira, 2018) in Dynamic
Programming. However, the focus of this work shifted. The existence of problems straddling the border between
DP and the greedy approach, such as the coin changing problem, called for a broader exploration of Dynamic
Programming and the greedy algorithm. In both problem spaces, the importance of shrinking as a problem
specification device, as well as an algorithm implementation one, ought be underscored. The theory underlying
the shrinking relational combinator is the foundation this work is built upon.

Being a field in which the greedy algorithm has been extensively studied, matroid theory provided an ample
basis for this project. In specific, the algorithmic properties of matroids in relation to the greedy algorithm lay out
a path to synthesize algorithms for problems exhibiting matroidal structures. To this effect, concepts from matroid
theory were expressed in relation algebra as statements and their sufficient conditions, and these were used in
the derivation of a greedy algorithm.

Dynamic Programming was framed as a middle ground between brute force algorithms and the greedy al-
gorithm. This approach follows naturally from the specification of and derivation techniques for optimization
problems, and motivates and exploration of thinning, a technique used to cull the solution space, keeping only
useful solutions.

7.1 S U M M A R Y O F C O N T R I B U T I O N S

This work’s main contributions span from the very broad to the very specific. It aims to contextualize the study
of Dynamic Programming in relation to the greedy algorithm, investigating the concept of thinning through the
thinning relational operator, suggested by Oliveira (2018) for the potential interaction with metaphorisms. This
was the original focus of this work, specifically the usefulness of the metaphorism specification pattern in Dynamic
Programming. Although useful in the specification of some problems, this pattern was not found to be immediately
generalizable.

96
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Initially, a few inductive relations on lists were introduced, along with auxiliary laws which proved useful through-
out this work. The sublist (E) relation was defined in terms of the subsequence (v) and permutation Perm
relations. The Select and SelectBy relations are especially important for their role in the greedy algorithm on
lists.

Then, using matroid theory, a few properties of set systems were expressed in relational algebra, as well as
statements pertaining to the greedy algorithm. Sufficient conditions were given for some of these statement to
hold, and subsequently proven as part of the derivation of the greedy algorithm for a simple problem — the “color
problem”.

In preparation for tackling Dynamic Programming, the theory underlying the thinning relational operator was
extended. Basic properties of thinning were proven, as well as introduction and elimination laws interacting with
shrinking, laws for preorder thinning and for thinning over recursive structures.

Finally, a characterization of DP algorithms was made. Not all such algorithms involve thinning. They may
need to search the entire solution space, in which case thinning is not possible, or they can be partitioned into
multiple maximization problems, making thinning unnecessary. When thinning is useful, it comes in two kinds.
‘Decomposition’ thinning focuses on which problem decompositions can be ignored, while ‘explicit’ thinning relies
on a modified criterion to exclude generated partial solutions after each step.

Two Dynamic Programming case studies, the knapsack problem and a generalization of the “paths in a layered
network” problem, were developed. The first is a case of explicit thinning, while the second is a partitioning
algorithm. Both their derivations made use of the thinning operator and its laws.

7.2 F U T U R E W O R K

The statement in (4.16) was proven by informal means. Finding an elegant proof is left as future work, helping to
further develop a calculational approach to matroid theory and the greedy algorithm.

A deeper exploration of matroid theory in relation-algebraic terms is welcome. This work focuses on introduc-
ing elementary notions of matroid theory, and restricts itself to the case of the greedy algorithm on lists under
a generic matroid with a stable linear objective function. It would be interesting to investigate other set system
structures (e.g. greedoids) under more complex objective functions, and to generalize the formulation of matroids
to arbitrary container types (Hoogendijk and de Moor, 2000).

The color problem, specified in four parts — recall equation (4.17)

M = (P · E∩ I) �R
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— instantiates a scheme that also encapsulates other problems. In the knapsack problem, there is no invariant,
and so I = >, while the paragraph problem can be specified as a post-conditioned metaphorism — E = >
and I = L f M

L g M . This suggests the following problem hierarchy

(P · E∩ I) �R

Knapsack Paragraph

Color

possibly leading to a wider and more comprehensive taxonomy of algorithmic problems, provided general speci-
fication schemes such as (4.17) and corresponding hierarchies are further explored and put together.

On a more technical level, a few aspects were disregarded to focus on other areas. For instance, while the
subset relation

Subset = ∈ \ ∈

can be expressed as a relational division of set memberships, the sublist relation (E) is not a division of list
memberships ε \ ε. Instead, (E) is expressed as a hylomorphism of two different relations. Is there a more
useful definition of this relation, one that could potentially be generalized to other container structures?

The problem specifications in the problem catalogue often include a restriction of the solution space by way of
a post-condition φp. Perhaps a more convenient way to express this restriction would be as shrinking the solution
space (2.197)

S � (φq · >) = φq · S ⇐ S is entire

suggesting that shrinking laws and theorems may be useful in wider contexts. For example, the “greedy post-
conditioning rule” (4.7) could be derived by promoting shrinking into the catamorphism instead of cata fusion.

Another subject left unexplored is the relationship between the tail-recursive implementation of the greedy
algorithm on lists, and the one used in this work, a hylomorphism on lists. The structure used here conceptualizes
the greedy algorithm as selecting the worst element to add last, while the typical formulation of the algorithm is
a while loop (tail-recursive hylomorphism) which builds a list by making the locally optimal choice — selecting
the best element to add first. The two algorithms are operationally equivalent and future research could focus on
proving this equivalence. The theory of adjoint folds (Hinze, 2013) seems particularly well equipped to handle
this.

As this work has a focus on the distinction between Greedy and Dynamic Programming, and on the theory
of thinning, a formalization of tabulation methods, which are also tackled by Bird and de Moor (1997), although
originally part of the work plan, is left as future work.

Outside of the scope of this work falls the work of developing tools to automate the synthesis of algorithmic
solutions for greedy and DP problems. This can be done by leveraging the AoP framework and its extensions,
as shown by Silva and Oliveira (2008), including through the use of proof assistants (Mizoguchi et al., 2016). In
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particular, the AoPA library developed by Chiang and Mu (2016) encodes AoP styled program derivation (both
functional and relational) in Agda and seems particularly attractive for such purposes.
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Part III

A P P E N D I C E S



A
P R O B L E M C ATA L O G U E

Here follows a curated collection of DP problems, including combinatorial optimization problems as well as prob-
lems specified by a recurrence relation. Each problem description is accompanied by a formal specification, and
the corresponding type diagram where possible, followed by a brief discussion of the methods used to derive
functional implementations of the specification.

A.1 T H E C O L O R P R O B L E M

D E S C R I P T I O N Consider a set of items S, each with a value and a measure of some kind, for example,
their color. Select the set of items maximizing the total value, while making sure that no two items have the same
color, and that all the colors in the given set S are preserved in the resulting set.

The problem is optimally solved by the greedy algorithm: choose the item with the highest value, and include
it if there is no item with the same color in the set; repeat this process until there are no more items to consider.

R E L AT I O N A L S P E C I F I C AT I O N It is worth considering this simple problem because its description
features some important concepts in algorithm design. First, we specify the solution space which is, in this case,
the subsets of S, with sets being encoded by finite lists:

E = (E)

Then we impose the post-condition that no colors can repeat in the output sets

Q = φnr c where nr f = noRepeats ·map f

and the invariant stating the preservation of the color set:

I =
ΛCs
ΛCs

where Cs = ε ·map c

Finally we choose the optimization relation:

R = (>)value where value = sum ·map v
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These four parts combined give us a relational specification that can be suited to describe many problems:

P = (Q · E∩ I) �R

A.2 D R O P P I N G D I G I T S

D E S C R I P T I O N Taken from (Bird and Mu, 2021)1, the “Dropping Digits” problem consists in finding a way
to drop k digits from a natural number of at least k digits, maximizing the final value. This optimization problem,
despite not having direct practical applications to date, is interesting to study in the realm of problems solved by
the greedy algorithm.

T Y P E D I AG R A M Representing a number by a list of digits (D∗) from which a value of type V can be
calculated:

D∗

Dropk

��

D∗

Drop
��

D∗

value
��

D∗

value
��

(�)oo D∗

V V
(>)oo

S P E C I F I C AT I O N The solution space is obtained by repeatedly applying a Drop operation k times, remov-
ing k elements from the list which represents the number and preserving the order of the rest. The optimization
criterion is the lexicographic ordering on the list (�), which is equivalent to comparing the values of different
solutions through (>)value.

MaxDrop k = Dropk � (�)

where Drop = Discard ∩ (v). Perhaps in a surprising way, this problem can be solved through a relatively
simple greedy algorithm, as shown by Bird and Mu (2021): the best digit to drop next, guaranteeing that the
highest number is obtained, is this first digit, starting from the most significant, which is lower than next one. So,
for example, the next digit to drop in 69732 would be 6, obtaining 9732; if no digit satisfies this condition — the
list is in descending order — then drop the least significant one. After 9732, we would drop the digit 2 and get
973.

This is an example of a problem which does not follow the “Better-Global“ principle. Simply arriving at a better
partial solution is not enough to prove that the completed solution will be better. Instead, only the “Best-Global”
principle applies: only by making the optimal choice at each step can we make sure that the optimal solution is
obtained.

1 Where it is inspired by https://leetcode.com/problems/remove-k-digits/.

https://leetcode.com/problems/remove-k-digits/
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A.3 T H E K N A P S A C K P R O B L E M

D E S C R I P T I O N The knapsack problem is ubiquitous in discussions of dynamic programming. Here we
formulate the 0-1 knapsack problem.

Consider a set of N items, two functions, respectively named wt and val, that give the weight and the value
of a given item, and a weight limit W. The value/weight of a set of items is the sum of the value/weight of each
of its items. Determine the subset of items with the highest value, while still abiding by the weight limit, that is, its
weight should be no greater than W.

T Y P E D I AG R A M Let I(tem) and V(alue) be basic types in:

I∗

Knapsack

��

∈ //

(v)
��

I

val
��

wt //W

I∗

φ(within W)

��

V

I∗ I∗
(>)value

oo
value

??

S P E C I F I C AT I O N It is clear that the optimizing relation should rate higher-valued sets above lower-valued
sets. So, the problem can be specified by

Knapsack = (φwithin W · (v)) � (>)value where
(v) = L [nil , cons∪ π2] M
value = sum ·map val
within W x = weight x 6W
weight = sum ·map wt ·

The (v) relation generates all possible subsequences, recall (2.211). It is then post-conditioned by predicate
within W x = (weight x 6 W), where weight = sum ·map wt, which restricts the search to only those
subsequences that do not exceed the weight limit.

A.4 F I B O N A C C I N U M B E R S

D E S C R I P T I O N The Fibonacci sequence was introduced in Europe by Italian mathematician Leonardo
Bonacci, or simply Fibonacci. The sequence starts

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

and while there is a closed formula to compute a Fibonacci number at a particular position, known as Binet’s
formula, different algorithms to do so are instructive for beginners and interesting as case studies in algorithm
research.
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S P E C I F I C AT I O N The problem of computing the ith number in the Fibonacci sequence, where i > 0, can
be specified through a recursive mathematical function:

f ib(n) =


1 ⇐ n = 0
1 ⇐ n = 1
f ib(n− 1) + f ib(n− 2) ⇐ n > 1

Obviously, this can be directly translated into the following program:

fib 0 = 1
fib 1 = 1
fib n = fib (n− 1) + fib (n− 2)

However, this is a naive implementation that has exponential time complexity ( f ib(n) = Θ(φn)). One
way to optimize it is to use memoization, which reduces time complexity to Θ(n), but requires Θ(n) space.
Using tabulation renders the same time and space complexity since a structure of size n is needed. But since
computing the ith Fibonacci number depends (directly) only on a constant number of previous results — two —,
we can improve on the tabulation approach by only keeping the two previous results at all times, yielding the
following program running in linear time and constant space:

fib n = m where
( , m) = fib′ (n)
fib′ 0 = (1, 1)
fib′ n = (x + y, x) where (x, y) = fib′ (n− 1)

This version is easily calculated by a program calculation technique known as mutual recursion or tupling (Bird
and de Moor, 1997; Oliveira, 2019).

A.5 B I N O M I A L C O E F F I C I E N T

D E S C R I P T I O N The binomial theorem gives a formula for expanding a polynomial (x + y)n as a sum of
terms axbyc, where b + c = n and a is the binomial coefficient (n

k), with k = b or k = c, which result in
the same value. A binomial coefficient (n

k) is also the kth entry in the nth row (both starting from 0) of Pascal’s
triangle.

S P E C I F I C AT I O N Given integers n and k 6 n, there are multiple ways the binomial coefficient(
n
k

)
=

n!
k!(n− k)!
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can be recursively defined. The simplest is obtained by fixing n and doing primitive recursion on k, by factorial
decomposition:(

n
0

)
= 1(

n
k + 1

)
=

n− k
k + 1

(
n
k

)
The multiplicative term n−k

k+1 is obtained by dividing ( n
k+1) by (n

k) using the closed formula, leading to an efficient
solution without overlapping subproblems (a list hylomorphism that generates all n−k

k+1 factors and then multiplies
them all). Another recursive formula, interesting for the existence of overlapping subproblems and where DP can
be applied, is as follows:(

n
k

)
=

(
n− 1
k− 1

)
+

(
n− 1

k

)
⇐ 1 6 k 6 n− 1(

n
0

)
=

(
n
n

)
= 1 ⇐ n > 0

This gives the inefficient recursive program:

binom 0 = 1
binom n k
| n ≡ k = 1
| otherwise = binom (n− 1) (k− 1) + binom (n− 1) k

The recurrence relation in the specification gives rise to the following call graph, for (5
3):

(5
3)

�� ��
(4

2)

�� ��

(4
3)

�� ��
(3

1)

�� ��

(3
2)

�� ��

(3
3)

(2
0) (2

1)

�� ��

(2
2)

(1
0) (1

1)

Boiten (1992) derives an efficient tabulation algorithm by traversing the call graph in a linear order.
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A.6 P L A N N I N G A C O M PA N Y PA R T Y

D E S C R I P T I O N The following problem is sourced from (Cormen et al., 2009), where it appears as an
exercise in their chapter on dynamic programming:

Professor Stewart is consulting for the president of a corporation that is planning a company party.
The company has a hierarchical structure; that is, the supervisor relation forms a tree rooted at
the president. The personnel office has ranked each employee with a conviviality rating, which is a
real number. In order to make the party fun for all attendees, the president does not want both an
employee and his or her immediate supervisor to attend.

(...) Describe an algorithm to make up a guest list that maximizes the sum of the conviviality ratings
of the guests.

T Y P E D I AG R A M Let E(mployee), R(ating), Tree A = A × (Tree A)∗ be types. With abbreviation
S = 〈include, Exclude〉, we have:

E E
(6)ratingoo

rating
��

E∗

(6)ratings

��

∈oo Tree E

L S M
��

E× (Tree E)∗nodeoo

F L S M
��

R E∗ E∗ × E∗Chooseoo E× (E∗ × E∗)∗
S
oo

S P E C I F I C AT I O N Bird and de Moor (1997) derive a dynamic programming algorithm starting from the
following specification:

Party � (>)ratings

where E∗ Tree E
Partyoo is the relation that generates all possible sets of party attendees, and (>)ratings — for

ratings = sum ·map rating

— determines that the sum of the conviviality rating of party attendees should be maximized.
A good approach to generating all possible sets of party attendees is too split the problem in two, first gen-

erating those sets including the immediate supervisor (the root of the hierarchy tree), then those excluding that
person. This is done recursively down the hierarchical structure of the company, alternatively including or exclud-
ing an immediate supervisor to allow his or her employees to attend. Algebraically, this set can be described as
follows:

Party = Choose · L 〈include, Exclude〉 M
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The Choose relation, as the name suggests, chooses between including or excluding the root of the tree — the
president of the company.

Choose = π1 ∪ π2

The include and Exclude relations can also be expressed through familiar operators acting on lists:

include = cons · (id× (concat ·map π2))

Exclude = π2 · (id× (concat ·map Choose))

While include is a function, Choose and Exclude are not. However, it is possible to compute ΛChoose and
ΛExclude, which are functions returning sets of sets of party attendees. Using this approach, Bird and de Moor
(1997) derive a DP algorithm by the Greedy Theorem.

A.7 S H O R T E S T PAT H S O N A C Y L I N D E R

D E S C R I P T I O N Consider an n×m array of positive integers, representing a cylinder on a horizontal axis.
This means the top and bottom rows of the array are adjacent. A path in this cylinder is a sequence of m integers,
each from the corresponding column, such that for each column after the first, the chosen integer must be one
of the three that are adjacent to the integer in the previous column. The cost of a path is simply the sum of the
chosen integers in the sequence. Find the path of least cost.

The problem can be specified by Paths � (6)cost, where Paths is the relation which generates all valid paths,
and (6)cost specifies a cost order.

A.8 T H E C O I N C H A N G E P R O B L E M

D E S C R I P T I O N Given a set of coins with various denominations, the coin change or change-making prob-
lem is to select the smallest number of coins to make change for a specific value. Unlike with individual items
in the 0-1 knapsack problem, a similar combinatorial optimization problem, a coin can be selected an unlimited
amount of times.

S P E C I F I C AT I O N A combinatorial optimization problem can always be specified as the shrinking of a
candidate-producing relation:

coinChange cs ⊆ Change cs � (6)length

where Change generates all possible ways to make change given a set of coins cs.
This is a well known case of a problem whose parameters determine what kind of solution exists: for ‘canonical’

coin systems (Cai, 2009), such as the US dollar or the Euro, it is always possible to use the greedy approach to
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obtain the optimal solution — select the highest denomination coin below the amount of change left to make. For
example, with the US dollar, in which the set of coin denominations is {1, 5, 10, 20}, it is easy to see that:

coinChange {1, 5, 10, 20} 32 = [20, 10, 1, 1 ]

However, in a coin system with denominations {1, 5, 15, 20, 50},

coinChange {1, 5, 15, 20} 32 = [15, 15, 1, 1 ]

while the greedy algorithm would give the non-optimal solution [20, 5, 5, 1, 1 ]. When the greedy algorithm is
not viable, a DP algorithm is needed. Here, one possible tabulation scheme is given. With input n, we build a list
A of n solutions, starting from A [0 ] = [ ] (no coins are needed). Then, for each denomination dj, 1 6 j 6 k
we build a new solution dj places ahead of the current solution — A[i + dj] = dj : A[i] where i is the current
solution’s index in the list. If the coin system covers every possible value, then, when i = n, A [ i ] gives the
list of coins to select, and length (A [ i ]) is the minimum number of coins needed to make change for n. This
tabulation scheme takes O (n) space and O (nk) time.

A.9 T H E S E C U R I T Y VA N P R O B L E M

D E S C R I P T I O N Suppose a bank has a known sequence of deposits and withdrawals. For security reasons
the total amount of cash in the bank should never exceed some fixed amount N, assumed to be at least as large
as any single transaction. To cope with demand and supply, a security van can be called upon to deliver funds to
the bank or to take away a surplus. The problem is to compute a schedule under which the van visits the bank a
minimum number of times.

This problem can be solved by partitioning the sequences of transactions into secure subsequences. A
sequence of transactions is secure if, assuming an existing supply of cash previously left by a security van, the
bank is able to perform its transactions without running out of cash, exceeding the fixed amount N, or having to
resort to a security van visit.

As such, the minimum amount of visits is given by the minimum length partition out of those made up of secure
transaction sequences. Naturally, the problem can be specified as (map secure ? ·Partition) � (6)length, with
(6)length comparing the length of the partitions.

A.10 PAT H S I N A L AY E R E D N E T W O R K

D E S C R I P T I O N A layered network is a non-empty sequence of sets of vertices. A path in a layered network
is a sequence of vertices constructed by choosing a single vertex from each set, and its cost is the sum of the
weight of each transition between adjacent vertices. Determine the path of least cost.

Figure 2 shows an example of a layered network, including the weights between vertices of adjacent layers.
Note that each set may have a different number of vertices, and that each one is connected to every vertex of the
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Figure 2.: Example illustration of a layered network

next layer, such that our choice is not constrained by previous ones, unlike, for instance, in the “shortest paths
on a cylinder” problem.

T Y P E D I AG R A M Let V(ertix) and W(eight) be basic types in:

W V×V
weightoo π2 // V P V∈oo

(V×V)∗ V∗

cost

SS

pairsoo

(6)cost
��

(P V)∗
map ∈oo

Paths{{
V∗

R E L AT I O N A L S P E C I F I C AT I O N This description has a quite direct translation into a specification using
the shrinking operator:

Paths = (map ∈) � (6)cost

since map ∈ (for non-empty lists) relates the network to every possible path by literally choosing a vertex from
each set in the list. And (6)cost compares paths by their cost, defined by the sum of the weights between each
pair of adjacent vertices:

cost = sum ·map weight · pairs
pairs = zip · 〈id, tail〉
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where tail and zip are the standard functions (using Haskell syntax):

tail ( : xs) = xs

zip ([ ], ) = [ ]

zip ( , [ ]) = [ ]

zip ((x : xs), (y : yx)) = (x, y) : (zip (xs, yx))

A.11 T H E T E L E G R A M P R O B L E M

D E S C R I P T I O N Originally described by Peter Naur, the telegram problem asks us to reorganize a para-
graph, represented as a sequence of lines, each of which is a sequence of words, into one where each line
has as many words as possible, not exceeding a limit of L characters. Word splitting is not allowed, and so it is
assumed that any one word fits in a line. The problem is most often seen in the word-wrapping mechanisms of
text editors.

This problem is typically solved with a “flow-based programming” (FBP) approach, connecting two compo-
nents: a ‘decomposer’ and a ‘recomposer’. The decomposer produces a sequence of words from the whole
paragraph, and the recomposer does the harder job of building, line by line, the new paragraph.

T Y P E D I AG R A M Let W(word) be a basic type and A+ denote a non-empty list of containing elements of
type A in the following type diagram:

W++

W++

(>)lineLength∗ 55

W++Fits Loo

cons
$$

W++
cons
consoo

Telegram
kk

cons
zz

W+

S P E C I F I C AT I O N While some find it “surprisingly difficult” to specify the telegram problem (Mateti, 2013),
the relational framework used here is well equipped to express the ideas represented by the decomposer and
recomposer components in the FBP perspective.

Telegram = Fits L · concat
concat

� (>)lineLength∗ (A.1)

In this (post-conditioned) shrinking metaphorism, the decomposer component is the numerator of the metaphor,
concat , and the rest of the relation expression specifies the mechanism of the recomposer: build a sequence of
lines ( concat ), each respecting a length limit (the coreflexive relation Fits L), and make sure each line has the
maximum amount of words allowed, which is achieved using a lexicographic ordering on the length of each line
((>)lineLength∗ ).
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A.12 T H E PA R A G R A P H P R O B L E M

D E S C R I P T I O N Similar to the telegram problem, but more general in nature, the paragraph problem con-
sists of partitioning a sequence of words into different lines of a paragraph in a way which minimizes wasted
space, for some definition of waste. A valid paragraph is one such that no line is longer than a given maximum
length L.

More concretely, a paragraph is a non-empty sequence of lines, and a line is a non-empty sequence of words.
The length of a line can be calculated by summing the length of each word, taking into account some measure
of interword spaces. The function which calculates the wasted space of a paragraph is some measure of the
amount of white space of each line (ws l = L− length l), with the exception of the last one, for example, the
square sum.

T Y P E D I AG R A M Let W(word) be a basic type and A+ denote a non-empty list of containing elements of
type A in the following type diagram:

(W+)
+

W
wrap //

length

��

W+

Paragraph ..

(W+)
+concatoo

ws

tt

Fits L // (W+)
+

(6)waste L

OO

N0

S P E C I F I C AT I O N The problem can be relationally specified as

Paragraph = (Fits L) · concat◦ � (6)(waste L) (A.2)

where concat◦, the converse of the function which joins a sequences of lines, generates all possible sequences
of lines, Fits L restricts the search to those that constitute a valid paragraph, and (6)(waste L) serves to optimize
for least wasted space in a paragraph.

A.13 B I T O N I C T O U R S

D E S C R I P T I O N The following problem is taken from (Cormen et al., 2009):

In the Euclidean traveling-salesman problem, we are given a set of n points in the plane, and we
wish to find the shortest closed tour that connects all n points. Figure 3a shows the solution to a
7-point problem. The general problem is NP-hard, and its solution is therefore believed to require
more than polynomial time.

J.L. Bentley has suggested that we simplify the problem by restricting our attention to bitonic tours,
that is, tours that start at the leftmost point, go strictly rightward to the rightmost point, and then go
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Figure 3.: An optimal and an optimal bitonic tour

strictly leftward back to the starting point. Figure 3b shows the shortest bitonic tour of the same 7
points. In this case, a polynomial-time algorithm is possible.

Describe an O(n2)-time algorithm for determining an optimal bitonic tour. You may assume that
no two points have the same x-coordinate and that all operations on real numbers take unit time.
(Hint: Scan left to right, maintaining optimal possibilities for the two parts of the tour.)

Bird and de Moor (1997) solve a generalization of this problem, where distances are not necessarily Euclidean
nor necessarily symmetric. To that effect, tours are represented as a pair of lists, one for the left-to-right trip, and
the other for the right-to-left trip. A valid tour must have the same first and last elements in both lists, that is, the
traveller must return to its initial location, and no city should be visited twice.

The specification for this problem is simply Tour � (6)cost, with Tour being a relational fold that generates all
possible valid tours, and (6)cost the optimization relation which compares the cost between tours.

A.14 T H E S T R I N G E D I T P R O B L E M

D E S C R I P T I O N The following problem is taken from (Bird and de Moor, 1997):

In the string edit problem two strings x and y are given, and it is required to transform one string
into the other by performing a sequence of editing operations. There are many possible choices
for these operations, but for simplicity we assume that we are given just three: copy, delete and
insert. Their meanings are as follows:

• copy a copy character a from x to y;

• delete a delete character a from x;

• insert a insert character a in y.

The point about these operations is that if we swap the roles of delete and insert, then we obtain a
sequence transforming the target string back into the source. In fact, the operations contain enough
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information to construct both strings from scratch: we merely have to interpret copy a as meaning
“append a to both strings”; delete a as “append a to the left string”; and insert a as “append a to
the right string”. Since there are many different edit sequences from which the two strings can be
reconstituted, we ask for a shortest edit sequence.

S P E C I F I C AT I O N We can specify the problem by relying on the converse of the function edit, which takes
a sequence of operations and produces both strings: edit◦ � (6)length, with (6)length comparing the number
of operation needed to transform the strings.

A.15 O P T I M A L B R A C K E T I N G

D E S C R I P T I O N The optimal bracketing problem is a general problem that may be used to solve other more
specific ones. The formulation, which is presented here, is usually instantiated for the more specific problem. A
common example is the problem of building a binary tree of minimum height out of a sequence of binary trees.

Consider an expression a1 ⊕ a2 ⊕ ...⊕ an, in which⊕ is an associative operation. Although all bracketings
of the expression will yield the same result, different bracketings may incur different costs. In the minimum
height tree problem, this means that the resulting tree will have the same elements in the same order, but is not
guaranteed to have the same height.

A bracketing can be expressed as a binary leaf tree, with the values to be processed in the leaves, and the
nodes indicating which values to group together. We can generate all possible bracketings through the converse
of the function flatten, which constructs the original sequence of values from a bracketing.

S P E C I F I C AT I O N The optimal bracketing problem then consists of finding the bracketing of least cost,
which can be specified as flatten◦ � (6)cost.

A.16 D ATA C O M P R E S S I O N

D E S C R I P T I O N Compressing data, represented as a string of characters, can be done in multiple ways.
Bird and de Moor (1997) tackle the problem of compressing a string of characters into a sequence of codes,
which can be either a single character, or a pointer to a part of the string already processed. The goal is to
generate the smallest possible string.

S P E C I F I C AT I O N Following a similar strategy to previous examples, the problem is specified by the con-
verse of a function decode, which produce the original string from the compressed one: decode◦ � (6)size,
where size calculates the amount of space needed to store the compressed string.
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A.17 T H E D E TA B - E N TA B P R O B L E M

D E S C R I P T I O N The following two exercises are taken from (Kernighan and Ritchie, 1988):

EXERCISE 1-20. Write a program detab that replaces tabs in the input with the proper number of
blanks to space to the next tab stop. Assume a fixed set of tab stops, say every n columns. Should
n be a variable or a symbolic parameter?

EXERCISE 1-21. Write a program entab that replaces strings of blanks by the minimum number of
tabs and blanks to achieve the same spacing. Use the same tab stops as for detab. When either
a tab or a single blank would suffice to reach a tab stop, which should be given preference?

S P E C I F I C AT I O N Bird and de Moor (1997) define detab as a catamorphism over snoc-lists, and entab
is then specified as an optimum converse to detab, that is, entab ⊆ detab◦ � (6)length, where (6)length
optimizes for number of tabs and blanks used.

A.18 T H E M I N I M U M TA R D I N E S S P R O B L E M

D E S C R I P T I O N The minimum tardiness problem is a scheduling problem from operations research con-
sisting in finding an order of execution for the given set of jobs that minimizes the maximum penalty incurred for
jobs not being completed on time.

Representing the set of jobs as a list, the problem is specified by Perm � (6)cost, where Perm = bag
bag

generates all possible schedules, and (6)cost relates two schedules by their cost, calculated by taking the
maximum of the penalties for each job, considering the previously completed jobs, the time it takes to complete
it, its due time, and the importance of completing that job, represented by a weight.

A.19 T H E TEX P R O B L E M

D E S C R I P T I O N In the third chapter of their book, Bird and de Moor (1997) define the TEXproblem, which
consists in converting from a decimal representation of a rational number to the internal TEXrepresentation of it
— the closest integer multiple of 2−16. In their chapter on greedy algorithms, the converse problem is tackled.

As such, constructing the shortest decimal representation of an integer multiple of 2−16 is specified as
intern◦ � (6)length, where intern is the aforementioned conversion function used by the TEXsystem.



B
D E TA I L S O F R E S U LT S

B.1 B A C K G R O U N D

The proof of (B.1)

R / φp = R∪ p
false

proceeds by ping-pong. Ping:

R / φp ⊆ R∪ p
false

≡ { (2.15) }

R / φp −
p

false
⊆ R

≡ { relational difference (2.16); ¬ p
false = p

true (2.184) }

R / φp ∩
p

true
⊆ R

≡ { R is a connected preorder, so surjective and entire, apply (2.166) }

(R / φp) · φp ⊆ R

≡ { right division (2.108) }

R / φp ⊆ R / φp

�

Pong:

R∪ p
false

⊆ R / φp

≡ { universal proporty of meet (2.13) }{
R · φp ⊆ R

p
false ⊆ R / φp

119
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≡ { φp ⊆ id (2.160), monotonicity (2.32); right division (2.108) }
p

false
· φp ⊆ R

⇐ { monotonicity (2.32) }
p

false
· true

p
⊆ R

≡ { symmetric division (2.115); true
false = ⊥ }

⊥ ⊆ R

�

The proof of (2.166)

R · φp

= { definition of φp (2.159) }

R · (id∩ p
true

)

= { meet right distributivity (2.24) }

R∩ R · p
true

= { symmetric division (2.112); converse }

R∩ (true · R◦)◦ · p

= { R◦ is entire and true is constant (2.180); symmetric division (2.112) }

R∩ true
p

�

Side condition for right distributivity:

ker R · p
true
⊆ p

true

Proof:

ker R · p
true
⊆ p

true
= { definition of ker (2.38); symmetric division (2.112); converse }

(true · R◦ · R)◦ · p ⊆ true◦ · p

= { R is surjective and entire, and true is constant, apply (2.180) twice; symmetric division (2.112) }
p

true
⊆ p

true
�
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Exercise 7.38 from Bird and de Moor (1997). For S monotonic with respect to R◦, where R is a preorder:

(S �R) · (∈ �F R) ⊆ S · ∈ �R

≡ { universal property of shrinking (2.185); converse }{
(S �R) · (∈ �F R) ⊆ S · ∈
(S �R) · (∈ �F R) · (S · ∈)◦ ⊆ R

⇐ { shrinking cancellation (2.187) (twice) }{
S · ∈ ⊆ S · ∈
(S �R) · (∈ �F R) · ∈◦ · S◦ ⊆ R

⇐ { shrinking cancellation (2.188) }

(S �R) ·F R · S◦ ⊆ R

⇐ { S is monotonic with respect to R◦ }

(S �R) · S◦ · R ⊆ R

⇐ { shrinking cancellation (2.188) }

R · R ⊆ R

≡ { R is transitive (2.37) }

true

�

Proof of (2.202):

(S + T) � (R + Q) = S �R + T �Q

X ⊆ (S + T) � (R + Q)

≡ { universal law of shrinking (2.185) }{
X ⊆ S + T
X · (S + T)◦ ⊆ R + Q

≡ { X := X1 + X2; converse }{
X1 + X2 ⊆ S + T
(X1 + X2) · (S◦ + T◦) ⊆ R + Q

≡ { direct sum fusion (2.88); direct sum inequality (2.89) }
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X1 ⊆ S
X2 ⊆ T
X1 · S◦ ⊆ R
X2 · T◦ ⊆ Q

≡ { universal law of shrinking (2.185) (twice) }{
X1 ⊆ S �R
X2 ⊆ T �Q

≡ { direct sum inequality (2.89); X := X1 + X2 }

X ⊆ S �R + T �Q

:: { indirect equality (2.9) }

(S + T) � (R + Q) = S �R + T �Q

�

Generalization of exercise 7.15 from (Bird and de Moor, 1997):

〈S �R, T �Q〉 ⊆ 〈S, T〉 � (R×Q)

≡ { universal property of shrinking (2.185) }{
〈S �R, T �Q〉 ⊆ 〈S, T〉
〈S �R, T �Q〉 · 〈S, T〉◦ ⊆ R×Q

≡ { pairings (2.60, 2.62, 2.63), Kronecker product definition (2.70) }
S �R ⊆ S
T �Q ⊆ T
π1 · 〈S �R, T �Q〉 · 〈S, T〉◦ ⊆ R · π1

π2 · 〈S �R, T �Q〉 · 〈S, T〉◦ ⊆ Q · π2

⇐ { shrinking cancellation (2.187) (twice); pairing cancellation (2.62, 2.63) }{
(S �R) · 〈S, T〉◦ ⊆ R · π1

(T �Q) · 〈S, T〉◦ ⊆ Q · π2

≡ { shunting (2.59); converse }{
(S �R) · (π1 · 〈S, T〉)◦ ⊆ R
(T �Q) · (π2 · 〈S, T〉)◦ ⊆ Q

⇐ { pairing cancellation (2.62, 2.63) }{
(S �R) · S◦ ⊆ R
(T �Q) · T◦ ⊆ Q

≡ { shrinking cancellation (2.188) (twice) }
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true

�

B.2 I N D U C T I V E R E L AT I O N S O N L I S T S

For equality (3.38),

Select · (v) = (id× (v)) · Select

(postulated in page 56) to be proved, one needs to inspect (higher order) catamorphism bag : ZA ← A∗:{
bag [ ] a = 0
bag (h : t) a = bag t a + (if a = h then 1 else 0)

(B.1)

We choose Z and not N0 in the type of bag to endow it with vector space operations, e.g. addition (also
subtraction etc)

(f + g) a = (f a) + (g a) (B.2)

where A generates the basis, made of "vectors"

â b = if a = b then 1 else 0 (B.3)

etc. In this setting, bag = L [0, g] M where g (a, f ) = â + f . By unfolding the definition of Select one gets:

(a, y) Select x ⇔ (a : y) Perm x ⇔ bag x = â + bag y.

Going pointwise on this,

Select · (v) = (id× (v)) · Select

(a, y) z x (a, y) (a, y′) x

(3.38) states that, for all a,x and y, there exist z and y′ such that{
(a, y′) Select x
y v y′

≡
{

z v x
(a, y) Select z

≡ { unfold Select }{
â + bag y′ = bag x
y v y′

≡
{

â + bag y = bag z
z v x

This holds provided subsequence z of x and supersequence y′ of y are chosen such that bag x− bag y′ =
bag z− bag y. This condition can always be met. Given z, a suitable y′ can be chosen as a function of z, and
vice-versa, because the resulting bags are guaranteed not to contain any negative multiplicities.
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To prove (3.39),

(v) ·Discard ⊆ Perm · (v)

we take a similar approach:

(v) · Discard ⊆ Perm · (v)

y z x y y′ x

(3.39) states that, for all x, a ε x and y, there exist z and y′ such that{
z Discard x
y v z

⇒
{

y′ v x
y Perm y′

≡ { unfold Discard and Perm }{
bag z = bag x− â
y v z

⇒
{

y′ v x
bag y = bag y′

Choose any y′ that results from removing from x all the elements that were removed from z to form y, and a.
This guarantees that bag y = bag y′ and can be done such that y′ v x.

Proof of (3.31):

ε · Perm = ε

≡ { pong step only: Perm is reflexive (2.35) }

ε · Perm ⊆ ε

≡ { in-out isomorphism }

ε · in · out · Perm ⊆ ε

≡ { (2.224); converse; catamorphism (2.204) }

[⊥ , π1 ∪ ε · π2] ·F Perm · [nil , Select◦]◦ ⊆ ε

≡ { coproducts (2.90); biproduct absorption (2.85) }{
⊥ · nil◦ ⊆ ε

(π1 ∪ ε · π2) · (id× Perm) · Select ⊆ ε

≡ { shunting (2.59); ε · nil = ⊥ (3.2); Select = (id× Perm) · Select (3.23) }

(π1 ∪ ε · π2) · Select ⊆ ε

≡ { left linearity of join (2.21); universal property of join (2.14) }{
π1 · Select ⊆ ε

ε · π2 · Select ⊆ ε



B.2. Inductive relations on lists 125

≡ { properties of Select (3.25, 3.26) }

true

�

Proof of (3.34):

φp · Perm

= { definition of φp (2.159) }

(id∩ true
p

) · Perm

= { meet distributivity (2.25), side condition true
p · img Perm ⊆ true

p holds }

Perm∩ true
p
· Perm

= { symmetric division (2.112) }

Perm∩ p◦ · true · Perm

= { p and true are stable (3.32) }

Perm∩ (p · Perm)◦ · true

= { converse; Perm = Perm◦; symmetric division (2.112) }

Perm∩ Perm · true
p

= { meet distributivity (2.24), side condition ker Perm · true
p ⊆

true
p holds }

Perm · (id∩ true
p

)

= { definition of φp (2.159) }

Perm · φp

�

Side condition for left distributivity:

true
p
· img Perm ⊆ true

p

Proof:

true
p
· img Perm

= { symmetric division (2.112); Perm = bag
bag , so img Perm = Perm (2.120) }

p◦ · true · Perm

= { Perm is entire, true is a constant function (2.180) }
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p◦ · true

= { symmetric division (2.112) }
true

p
�

Side condition for right distributivity:

ker Perm · true
p
⊆ true

p

Proof:

ker Perm · true
p

= { symmetric division (2.112); Perm = bag
bag , so ker Perm = Perm (2.119) }

Perm · p◦ · true

= { converse; Perm = Perm◦ (3.13); p is stable (3.32) }

p◦ · true

= { symmetric division (2.112) }
true

p
�

Proof of (3.37):

ε · (v) ⊆ ε

≡ { left division (2.91) }

(v) ⊆ ε \ ε

⇐ { cata fusion (2.215) }

[nil , cons∪ π2] ·F (ε \ ε) ⊆ (ε \ ε) · in

≡ { (2.101); left division (2.91) }

ε · [nil , cons∪ π2] ·F (ε \ ε) ⊆ ε · in

≡ { ε · in = [⊥ , π1 ∪ ε · π2] (2.224) }

ε · [nil , cons∪ π2] ·F (ε \ ε) ⊆ [⊥ , π1 ∪ ε · π2]

≡ { coproducts (2.90); ε · nil = ⊥ (3.2) }

ε · (cons∪ π2) · (id× (ε \ ε)) ⊆ π1 ∪ ε · π2

≡ { bilinearity of join (2.20, 2.21) }

ε · cons · (id× (ε \ ε)) ∪ ε · π2 · (id× (ε \ ε)) ⊆ π1 ∪ ε · π2
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≡ { Kronecker product cancellation (2.75) }

ε · cons · (id× (ε \ ε)) ∪ ε · (ε \ ε) · π2 ⊆ π1 ∪ ε · π2

⇐ { division cancellation (2.93) }

ε · cons · (id× (ε \ ε)) ∪ ε · π2 ⊆ π1 ∪ ε · π2

≡ { universal property of join (2.14) means ε · π2 ⊆ π1 ∪ ε · π2 }

ε · cons · (id× (ε \ ε)) ⊆ π1 ∪ ε · π2

≡ { ε · cons = π1 ∪ ε · π2 (3.3) }

(π1 ∪ ε · π2) · (id× (ε \ ε)) ⊆ π1 ∪ ε · π2

≡ { bilinearity of join (2.21); Kronecker product cancellation (2.74, 2.75) }

π1 ∪ ε · (ε \ ε) · π2 ⊆ π1 ∪ ε · π2

⇐ { division cancellation (2.93) }

π1 ∪ ε · π2 ⊆ π1 ∪ ε · π2

�

The proof of (3.47) proceeds by ping-pong:

(v) · Perm ⊆ Perm · (v)

⇐ { hylomorphism least fixpoint (2.220) }

[nil , cons∪ π2] ·F (Perm · (v)) · [nil , Select◦]◦ ⊆ Perm · (v)

≡ { direct sum and biproduct absorption (2.87, 2.85); universal property of join (2.14) }{
nil · nil◦ ⊆ Perm · (v)
(cons∪ π2) · (id× Perm · (v)) · Select ⊆ Perm · (v)

≡ { nil is simple (2.41); Perm and (v) and reflexive (2.35) }

(cons∪ π2) · (id× Perm · (v)) · Select ⊆ Perm · (v)

≡ { join bilinearity (2.21); universal property of join (2.14) }{
cons · (id× Perm · (v)) · Select ⊆ Perm · (v)
π2 · (id× Perm · (v)) · Select ⊆ Perm · (v)

The first condition is proven by exploiting the interaction between Select and cons:

cons · (id× Perm · (v)) · Select ⊆ Perm · (v)

≡ { Select · (v) = (id× (v)) · Select (3.38) }

cons · (id× Perm) · Select · (v) ⊆ Perm · (v)

≡ { Select · Perm = (id× Perm) · Select (3.23) }

cons · Select · Perm · (v) ⊆ Perm · (v)
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⇐ { cons · Select ⊆ Perm (3.21) }

Perm · Perm · (v) ⊆ Perm · (v)

⇐ { Perm is transitive (2.37) }

Perm · (v) ⊆ Perm · (v)

�

The second condition rests on (3.39) which involves the Discard relation:

π2 · (id× Perm · (v)) · Select ⊆ Perm · (v)

≡ { Kronecker product cancellation (2.75); definition of Discard }

Perm · (v) ·Discard ⊆ Perm · (v)

≡ { (3.39) }

Perm · Perm · (v) ⊆ Perm · (v)

⇐ { Perm is transitive (2.37) }

Perm · (v) ⊆ Perm · (v)

�

The pong step also uses a fixpoint law:

Perm · (v) ⊆ (v) · Perm

⇐ { hylomorphism least fixpoint (2.221) }

Perm · (v) ⊆ [nil , cons∪ π2] ·F (Perm · (v)) · [nil , Select◦]◦

≡ { direct sum and biproduct absorption (2.87, 2.85) }

Perm · (v) ⊆ nil · nil◦ ∪ (cons∪ π2) · (id× Perm · (v)) · Select

⇐ { lower the upper side (2.31) with S ⊆ S∪ R }

Perm · (v) ⊆ nil · nil◦ ∪ cons · (id× Perm · (v)) · Select

≡ { from (3.38) and (3.23), we have that Select · Perm · (v) = (id× Perm · (v)) · Select }

Perm · (v) ⊆ nil · nil◦ ∪ cons · Select · Perm · (v)

⇐ { φ¬ null ⊆ cons · Select (3.22); φnull = nil · nil◦ (3.9) }

Perm · (v) ⊆ φnull ∪ φ¬ null · Perm · (v)

⇐ { claim: φ¬ null · Perm · (v) ⊆ Perm · (v) · φ¬ null }

Perm · (v) ⊆ φnull ∪ Perm · (v) · φ¬ null

≡ { biproduct absorption (2.85); definition of guard (2.169) }

Perm · (v) ⊆ [id , Perm · (v)] · null?

≡ { shunting (2.59) }
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Perm · (v) · [φnull , φ¬ null] ⊆ [id , Perm · (v)]

≡ { coproducts (2.90) }{
Perm · (v) · φnull ⊆ id
Perm · (v) · φ¬ null ⊆ Perm · (v)

⇐ { raise the lower side (2.32) with φp ⊆ id due to (2.160) }

Perm · (v) · φnull ⊆ id

≡ { claim: Perm · (v) · φnull = φnull }

φnull ⊆ id

≡ { φp ⊆ id (2.160) }

true

�

The claims pertain to the emptiness of a list in relation to a sublist, and are easy to prove given the similar results
for (v) and Perm.

φ¬ null · Perm · (v) ⊆ Perm · (v) · φ¬ null

Proof:

φ¬ null · Perm · (v)

= { ¬ null is stable, so φ¬ null · Perm = Perm · φ¬ null (3.34) }

Perm · φ¬ null · (v)

⊆ { (3.41) }

Perm · (v) · φ¬ null

�

Perm · (v) · φnull = φnull

Proof:

Perm · (v) · φnull

= { (3.40) }

Perm · φnull

= { (3.16) }

φnull
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�

Proof of (3.49):

Rf ∗ G Rf ∗
consoo

≡ { definition }

cons ·G Rf ∗ ⊆ Rf ∗ · cons

≡ { abbreviation (2.6); shunting (2.58); converse }

G (f ∗)◦ ·G R ·G f ∗ ⊆ (f ∗ · cons)◦ · R · f ∗ · cons

⇐ { free theorem of cons (3.5) (twice); converse }

G (f ∗)◦ ·G R ·G f ∗ ⊆ (f × f ∗)◦ · cons◦ · R · cons · (f × f ∗)

≡ { shunting (2.58, 2.59); G R = id× R }

(w× f ∗) · (id× (f ∗)◦) · (id× R) · (id× f ∗) · (f × f ∗)◦ ⊆ cons◦ · R · cons

≡ { converse;× is a bifunctor }

f · f ◦ × f ∗ · (f ∗)◦ · R · f ∗ · (f ∗)◦ ⊆ cons◦ · R · cons

≡ { f and f ∗ are simple (2.41), monotonicity (2.32); definition of G }

G R ⊆ cons◦ · R · cons

≡ { shunting (2.58) }

cons ·G R ⊆ R · cons

≡ { definition }

R G Rconsoo

�

Proof of (3.50):

SL g M F SL g M
inoo

≡ { definition (2.132) }

in ·F SL g M ⊆ SL g M · in

≡ { abbreviation (2.6); shunting (2.58); converse }

F L g M◦ ·F S ·F L g M ⊆ (L g M · in)◦ · S · L g M · in

≡ { cata (2.204) (twice); converse }

F L g M◦ ·F S ·F L g M ⊆ F L g M◦ · g◦ · S · g ·F L g M

⇐ { monotonicity (2.27) (twice); shunting (2.58) }

g ·F S ⊆ S · g
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≡ { definition (2.132) }

S F S
goo

�

B.3 T H E G R E E DY A L G O R I T H M

Proof of (4.5):

φp · cons = φp · cons · (id× φp)

≡ { with φp ⊆ id (2.160), monotonicity (2.32) leaves only }

φp · cons ⊆ φp · cons · (id× φp)

≡ { φp · φp = φp (2.163); (4.4) }

φp · cons · (id× φp) ⊆ φp · cons · (id× φp)

�

Claim: L [nil , φp · (cons∪ π2)] M = L [nil , φp · cons∪ π2] M

L [nil , φp · (cons∪ π2)]︸ ︷︷ ︸
S

M = L [nil , φp · cons∪ π2] M

≡ { universal property (2.205) }

L [nil , φp · (cons∪ π2)] M · in = [nil , φp · cons∪ π2] ·F L S M

≡ { cata cancellation (2.204) }

[nil , φp · (cons∪ π2)] ·F L S M = [nil , φp · cons∪ π2] ·F L S M

≡ { coproducts (2.90) }{
nil = nil
φp · (cons∪ π2) · (id× L S M) = (φp · cons∪ π2) · (id× L S M)

First condition is trivial. Second condition:

φp · (cons∪ π2) · (id× L S M)

= { bilinearity of join (2.21, 2.20) }

φp · cons · (id× L S M) ∪ φp · π2 · (id× L S M)

= { Kronecker product cancellation (2.75) }

φp · cons · (id× L S M) ∪ φp · L S M · π2

= { claim: φp · L S M = L S M }

φp · cons · (id× L S M) ∪ L S M · π2
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= { Kronecker product cancellation (2.75) }

φp · cons · (id× L S M) ∪ π2 · (id× L S M)

= { bilinearity of join (2.21) }

(φp · cons∪ π2) · (id× L S M)

�

Claim: φp · L S M = L S M

φp · L S M = L S M

⇐ { cata fusion (2.213) }

φp · S = S ·F φp

≡ { S = [φp · nil , φp · (cons∪ π2)]; coproducts (2.90) }{
φp · φp · nil = φp · nil
φp · φp · (cons∪ π2) = φp · (cons∪ π2) · (id× φp)

≡ { φp · φp = φp (2.163) }

φp · (cons∪ π2) = φp · (cons∪ π2) · (id× φp)

Proceeding by direct equality:

φp · (cons∪ π2) · (id× φp)

= { bilinearity of join (2.21, 2.20) }

φp · cons · (id× φp) ∪ φp · π2 · (id× φp)

= { φp · cons = φp · cons · (id× φp) (4.5) }

φp · cons∪ φp · π2 · (id× φp)

= { Kronecker product cancellation (2.75) }

φp · cons∪ φp · φp · π2

= { φp · φp = φp (2.163) }

φp · cons∪ φp · π2

= { bilinearity of join (2.20) }

φp · (cons∪ π2)

�

Proof of (4.9):

S �R

= { S = [nil , φp · cons∪ π2] }
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[nil , φp · cons∪ π2] �R

= { coproduct shrinking (2.201); function shrinking (2.190) }

[nil , φp · cons∪ π2 �R]

= { claim: (φp · cons∪ π2) �R = p · cons→ cons, π2 (see below) }

[nil , p · cons→ cons, π2]

�

Claim:

(φp · cons∪ π2) �R

= { shrinking of join (2.200); division (2.97) }

φp · cons �R∩ R · π2 ∪ π2 �R∩ R / (φp · cons)◦

= { function shrinking (2.190); since φp · cons is simple, apply (2.189) }

φp · cons∩ R · π2 ∪ π2 ∩ R / (φp · cons)◦

= { claim: φp · cons∩ R · π2 = φp · cons }

φp · cons∪ π2 ∩ R / (φp · cons)◦

= { claim: π2 ∩ R / (φp · cons)◦ = π2 · φ¬ (p·cons) }

φp · cons∪ π2 · φ¬ (p·cons)

= { φp · cons = cons · φp·cons (2.164) }

cons · φp·cons ∪ π2 · φ¬ (p·cons)

= { biproduct absorption (2.85) }

[cons , π2] · [φp·cons , φ¬ (p·cons)]
◦

= { definition of guard (2.169) }

[cons , π2] · (p · cons)?

= { McCarthy’s conditional (2.168) }

p · cons→ cons, π2

�

Subclaims:

φp · cons∩ R · π2 = φp · cons

≡ { circular equality (2.8); universal property of join (2.14) }

φp · cons ⊆ φp · cons∩ R · π2

≡ { universal property of join (2.14) }

φp · cons ⊆ R · π2
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⇐ { monotonicity (2.32) }

cons ⊆ R · π2

≡ { (4.19) }

true

�

The next claim relies on the fact that wt is a positive-valued function, so, with f = sum ·wt∗, we have:

f · cons ⊆ (>) · f · π2 (B.4)

π2 ∩ R / (φp · cons)◦ = π2 · φ¬ (p·cons)

Ping:

π2 ∩ R / (φp · cons)◦ ⊆ π2 · φ¬ (p·cons)

≡ { converse; right division (2.103) }

π2 ∩ (R / φp) · cons ⊆ π2 · φ¬ (p·cons)

≡ { (B.1); meet distributes through join; left linearity and universal property of join (2.21, 2.14) }{
π2 ∩ p

false · cons ⊆ π2 · φ¬ (p·cons)

π2 ∩ R · cons ⊆ π2 · φ¬ (p·cons)

First condition:

π2 ∩
p

false
· cons ⊆ π2 · φ¬ p·cons

≡ { definition of φ¬ p; distribute π2 (see side condition proof below) }

π2 ∩
p

false
· cons ⊆ π2 ∩ π2 ·

p
false

· cons

⇐ { monotonicity (2.29, 2.27) }
p

false
⊆ π2 ·

p
false

⇐ { symmetric division (2.112); monotonicity (2.27) }

false◦ ⊆ π2 · false◦

≡ { converse }

false◦ ⊆ (false · π◦2)◦

≡ { false is constant and π◦2 is entire, so apply (2.180) }

false◦ ⊆ false◦
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�

Side condition:

ker π2 ·
p · cons

false
⊆ p · cons

false

⇐ { symmetric division (2.112); monotonicity (2.27) }

ker π2 · false◦ ⊆ false◦

≡ { shunting (2.58, 2.59) }

false · ker π2 ⊆ false

≡ { false is constant and π2 is a function, so ker π2 is total, apply (2.180) }

false ⊆ false

�

Second condition:

π2 ∩ R · cons ⊆ π2 · φ¬ (p·cons)

≡ { R = (>)f = f ◦ · (>) · f (2.6) }

π2 ∩ f ◦ · (>) · f · cons ⊆ π2 · φ¬ (p·cons)

⇐ { (B.4) }

π2 ∩ f ◦ · (>) · (>) · f · π2 ⊆ π2 · φ¬ (p·cons)

⇐ { (>) · (>) ⊆ (>) }

π2 ∩ (>)f · π2 ⊆ π2 · φ¬ (p·cons)

≡ { π2 distributes through meet (2.25) because img π2 ⊆ id }

(id∩ (>)f ) · π2 ⊆ π2 · φ¬ (p·cons)

⇐ { raise the lower side (2.32) with id ⊆ (=)f }

((=)f ∩ (>)f ) · π2 ⊆ π2 · φ¬ (p·cons)

≡ { strictly greater and equal in value is impossible;⊥ is zero of composition (2.57) }

⊥ ⊆ π2 · φ¬ (p·cons)

≡ { ⊥ below everything (2.51) }

true

�

Pong:

π2 · φ¬ (p·cons) ⊆ π2 ∩ R / (φp · cons)◦
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≡ { shunting (2.59) }

φ¬ (p·cons) ⊆ π◦2 · (π2 ∩ R / (φp · cons)◦)

≡ { (2.24) because ker π◦2 · π2 ⊆ π2 }

φ¬ (p·cons) ⊆ π◦2 · π2 ∩ π◦2 · (R / (φp · cons)◦)

⇐ { π2 is entire (2.42); definition of φ¬ p (2.162) }

id∩ false
p · cons

⊆ id∩ π◦2 · (R / (φp · cons)◦)

≡ { monotonicity (2.29) }

false
p · cons

⊆ π◦2 · (R / (φp · cons)◦)

≡ { shunting (2.59); right division (2.108) }

π2 ·
false

p · cons
· (φp · cons)◦ ⊆ R

≡ { φp · cons = cons · φp·cons (2.164); converse }

π2 ·
false

p · cons
· φp·cons · cons◦ ⊆ R

≡ { definition of φp (2.159); monotonicity (2.32) }

π2 ·
false

p · cons
· p · cons

true
· cons◦ ⊆ R

≡ { shunting (2.58, 2.59); symmetric division (2.115) }

false
true

⊆ π◦2 · R · cons

≡ { false
true = true◦ · false = ⊥ (4.11) }

⊥ ⊆ π◦2 · R · cons

≡ { ⊥ below everything (2.51) }

true

�

I M P L E M E N T I N G SelectBy Basic definitions:

Select = cons◦ · Perm

SelectBy R = Select �Rπ1

fetch = cons · aux

where
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aux (a, [ ]) = (a, [ ])
aux (a, h : t)
| a ≡ h = (a, t)
| otherwise = let (a′, x) = aux (a, t) in (a′, h : x)

Fetching an element from a list — meaning removing its first occurrence and adding it upfront — will either
produce a permutation of the original list, or, in case the element is not found and thus not removed, the product
of cons-ing it to the original list:

fetch ⊆ p→ Perm · π2, cons where p (a, x) = a ε x (B.5)

Proving (B.5):

fetch ⊆ p→ Perm · π2, cons

≡ { shunting (2.59) }

aux ⊆ cons◦ · (p→ Perm · π2, cons)

≡ { McCarthy’s conditional (2.170) }

aux ⊆ cons◦ · (Perm · π2 · φp ∪ cons · φ¬ p)

≡ { join right linearity (2.20); cons is injective (2.40), so ker cons = id }

aux ⊆ cons◦ · Perm · π2 · φp ∪ φ¬ p

≡ { let aux = L R M · L S M◦ — see below }

L R M · L S M◦ ⊆ cons◦ · Perm · π2 · φp ∪ φ¬ p︸ ︷︷ ︸
X

⇐ { least fixpoint rule (2.220) }

R ·F X · S◦ ⊆ X

Note that aux is a F-hylomorphism, for F f = id + id× f , whose divide step S◦ = g where

g (a, [ ]) = i1 (a, [ ])
g (a, h : t)
| a ≡ h = i1 (a, t)
| otherwise = i2 (h, (a, t))

Its conquer step R is function f = [id , k] where k (h, (a, x)) = (a, h : x). Clearly, S ⊆ [s1 , k · φr] where:

s1 = q→ id, 〈π1, cons〉

q (a, x) = x ≡ [ ]

r (h, (a, x)) = h 6≡ a
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Then:

R ·F X · S◦ ⊆ X

⇐ { S ⊆ [s1 , k · φr]; definitions of R and F }

[id , k] · (id + id×X) · [s1 , k · φr]
◦ ⊆ X

≡ { direct sum and biproduct absorption (2.87, 2.85); universal property of join (2.14) }{
s◦1 ⊆ X
k · (id×X) · φr · k◦ ⊆ X

Handling s◦1 ⊆ X:

s◦1 ⊆ X

≡ { McCarthy’s conditional (2.170); converse }

φq ∪ φ¬ q · 〈π1, cons〉◦ ⊆ X

⇐ { universal property of join (2.14); shunting (2.58); raise lower side (2.32) with (2.160) }{
φq ⊆ φ¬ p

id ⊆ X · 〈π1, cons〉

⇐ { go pointwise in first equation and simplify; expand X }{
x = [ ]⇒ ¬ (a ε x)
id ⊆ cons◦ · Perm · π2 · 〈π1, cons〉

≡ { empty list contains no elements; shunting (2.59); pairing cancellation (2.65) }

cons ⊆ Perm · cons

⇐ { Perm is reflexive (2.35), so lower upper side (2.31) }

cons ⊆ cons

�

Handling k · (id×X) · φr · k◦ ⊆ X:

k · (id×X) · φr · k◦ ⊆ X

≡ { shunting (2.58, 2.59) }

(id×X) · φr ⊆ k◦ ·X · k

⇐ { bifunctors; properties of join (2.21, 2.14); raise lower side (2.32) with (2.160) }{
id× (cons◦ · Perm · π2 · φp) ⊆ k◦ ·X · k
(id× φ¬ p) · φr ⊆ k◦ ·X · k

⇐ { lower upper side (2.31); introduce points }
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(a′ : x′) (Perm · π2 · φp) (a, x)⇒ k (h, (a′, x′)) X (k (h, (a, x)))
(id× φ¬ p) · φr ⊆ k◦ · φ¬ p · k

≡ { k (h, (a, x)) = (a, h : x); use p and r in φp and φr directly }{
a ε x ∧ (a′ : x′) Perm x⇒ (a′, h : x′) X (a, h : x)
¬ (a ε x) ∧ a 6≡ h⇒ (a, (h : x)) φ¬ p (a, (h : x))

≡ { expand X }{
a ε x ∧ (a′ : x′) Perm x⇒ a ε (h : x) ∧ (a′ : h : x′) Perm (h : x)
a ε (h : x)⇒ a = h ∨ a ε x

≡ { definition of ε; expand Perm; a ε x⇒ a ε (h : x) }

â′ + bag x′ = bag x⇒ â′ + ĥ′ + bag x′ = ĥ′ + bag x

≡ { substitute bag x; (+) is commutative }

â′ + ĥ + bag x′ = â′ + ĥ + bag x′

�

With this we state that removing an element that is a member of the list and then adding it at the head will
produce a permutation of the original list:

fetch · 〈ε, id〉 ⊆ Perm (B.6)

Proof:

fetch · 〈ε, id〉

⊆ { (B.5) }

(Perm · π2 · φp ∪ φ¬ p) · 〈ε, id〉

⊆ { left linearity of join (2.21); pairing cancellation (2.63) }

Perm∪ φ¬ p · 〈ε, id〉

= { claim: φ¬ p · 〈ε, id〉 = ⊥, see below }

Perm

�

The claim above is immediate: φ¬ p · 〈ε, id〉 = ⊥ ⇔ ¬ 〈∃ a : ¬ (a ε x) : a ε x〉
Select is non-deterministic in that it allows any permutation of the remaining list. We are able to refine this to

a function that chooses just one of them, specifically, the list that arises from removing the first occurrence of the
selected element.

aux · 〈ε, id〉 ⊆ Select (B.7)
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Proof:

aux · 〈ε, id〉 ⊆ Select

≡ { definition of Select (3.19) }

aux · 〈ε, id〉 ⊆ cons◦ · Perm

≡ { shunting (2.59) }

cons · aux · 〈ε, id〉 ⊆ Perm

≡ { (B.6) }

true

�

Using this, we calculate SelectBy R:

SelectBy R

= { definition of SelectBy }

Select �Rπ1

⊇ { shrinking monotonicity (2.195) }

aux · 〈ε, id〉 �Rπ1

= { function shrinking (2.192); pairing cancellation (2.64) }

aux · (〈ε, id〉 �Rπ1)

= { Rπ1 = R×> in pairing shrinking (2.203) }

aux · 〈ε �R, id〉

If R is a connected preorder, we refine even further by using the minlist function, yielding an executable function:

SelectBy R ⊇ selectMin R = aux · 〈minlist R, id〉 ⇐ R is connected

(Recall (3.28).)

T H E C O L O R P RO B L E M Sublists of the empty list are no worse with respect to R than empty list:

nil · φnull ·H◦ ⊆ R

Proof:

nil · φnull ·H◦ ⊆ R

≡ { φnull = nil · nil◦ (3.9) }

nil · nil · nil◦ ·H◦ ⊆ R
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≡ { converse; H = φp · (v) · Perm }

nil · nil · (φp · (v) · Perm · nil)◦ ⊆ R

≡ { (3.15); (3.35); monotonicity (2.32) }

nil · nil · nil◦ ⊆ R

≡ { nil is entire and a constant function (2.180) }

nil · nil◦ ⊆ R

⇐ { nil is simple (2.41) }

id ⊆ R

≡ { R is reflexive (2.35) }

true

�

Proof of (4.21):

φp · (E) · cons = φp · (E) · cons · (id× φp · (E))

≡ { definition of (E) (3.43, 3.47) }

φp · (v) · Perm · cons = φp · (v) · Perm · cons · (id× φp · Perm · (v))

≡ { p is stable, so (3.34); bifunctors; (3.14) }

φp · (v) · Perm · cons = φp · (v) · Perm · cons · (id× φp · (v))

⇐ { (3.47); (3.34); monotonicity (2.27) }

φp · (v) · cons = φp · (v) · cons · (id× φp · (v))

≡ { φp · (v) is a catamorphism (4.8) }

(φp · cons∪ π2) · (id× φp · (v)) = (φp · cons∪ π2) · (id× φp · (v)) · (id× φp · (v))

⇐ { monotonicity (2.27);× is a bifunctor }

(id× φp · (v)) = (id× φp · (v) · φp · (v))

≡ { monotonicity; circular equality (2.8) }{
φp · (v) ⊆ φp · (v) · φp · (v)
φp · (v) · φp · (v) ⊆ φp · (v)

First condition:

φp · (v) ⊆ φp · (v) · φp · (v)

⇐ { (v) is reflexive (2.35) }

φp · (v) ⊆ φp · φp · (v)

≡ { φp · φp = φp (2.163) }
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φp · (v) ⊆ φp · (v)

�

Second condition:

φp · (v) · φp · (v) ⊆ φp · (v)

⇐ { monotonicity (2.27); raise the lower side (2.32) }

(v) · (v) ⊆ (v)

≡ { (v) is transitive (2.37) }

true

�

Proof of (4.22):

sum · v∗ · φp · (E) ⊆ (6) · sum · v∗

≡ { monotonicity (2.32); definition of (E) (3.47) }

sum · v∗ · Perm · (v) ⊆ (6) · sum · v∗

≡ { v∗ · Perm = Perm · v∗ (3.18); sum is stable (3.32) }

sum · v∗ · (v) ⊆ (6) · sum · v∗

≡ { both sum · v∗ and sum · v∗ · (v) are catamorphisms (see proof below) }

L [0, (add∪ π2) · (v× id)] M ⊆ (6) · L [0, add · (v× id)] M

⇐ { catamorphism fusion (2.217) }

[0, (add∪ π2) · (v× id)] ·F (6) ⊆ (6) · [0, add · (v× id)]

≡ { coproducts }{
0 ⊆ (6) · 0
(add∪ π2) · (v× id) · (id× (6)) ⊆ (6) · add · (v× id)

⇐ { biproducts; monotonicity (2.27) }{
id ⊆ (6)

(add∪ π2) · (id× (6)) · (v× id) ⊆ (6) · add · (v× id)

≡ { (6) is reflexive (2.35) (twice), so after (2.32), and join properties (2.21) and (2.14), we get }{
add · ((6)× (6)) ⊆ (6) · add
π2 · ((6)× (6)) · (v× id) ⊆ (6) · add · (v× id)

⇐ { add is monotonic with respect to (6); free theorem of π2 (twice) }

(6) · π2 ⊆ (6) · add · (v× id)

≡ { convert to pointwise }
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a 6 c⇒ a 6 v b + c

≡ { since v b is always positive }

true

�

Proof that sum · v∗ is a catamorphism:

sum · v∗ = L [0, add · (v× id)] M

≡ { catamorphism fusion (2.213) }

sum · in ·B (v, id) = [0, add · (v× id)] ·F sum

≡ { catamorphism (2.204) }

[0, add] ·F sum ·B (v, id) = [0, add · (v× id)] ·F sum

≡ { F X = B (id, X); bifunctors; direct sum absorption (2.87) }

[0, add · (v× sum)] = [0, add · (v× sum)]

�

Now use that result to prove sum · v∗ · (v) is also a catamorphism:

sum · v∗ · (v) = L [0, (add∪ π2) · (v× id)] M

≡ { catamorphism fusion (2.213) }

sum · v∗ · [nil , cons∪ π2] = [0, (add∪ π2) · (v× id)] ·F (sum · v∗)

≡ { coproduct fusion (2.83); direct sum absorption (2.87); coproduct equality (2.80) }{
sum · v∗ · nil = 0
sum · v∗ · (cons∪ π2) = (add∪ π2) · (v× id) · (id× sum · v∗)

≡ { sum · v∗ · nil = sum · nil = 0 }

sum · v∗ · (cons∪ π2) = (add∪ π2) · (v× id) · (id× sum · v∗)

Proceeding by direct equality (justifications involving bilinearity of join (2.21, 2.20) are omitted):

sum · v∗ · (cons∪ π2)

= { free theorem of cons (3.5), expand v∗ · cons with (3.4); Kronecker product cancellation (2.75) }

sum · (cons∪ π2) · (v× v∗)

= { sum · cons = add · (id× sum); Kronecker product cancellation (2.75) }

(add∪ π2) · (id× sum) · (v× v∗)

= { biproducts }

(add∪ π2) · (v× id) · (id× sum · v∗)
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�

I N VA R I A N T O F T H E C O L O R P RO B L E M The derived solution satisfies the original specification in-
cluding the invariant:

C ⊆ (φp · (E) ∩ I) �R

where C = L [nil , aug] M · L [nil , (SelectBy R)◦] M◦. Proof:

C ⊆ (φp · (E) ∩ I) �R

⇐ { universal property (2.185); relational meet (2.14); monotonicity (2.32) }
C ⊆ φp · (E)
C ⊆ I
C · (φp · (E))◦ ⊆ R

Through the main derivation of the color problem, we have proven C ⊆ φp · (E) �R, so the first and third
conditions are easily solved applying the shrinking cancellation laws (2.187) and (2.188).

C ⊆ I

⇐ { definition of C; strengthen invariant by lowering the upper side (2.31) }

L [nil , aug] M · L [nil , (SelectBy R)◦] M◦ ⊆ φp · I

⇐ { hylomorphism least fixpoint (2.220); SelectBy R ⊆ Select by (2.187) }

[nil , aug] ·F (φp · I) · [nil , Select◦]◦ ⊆ φp · I

Unfolding the left side using the properties of relational biproducts (2.87, 2.85) yields two conditions:

nil · nil◦ ⊆ φp · I (B.8)

aug · (id× (φp · I)) · Select ⊆ φp · I (B.9)

Proof of (B.8):

nil · nil◦ ⊆ φp · I

≡ { shunting (2.58); converse; φp · nil = nil (4.2) }

nil◦ ⊆ nil◦ · I

≡ { I = c·ε
c·ε = Λ(c·ε)

Λ(c·ε) ; converses }

nil ⊆ Λ(c · ε)
Λ(c · ε) · nil

≡ { symmetric division (2.112); shunting (2.58) }

Λ(c · ε) · nil ⊆ Λ(c · ε) · nil
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�

For (B.9), it is more convenient to separate the proof in two parts using (2.167):

aug · (id× (φp · I)) · Select ⊆ φp · I

≡ { I, a equivalence relation, is entire and surjective, so apply (2.167) }

aug · (id× I ∩ true
p

) · Select ⊆ I ∩ true
p

Applying the universal property of relational meet (2.13) yields two more conditions:

aug · (id× I ∩ true
p

) · Select ⊆ true
p

(B.10)

aug · (id× I ∩ true
p

) · Select ⊆ I (B.11)

Proof of (B.10):

aug · (id× I ∩ true
p

) · Select ⊆ true
p

⇐ { monotonicity (2.32) }

aug · (id× true
p

) · Select ⊆ true
p

≡ { McCarthy conditional (2.170); relational join (2.21, 2.14) }{
π2 · φ¬ p·cons · (id× true

p ) · Select ⊆ true
p

cons · φp·cons · (id× true
p ) · Select ⊆ true

p

⇐ { cons · φp·cons = φp · cons (2.164); monotonicity (2.32) }{
π2 · (id× true

p ) · Select ⊆ true
p

φp · cons · (id× true
p ) · Select ⊆ true

p

⇐ { Kronecker product cancellation (2.75); φp ⊆ true
p (2.161) }{

true
p · π2 · Select ⊆ true

p
true

p · cons · (id× true
p ) · Select ⊆ true

p

⇐ { symmetric division (2.112; monotonicity (2.27) (twice) }{
true · π2 · Select ⊆ true
true · cons · (id× true

p ) · Select ⊆ true

≡ { shunting (2.59) and symmetric division (2.112) (twice); true
true = > (2.182) }{

π2 · Select ⊆ >
cons · (id× true

p ) · Select ⊆ >
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≡ { > above everything (2.51) (twice) }

true

�

Proof of (B.11):

aug · (id× I ∩ true
p

) · Select ⊆ I

≡ { McCarthy conditional (2.170); relational join (2.21, 2.14) }{
π2 · φ¬ p·cons · (id× I ∩ true

p ) · Select ⊆ I

cons · φp·cons · (id× I ∩ true
p ) · Select ⊆ I

Expanding the definition of I, it is possible to apply the universal property of meet (2.13). For each of the resulting
4 conditions, monotonicity (2.32) is applied to obtain the useful part of the invariant on the lower side.

π2 · φ¬ p·cons · (id× c · ε \ c · ε) · Select ⊆ c · ε \ c · ε (B.12)

π2 · φ¬ p·cons · (id× (c · ε)◦ / (c · ε)◦ ∩ true
p

) · Select ⊆ (c · ε)◦ / (c · ε)◦ (B.13)

cons · φp·cons · (id× c · ε \ c · ε) · Select ⊆ c · ε \ c · ε (B.14)

cons · φp·cons · (id× (c · ε)◦ / (c · ε)◦) · Select ⊆ (c · ε)◦ / (c · ε)◦ (B.15)

Proof of (B.12):

π2 · φ¬ p·cons · (id× c · ε \ c · ε) · Select ⊆ c · ε \ c · ε

⇐ { monotonicity (2.32); Kronecker product cancellation (2.75) }

(c · ε \ c · ε) · π2 · Select ⊆ c · ε \ c · ε

⇐ { left division (2.91, 2.93) }

c · ε · π2 · Select ⊆ c · ε

⇐ { (3.26) }

c · ε ⊆ c · ε

�

Proof of (B.13):

π2 · φ¬ p·cons · (id× (c · ε)◦ / (c · ε)◦ ∩ true
p

) · Select ⊆ (c · ε)◦ / (c · ε)◦

⇐ { right division (2.108) }

π2 · φ¬ p·cons · (id× (c · ε)◦ / (c · ε)◦ ∩ true
p

) · Select · (c · ε)◦ ⊆ (c · ε)◦
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≡ { (B.17) (for any relation R, R / R is reflexive) }

π2 · φ¬ p·cons · (id× φp) · (id× (c · ε)◦ / (c · ε)◦) · Select · (c · ε)◦ ⊆ (c · ε)◦

≡ { (B.16); shunting (2.59); converses }

(c · π1 ∪ c · ε · π2) · (id× c · ε \ c · ε) · (id× φp) · φ¬ p·cons ⊆ c · ε · π2

≡ { left linearity of join (2.21); universal property of join (2.14) }{
c · π1 · (id× c · ε \ c · ε) · (id× φp) · φ¬ p·cons ⊆ c · ε · π2

c · ε · π2 · (id× c · ε \ c · ε) · (id× φp) · φ¬ p·cons ⊆ c · ε · π2

⇐ { free theorems of π1 and π2 (2.72, 2.73); left division cancellation (2.93) }{
c · π1 · (id× φp) · φ¬ p·cons ⊆ c · ε · π2

c · ε · π2 · (id× φp) · φ¬ p·cons ⊆ c · ε · π2

⇐ { monotonicity (2.32) with φp ⊆ id }

c · π1 · (id× φp) · φ¬ p·cons ⊆ c · ε · π2

⇐ { (4.18) }

c · π1 · (c · π1)
◦ · c · ε · π2 ⊆ c · ε · π2

⇐ { c · π1 is simple, so img c · π1 ⊆ id (2.41) }

c · ε · π2 ⊆ c · ε · π2

�

Proof of (B.14):

cons · φp·cons · (id× c · ε \ c · ε) · Select ⊆ c · ε \ c · ε

≡ { left division (2.91); (2.164); monotonicity (2.32) }

c · ε · cons · (id× c · ε \ c · ε) · Select ⊆ c · ε

≡ { (3.3); bilinearity of join (2.21, 2.20); universal property of join (2.14) }{
c · π1 · (id× c · ε \ c · ε) · Select ⊆ c · ε
c · ε · π2 · (id× c · ε \ c · ε) · Select ⊆ c · ε

⇐ { free theorems of π1 and π2 (2.72, 2.73); left division cancellation (2.93) }{
c · π1 · Select ⊆ c · ε
c · ε · π2 · Select ⊆ c · ε

⇐ { (3.25, 3.26) }{
c · ε ⊆ c · ε
c · ε ⊆ c · ε

�
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Proof of (B.15):

cons · φp·cons · (id× (c · ε)◦ / (c · ε)◦) · Select ⊆ (c · ε)◦ / (c · ε)◦

⇐ { monotonicity (2.32); right division (2.108) }

cons · (id× (c · ε)◦ / (c · ε)◦) · Select · (c · ε)◦ ⊆ (c · ε)◦

≡ { (B.16); shunting (2.59); converses }

(c · π1 ∪ c · ε · π2) · (id× c · ε \ c · ε) ⊆ c · ε · cons

≡ { left linearity of join (2.21); universal property of join (2.14) }{
c · π1 · (id× c · ε \ c · ε) ⊆ c · ε · cons
c · ε · π2 · (id× c · ε \ c · ε) ⊆ c · ε · cons

⇐ { free theorems of π1 and π2 (2.72, 2.73); left division cancellation (2.93) }{
c · π1 ⊆ c · ε · cons
c · ε · π2 ⊆ c · ε · cons

≡ { monotonicity (2.27) (twice); universal property of join (2.14) }

π1 ∪ ε · π2 ⊆ ε · cons

≡ { (3.3) }

true

�

Claims:

Select · (c · ε)◦ = (c · π1)
◦ ∪ (c · ε · π2)

◦ (B.16)

R∩ true
p

= φp · R ⇐ R is reflexive (B.17)

Proof of (B.16):

Select · (c · ε)◦

= { definition of Select (3.19); Perm = Perm◦ (3.13); converse }

(c · ε · Perm · cons)◦

= { ε · Perm = ε (3.31); (3.3) }

(c · (π1 ∪ ε · π2))
◦

= { right linearity of join (2.20); converse }

(c · π1)
◦ ∪ (c · ε · π2)

◦

�
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Proof of (B.17):

φp · R

= { definition of φp }

(id∩ true
p

) · R

= { (2.25) because true
p · img R ⊆ true

p }

R∩ true
p
· R

= { symmetric division (2.112) }

R∩ p◦ · true · R

= { true · R = true if R is reflexive; symmetric division (2.112) }

R∩ true
p

�

B.4 T H I N N I N G

Theorem 5.2 (Theorem 9.2 from Bird and de Moor (1997)). With h monotonic with respect to R and such that
h ·F H ·Q◦ ⊆ R◦ · h ·F H holds, we reason:

〈µ X :: (h · ∈ �R) ·P F X · (T◦ �Q)〉 ⊆ M

⇐ { least prefix point }

(h · ∈ �R) ·P F M · (T◦ �Q) ⊆ M

≡ { universal property of shrinking (2.185) }{
(h · ∈ �R) ·P F M · (T◦ �Q) ⊆ H
(h · ∈ �R) ·P F M · (T◦ �Q) ·H◦ ⊆ R

First condition:

(h · ∈ �R) ·P F M · (T◦ �Q) ⊆ H

⇐ { shrinking cancellation (2.187) }

h · ∈ ·P F M · (T◦ �Q) ⊆ H

⇐ { P R ⊆ ∈ \ R · ∈ (2.148) }

h · ∈ · (∈ \F M · ∈) · (T◦ �Q) ⊆ H

⇐ { division cancellation (2.93) }

h ·F M · ∈ · (T◦ �Q) ⊆ H
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⇐ { thinning cancellation (5.4) }

h ·F M · T◦ ⊆ H

⇐ { shrinking cancellation (2.187) }

h ·F H · T◦ ⊆ H

≡ { least prefix point of hylomorphism (2.219) }

true

�

Second condition:

(h · ∈ �R) ·P F M · (T◦ �Q) ·H◦ ⊆ R

⇐ { hylomorphism least fixpoint (2.220); converse }

(h · ∈ �R) ·P F M · (T◦ �Q) · T ·F H◦ · h◦ ⊆ R

⇐ { thinning cancellation (5.5) }

(h · ∈ �R) ·P F M · ∈◦ ·Q ·F H◦ · h◦ ⊆ R

≡ { converse }

(h · ∈ �R) ·P F M · ∈◦ · (h ·F H ·Q◦)◦ ⊆ R

⇐ { assumption: h ·F H ·Q◦ ⊆ R◦ · h ·F H }

(h · ∈ �R) ·P F M · ∈◦ · (R◦ · h ·F H)◦ ⊆ R

⇐ { P R · ∈◦ ⊆ ∈◦ · R (2.155) }

(h · ∈ �R) · ∈◦ ·F M · (R◦ · h ·F H)◦ ⊆ R

≡ { converse; function shrinking (2.192) }

h · (∈ �Rh) · ∈◦ ·F M ·F H◦ · h◦ · R ⊆ R

⇐ { functor laws; shrinking cancellation (2.188) (twice) }

h · Rh ·F R · h◦ · R ⊆ R

≡ { Rh = h◦ · R · h (2.6) }

h · h◦ · R · h ·F R · h◦ · R ⊆ R

⇐ { h is monotonic on R (2.132) }

h · h◦ · R · R · h · h◦ · R ⊆ R

≡ { h is simple (2.41) (twice); R is transitive (2.37) }

R · R ⊆ R

≡ { R is transitive (2.37) }

true

�
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Proof of (5.16):

µ ·P (∈ �R) ⊆ (∈ �R) · µ

≡ { shunting (2.59); universal property of thinning (5.2) }{
∈ · µ ·P (∈ �R) · µ◦ ⊆ ∈
µ ·P (∈ �R) · µ◦ · ∈◦ ⊆ ∈◦ · R

≡ { converse; ∈ · µ = ∈ · ∈ (2.158) }{
∈ · ∈ ·P (∈ �R) · µ◦ ⊆ ∈
µ ·P (∈ �R) · ∈◦ · ∈◦ ⊆ ∈◦ · R

⇐ { free theorem of ∈ (2.154); (2.155) }{
∈ · (∈ �R) · ∈ · µ◦ ⊆ ∈
µ · ∈◦ · (∈ �R) · ∈◦ ⊆ ∈◦ · R

⇐ { thinning cancellation (5.4, 5.5) }{
∈ · ∈ · µ◦ ⊆ ∈
µ · ∈◦ · ∈◦ · R ⊆ ∈◦ · R

⇐ { monotonicity (2.27); shunting (2.58, 2.59) (twice); converses; ∈ · µ = ∈ · ∈ (2.158) }{
∈ · ∈ ⊆ ∈ · ∈
∈ · ∈ ⊆ ∈ · ∈

�



This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência
e a Tecnologia, within project UIDB/50014/2020.


	Contents
	Introductory material
	1 Introduction
	1.1 Context
	1.2 Approach
	1.3 Structure of the dissertation

	2 Background
	2.1 Basic relation algebra
	2.2 Shrinking
	2.3 Recursive relations
	2.3.1 Catamorphisms and anamorphisms
	2.3.2 Hylomorphisms

	2.4 Implementing relation calculus with functions
	2.5 Metaphors and metaphorisms
	2.6 Algebra of Programming
	2.6.1 The converse of a function theorem
	2.6.2 The Greedy Theorem
	2.6.3 Dynamic Programming Theorems

	2.7 Towards executability
	2.8 Summary


	Contribution
	3 Inductive relations on lists
	3.1 The list datatype
	3.2 Permutations
	3.3 Subsequences and sublists
	3.4 Monotonicity rules
	3.5 Summary

	4 The Greedy algorithm
	4.1 A general form
	4.2 Matroids and greedoids
	4.3 Optimality of the greedy algorithm
	4.4 The color problem
	4.5 Summary

	5 Thinning
	5.1 Thinning
	5.2 Preorder thinning
	5.3 Recursive thinning
	5.4 Implementing thinning
	5.5 Summary

	6 Dynamic Programming
	6.1 Knapsack
	6.2 General Layered Networks
	6.3 Summary

	7 Conclusions
	7.1 Summary of contributions
	7.2 Future work


	Appendices
	A Problem Catalogue
	A.1 The color problem
	A.2 Dropping digits
	A.3 The knapsack problem
	A.4 Fibonacci numbers
	A.5 Binomial coefficient
	A.6 Planning a company party
	A.7 Shortest paths on a cylinder
	A.8 The coin change problem
	A.9 The security van problem
	A.10 Paths in a layered network
	A.11 The telegram problem
	A.12 The paragraph problem
	A.13 Bitonic tours
	A.14 The string edit problem
	A.15 Optimal bracketing
	A.16 Data compression
	A.17 The detab-entab problem
	A.18 The minimum tardiness problem
	A.19 The TeX problem

	B Details of results
	B.1 Background
	B.2 Inductive relations on lists
	B.3 The Greedy algorithm
	B.4 Thinning



		2022-05-23T10:49:59+0100




