
Universidade do Minho
Escola de Engenharia
Departamento de Informática

João Bernardo Coutinho Barreiros de Freitas

SNMP Agent for On-Board-Units in Vehicular Systems

February 2022

Universidade do Minho
Escola de Engenharia
Departamento de Informática

João Bernardo Coutinho Barreiros de Freitas

SNMP Agent for On-Board-Units in Vehicular Systems

Master dissertation
Master Degree in Informatics Engineering

Dissertation supervised by
Bruno Alexandre Fernandes Dias

February 2022

i

AUTHOR COPYRIGHTS AND TERMS OF USAGE BY THIRD PARTIES

This is an academic work which can be utilized by third parties given that the rules and
good practices internationally accepted, regarding author copyrights and related copyrights.

Therefore, the present work can be utilized according to the terms provided in the license
bellow.

If the user needs permission to use the work in conditions not foreseen by the licensing
indicated, the user should contact the author, through the RepositóriUM of University of
Minho.

License provided to the users of this work

Attribution-NonCommercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Univer-
sity of Minho.

João Bernardo Coutinho Barreiros de Freitas

ACKNOWLEDGEMENTS

Com o fim deste trabalho a minha jornada académica chega ao fim e como tal é um bom mo-
mento para refletir e agradecer a toda as pessoas que nestes anosme ajudaram, especialmente
no último ano, ano em que desenvolvi o protótipo que irá ser apresentado nesta dissertação.

Porque o desenvolvimento e redação da presente dissertação seria completamente impos-
sível sem o apoio e a ajuda prestados por várias pessoas, desde já, um enorme e especial obri-
gado. No entanto, antes de começar a exposição, cumpre agora individualizar todos aqueles
que contribuíram, de forma notória, para a realização do presente desenvolvimento, fazendo
com que este caminho não fosse trilhado solitariamente.

Primeiramente, aos meus pais, Anabela Freitas e Pedro Freitas, e irmão, José Pedro Freitas,
por toda a ajuda, paciência, apoio, conforto e carinho incondicional, seria injusto da minha
parte não prestar o maior dos agradecimentos.

Em segundo lugar, gostava de agradecer ao resto da minha família e amigos, por serem
de e para a vida, que direta ou indiretamente contribuíram para a realização deste trabalho
e por todos os bons momentos.

Em terceiro, gostaria de deixar um reconhecimento público de agradecimento ao Professor
Doutor Bruno Alexandre Dias pela persistência, rigor, exigência e disponibilidade em ajudar
e orientar a presente dissertação, desde o primeiro dia. Sem este contributo este trabalho se-
ria completamente impossível.

Por fim queria agradecer ao resto da equipa docente da escola de Engenharia da Universi-
dade do Minho por terem feito desta jornada na Universidade do Minho os melhores anos
da minha vida.

iii

ABSTRACT

On average over 60 Million automobiles are sold every year in the whole world and at one
point or another every single one of these vehicles will require some form of maintenance to
be performed.

With the ever increasing complexity of these vehicles, any maintenance job has also in-
creased in its difficulty and time required to complete, as such there is a need for a set of fast
and reliable diagnostic tools to speed up this process.

Furthermore, with the ever closer introduction of Vehicular ad hoc networks (VANETs),
there is a need for an application that is able to read sensor data in real time and change
the state of actuators in a vehicle with minimum delay, allowing for the introduction of such
methods like platooning, which require several vehicles of different types and models to
accelerate or brake simultaneously while also allowing a closer headway between vehicles,
since the reaction time of such a system would be entirely based on the latency of the com-
munication method/protocol being used and not the capabilities of the human driving the
vehicle.

As such. the main objective of this project is to create and test a Management Informa-
tion Base (MIB) specification to be implemented on an Simple Network Management Proto-
col (SNMP) agent inside an On-Board-Unit (OBU) that allows a company or individual to
quickly and safely access all information gathered from the vehicles’ own sensors while also
allowing for its configuration and, at the same time, managing errors in the system.

This system will make use of the preexisting Controller Area Network (CAN) technol-
ogy to access and gather data from a vehicles sensors so that it can be accessed in real-time
through an application. Such an application will communicate with the vehicles OBU using
SNMP. This solution should be capable of handling more requests for data than already ex-
isting standard technologies and protocols, such as On Board Diagnostics (OBD-II), while
also being faster than them. Additionally a way for users or other entities in a VANET to ac-
tivate/deactivate specific actuators should also be included in this solution as such a feature
is vital to the introduction of methods like platooning.

Keywords: VANET, CAN, MIB, SNMP, On-Board-Unit, SNMP Agent, configuration, error
management, Platooning, OBD-II, …

iv

RE SUMO

Em média são vendidos mais de 60 milhões de automóveis por ano em todo mundo e, even-
tualmente, todos eles irão necessitar de manutenção.

Coma complexidadedestes veículos sempre a aumentar, qualquer trabalhodemanutenção
tem aumentado na sua dificuldade como no tempo despendido e. como tal, há uma necessi-
dade de um conjunto de ferramentas de diagnóstico que sejam rápidas e de confiança para
acelerar este processo.

Aomesmo tempo, com o aumento de investimento e desenvolvimento de Vehicular ad hoc
networks (VANETs), há necessidade de uma aplicação que permita a leitura de sensores em
tempo real e mudança de estado de atuadores de um veículo com delay mais baixo possível,
permitindo a introdução de métodos de condução como platooning, que obriga a que vários
veículos de diferentes marcas e modelos acelerem e travem ao mesmo tempo o que permite
a que a distância entre eles baixe visto que o tempo de reação de tal sistema é baseado na
latência do método/protocolo de comunicação e não nas capacidades do condutor.

O principal objectivo deste projeto é criar e testar uma especificaçãoManagement Informa-
tion Base (MIB) para ser implementada num agente (SNMP) Simple Network Management
Protocol dentro de uma On-Board-Unit (OBU) que permita a uma empresa ou individuo o
acesso a toda a informação acumulada através dos sensores do veiculo e, ao mesmo tempo,
permitir a configuração do veículo e a sua gestão de erros.

Este sistema vai utilizar a tecnologia Controller Area Network (CAN) para aceder e acu-
mular dados dos sensores do veiculo para que estes sejam acedidos em tempo real através
de uma aplicação. Esta aplicação irá comunicar com a OBU do veiculo através do protocolo
SNMP. Esta solução deverá ser capaz de gerirmais pedidos de informação que tecnologias ou
protocolos standard já existentes, comoOn Board Diagnostics (OBD-II), sendo tambémmais
rápido que estes. Adicionalmente, esta solução deverá também incluir alguma maneira para
que utilizadores ou outras entidades numa VANET possam activar/desactivar actuadores es-
pecíficos visto que tal funcionalidade é vital para a introdução demétodos de condução como
platooning.

v

CONTENTS

1 INTRODUCT ION 1
1.1 Motivation 2
1.2 Objectives 3
1.3 Document Layout 5

2 RE LAT ED T ECHNOLOG I E S 6
2.1 SNMP 7

2.1.1 USM/VACM 8
2.1.2 How it works 9

2.2 SNMP Message Format 11
2.3 MIB 13
2.4 OBD-II 14
2.5 CAN 15

2.5.1 How it works 16
2.5.2 Message Types 17
2.5.3 Message Fields 17

2.6 SNMP and IOT 21
2.7 Summary 21

3 SNMP- BA S ED SOLUT ION 22
3.1 System Architecture 24
3.2 Management Information Base 25

3.2.1 System OBU Group 26
3.2.2 Sensor Group 27
3.2.3 Error Group 34
3.2.4 Actuator Group 35
3.2.5 Structure of Management Information 38

3.3 Summary 39
4 PROTOTYP E DEVE LOPMENT & TE ST ING 40

4.1 NET-SNMP 41
4.2 Generating Virtual CAN Messages 41
4.3 SNMP Agent 42

4.3.1 Decoding CAN Messages 44
4.3.2 Managing Requests 48
4.3.3 Storing Sensor Readings 54
4.3.4 Saving Modes 58

4.4 Manager 59

vi

CONTENTS vii

4.4.1 Authentication and Privacy 59
4.4.2 GetBulk and Set 61
4.4.3 View any table in the system 61
4.4.4 Create new requests 62
4.4.5 View a request 64
4.4.6 Edit a request 65
4.4.7 View Active errors in the system 66
4.4.8 Send Command 66

4.5 Tests and Results 67
4.5.1 Testing Environment 67
4.5.2 Testing Results 68

4.6 Summary 70
5 CONCLUS ION 71
References 73
Annex A: OBU MIB 77

L I ST OF F IGURE S

Figure 1 Simplified SNMP architecture 10
Figure 2 Management Information Base 10
Figure 3 SNMPv3 PDU 11
Figure 4 SNMP MIB Object Identifier Hierarchy and Format 13
Figure 5 OBD-II connector 14
Figure 6 Example of a vehicle CAN network 15
Figure 7 Example of CAN communication 16
Figure 8 CAN2.0A message 18
Figure 9 CAN2.0B message 18
Figure 10 CANFD message 18
Figure 11 System Architecture 25
Figure 12 mapTypeTable and its auxiliary tables 29
Figure 13 requestMonitoringDataTable and its relationships 33
Figure 14 Sensor Group 33
Figure 15 Error Group 35
Figure 16 Actuator Group 36
Figure 17 Full MIB 37
Figure 18 Example CAN messages 44
Figure 19 Example information contained in DBC files 45
Figure 20 DBC Structs 47
Figure 21 How an entry in commandTable is managed 49
Figure 22 How is an entry in requestMonitoringDataTable managed 53
Figure 23 How a signal is stored in the database 57
Figure 24 Viewing the contents of commandTemplateTablewith themanager 62
Figure 25 Sensor Description 63
Figure 26 Creating a new request 63
Figure 27 Created request in requestMonitoringDataTable 63
Figure 28 List of requests in the system 64
Figure 29 Samples related to a request 64
Figure 30 Requests and the current contents of their editable columns 65
Figure 31 Active Errors in the system 66
Figure 32 Sending a command to the agent 66
Figure 33 Confirmation that the agent sent the CAN message 66
Figure 34 Inserting samples on a single request 69
Figure 35 Inserting samples on multiple requests 69

viii

L I S T OF F IGURES ix

Figure 36 Single request 70
Figure 37 Multiple requests 70

L I ST OF TABLE S

Table 1 Throughput of main standards supported by OBD-II standards 2
Table 2 SNMPv3 Security Parameters 8
Table 3 SNMPv3 PDU Message Fields 12
Table 4 systemOBUGroup 26
Table 5 capabilitiesTable 26
Table 6 vehiclesTable 27
Table 7 mapTypeTable 28
Table 8 sampleUnitsTable 28
Table 9 genericTypesTable 28
Table 10 requestMonitoringDataTable 30
Table 11 requestStatisticsDataTable 31
Table 12 requestControlDataTable 31
Table 13 samplesTable 32
Table 14 errorTable 34
Table 15 errorDescriptionTable 34
Table 16 commandTemplateTable 35
Table 17 commandTable 36
Table 18 Example requestMonitoringTable 37
Table 19 Example samplesTable 38
Table 20 Max-Access values 39
Table 21 Comparison between C++ and Java response times 40
Table 22 Number of messages per ECU 67

x

ACRONYMS

A

ACC Adaptive Cruise Control.

ACK Acknowledgment.

AGENTX Agent Extensibility.

API Application Programming Interface.

B

BGP Border Gateway Protocol.

C

C-ITS Cooperative Intelligent Transport System.

CACC Cooperative Adaptive Cruise Control.

CAFE Corporate Average Fuel Economy.

CAN Controller Area Network.

CANFD Controller Area Network Flexible Data-Rate.

CRC Cyclic Redundancy Check.

CSM Community-based Security Model.

D

DBC CAN Bus DataBase.

DTLS Datagram Transport Layer Security.

E

ECU Electronic Control Unit.

EOBD European On-Board Diagnostics.

ETSI European Telecommunications Standards Institute.

xi

Acronyms xii

I

IAB Internet Architecture Board.

INMF Internet Network Management Framework.

IOT Internet of Things.

IP Internet Protocol.

ITS Intelligent Transport System.

ITS-LCI Intelligent Transport System Local Common Interface.

L

LIN Local Interconnect Network.

M

MIB Management Information Base.

MOST Media Oriented System Transport.

N

NM Network Manager.

NMS Network Manager System.

O

OBD On-Board Diagnostics.

OBD-II On-Board Diagnostics-II.

OBU On-Board Unit.

OID Object Identifier.

OSPF Open Shortest Path First.

P

PDU Protocol Data Unit.

PID Parameter ID.

POTS Plain Old Telephone Service.

PSTN Public Switched Telephone Network.

Acronyms xiii

R

RIP Routing Information Protocol.

RSU Road Side Unit.

S

SAE Society of Automotive Engineers.

SMI Structure of Management Information.

SNMP Simple Network Management Protocol.

SSH Secure Shell.

T

TCP Transmission Control Protocol.

TLS Transport Layer Security.

U

UDP User Datagram Protocol.

USM Used-based Security Model.

V

V2I Vehicle to Infrastructure.

V2V Vehicle to Vehicle.

V2X Vehicle to Everything.

VACM View-Based Access Control Model.

VANET Vehicular ad-hoc Network.

1

I N TRODUCT ION

The automotive industry has for over two decades used CAN (Controller Area Network) to
manage and configure sensors and actuators in industrial environments as well as to allow
universal communication between industrial components developed by different manufac-
turers. While it’s not the only technology to provide these features, it’s the most widely used
in industrial environments, and more importantly the automotive industry.
More specifically, this technology is used in the internal architecture of vehicles and, as such,
it does not allow any third-party applications or hardware to access the CAN bus directly.
This presents an unique problem to overcome, ”How can a third party entity gain access to
this network so it can monitor data being transmitted over CAN and change the state of any
actuator in it?”.
The most common method that’s currently used to overcome this problem is by accessing
the CAN bus indirectly through (OBD) (On-Board-Diagnostics) technologies and its vari-
ants and while this solution allows a third party to read sensor data and send commands
to ECUs, it comes with its own drawbacks, both in terms of security, performance and ver-
satility which, while minor inconveniences as far as the average user or repair technician is
concerned, does restrict its integration in more advanced communication systems, such as
VANETs (Vehicular ad-hoc Network).

SNMP (Simple Network Management Protocol) [1] is widely used to manage and config-
ure equipment and services, not only in internet networks but also in all other applications
domains. Through its long years as a standard, it has shown to be a stable and efficient pro-
tocol that can be used by network managers to manage, monitor, and configure equipment
while being lightweight enough that even devices with lacking computing power can use it.

Through the use of SNMP, and an accompanying custom MIB (Management Informa-
tion Base), another possible solution to the aforementioned problem will be presented that
doesn’t compromise in security and efficiency while providing the same functionalities in
regards to configuration and monitoring of sensors and actuators. This solution will be non
proprietary, i.e universal, by being a program that can be integrated and setup on an already
existing vehicle OBU and as such won’t require vehicle manufacturers to redesign the inter-
nal architecture of their vehicles. This type of solution has already been proposed [2][3] and,
in a way, this project will try to study its effectiveness.

1

1.1. Motivation 2

1.1 MOT I VAT ION

An ITS (Intelligence Transportation System) is an advanced application which aims to pro-
vide services that enable users to be better informed and make safer, more coordinated,
and ’smarter’ use of transport networks. This includes, for example, calling for emergency
services when an accident occurs or using cameras to enforce traffic laws depending on
conditions. Somewhat more relevant for this project is that an ITS application will also al-
low for cooperative systems on the road, that is, communication between car-to-car, car-to-
infrastructure and vice versa. For this use-case, data obtained from a vehicle can be used to
detect events, such as rain or congestion, and based on these events take preventive actions
with the objective of increasing road safety. Such a system needs to overcome a couple of
obstacles before it can be introduced as a standard on all vehicles. One such obstacle is how
to quickly and reliably collect/transfer data from a vehicle’s sensors in a network, and while
there are already some solutions in-place that partially overcome this, they are not without
drawbacks. These solutions usually come in two ”flavors”:

• Built-in telematics- Communication with the outside world is done via an proprietary
Internet connection and a GSM module.

• Brought-in telematics- Communication with the outside world is done via a device that
is plugged in to the OBD port.

As mentioned, each one of these two methods has its own drawbacks, where the former
makes use of proprietary internet connection and software which means any customer will
only have access to content that the manufacturer allows the customer to have, the latter is
limited by low throughput caused by OBD-II standard and requires specialized hardware
and software to use.

Protocol Nrº Protocol Max Throughput
1 SAE J1850 (PWM) 41.6kbps
2 SAE J1850 (VPW) 10.4kbps
3 ISO 9141-2 10.4 kbps
4 ISO 14230-4 (KWP 2000) 10.4kbps
5 ISO 15765-4 (CAN) 500kbps

Table 1: Throughput of main standards supported by OBD-II[4]

This low throughput is the major obstacle that preventsOBD-II from being used inVANET
since, when OBD-II is being used to collect data from a vehicle it must first send a request,
Parameter ID (PID), to the OBU for the data, wait for the response and only then send a
second PID. This means that as the number of requests increase, so will the refresh rate of
each individual request, more specifically, if there’s only one PID enabled, the maximum
refresh rate is 50ms but if we were to increase the number of PIDs to the maximum, that is
20 PIDs per second, we would be looking at a refresh rate of 1000ms per PID [5][6][7].

1.2. Objectives 3

This limitation in number of sensors that can be monitored at the same time, low through-
put and low refresh rate when the number of sensors being monitored increases makes the
OBD-II interface a problematic source of sensor data if we were to use it inVANETs. This low
refresh rate is especially damning when we consider that even assuming a busload of 70%,
which is generally considered the ”real-world” maximum, it means that for example, an SAE
J1939 data framemay occur every 0.77 ms @ 250 kbps or 0.39 ms @ 500 kbps [8], significantly
faster than the 50ms refresh rate on OBD-II.

One other obstacle to overcome is how to get OBUs made by different manufacturers to
communicate with each other in an environment where each manufacturer relies on their
own adapted proprietary architecture, which renders any interoperability between applica-
tions by different manufacturers difficult to achieve.
And lastly, how can we allow for third-party software makers to develop and implement
their own C-ITS applications to compete in the automotive market independently of the
manufacturer[9] without disclosing any details on a manufacturers proprietary architecture.

A proven technology like SNMP working alongside CAN can be used to overcome these
obstacles while also adding an extra level of security since access to the MIB objects of the
SNMP agent integrated in theOBUwill only be possible to applicationmodules/SNMPman-
agers in the vehicle’s local network since it is not wise to allow outside entities direct access
to sensors/actuators of a vehicle[3].

1.2 OB J E C T I V E S

The main objective of this dissertation will be the development of a solution that allows any
authorized entity to obtain data from sensors and allow the configuration of actuators con-
nected to it, through an SNMP agent integrated in theOBU and accompanyingMIB, in a way
that does not compromise in performance and security regarding further development of
host-based distributed applications. This solution should bypass any bottlenecks caused by
the slow throughput ofOBD-II, whichwill allow for real-time diagnostics to be performed on
a whole fleet of vehicles while also allowing for better and easier integration of the vehicle’s
sensors with VANETs, it should also give access to any car manufacturer or end-user a solid
base with which to build upon and develop their own diagnostics/configuration software.
In essence this solution will be comprised of four different parts:

• MIB.

• SNMP Agent.

• SNMP Manager.

• Host Based Distributed Application.

The MIB will define the database that will be used for managing vehicle’s sensors and ac-
tuators, while both the SNMP Agent and SNMP Manager will communicate with each other

1.2. Objectives 4

using SNMP and the MIB, thus, allowing for data collected from the vehicle’s sensors to be
transmitted to whichever device holds the SNMP Manager. Finally a Host Based Distributed
Application should provide an easy to use interface that allows a user to read sensor data and
configure actuators in real time. The SNMP Manager can also be included in the Host Based
Distributed Application. Additionally a decoder will also be developed so that we are able
decode messages sent in the vehicle’s internal network by ECUs into human readable data.

Both theMIB and SNMP agent will be integrated directly in theOBUwhile the SNMPman-
ager and host based distributed application should be installed in the vehicle’s private net-
work, directly in the OBU and/or outside it. Any communication between other distributed
ITS applications and the system should be done via this host based distributed application.

To accomplish this, an iterative methodology based on document research, solution pro-
posal, implementation and testing will be followed:

• Thoroughly research state-of-the-art access technologies to CAN bus, namelyOBD and
its variants.

• Research recent projects that have attempted to overcome the inherent limitations of
OBD based solutions.

• Research advantages and disadvantages of an SNMP based solution.

• Define a MIB that can monitor and configure sensors and actuators connected to an
OBU. Such a MIB has to allow access to low level ITS functions implemented by the
vehicles manufacturer and, at the same time, be transparent in relation to the chosen
electronic communication bus, be it CAN, Flexray or any other.

• Develop a prototype SNMP agent and manager so that it’s possible to test the validity
of the introduced contexts.

1.3. Document Layout 5

1.3 DOCUMENT LAYOUT

This dissertation is divided into five chapters covering areas related to SNMP, OBD-II and
CAN architecture, proposed approach, development decisions, results and finally a conclu-
sion and future work:

• Chapter 1 - Introduction: In this chapter the context of the dissertation is set, as well as
the motivation and objectives to be met. The layout of the dissertation is also explained

• Chapter 2 - Related Technologies and R&D Works: In this chapter the already existing
technologies and solutions are explained and discussed.

• Chapter 3 - Proposed Approach: In this chapter a proposed approach will be presented
based on the results of the discussions in Chapter 2.

• Chapter 4 - Developing a Prototype: This chapter will explain in detail the most criti-
cal steps in the development of this solution while also presenting and discussing test
results.

• Chapter 5 - Conclusion: This chapter will contain the conclusions of this dissertation
and any potential future work that could improve the presented solution.

2

RELATED TECHNOLOG I E S

Ever since the first communications networks were introduced, in the shape of telephone net-
works (POTS), there has been a need for Network Managers (NM), which at that time were
telephone operators, to detect network-affecting problems, like equipment failure or traffic
overloads and fix them by rerouting/blocking traffic from entering the congested network or
alerting a technician to initiate maintenance activities. Nowadays, telephone networks have
been replaced by PSTN while the humble telephone operator was replaced by routing proto-
cols like RIP, OSPF or BGP.
Another area in which NMs became relevant was in industry, where networks are extremely
important as a way to keep production lines running as efficiently as possible. In this area,
the role of an NM is to ensure that every cog in the machine is running properly and at op-
timum condition. To fulfill this role a protocol that was simple, centralized and had low
consumption of resources on the managed devices was needed. While a variety of protocols
were proposed, most were rejected except for SNMP.

With the 1970’s fuel crisis, the automobile industry realized that fuel efficiency would
become a consumer and government requirement. In response to this, the United States
Congress established a set of standards named Corporate Average Fuel Economy (CAFE)
which all companies had to comply. At the same time, computer controls as well as sensor
technology were coming of age and by marrying electronics, sensors and software one could
create automotive computer controlled systems and with this the fuel efficiency race was on.
With the advent of these computer controlled systems a need to diagnose and monitor the
performance characteristics of individual components was born [10] and it was due to this
need that solutions like OBD were developed.

With all these sensors, and their corresponding ECUs, being added to a vehicle, its wiring
became an issue. To fix this a field bus system based on serial communication was developed
and introduced in the 1980’s called CAN which, as promised, reduced wiring while also
increasing reliability and improved service and maintenance features [11].

6

2.1. SNMP 7

With the introduction of VANETs, a need for an efficient and safe way to access sensor
data from a vehicle to use in ITS applications has surfaced, however this need can’t be easily
met with OBD based solutions but it can be done if we were to replace OBD with SNMP as
the interface technology [3][2][9]. As per [2], SNMP enabled micro controller boards can
communicate with multiple sensors while also forwarding data to an on-board SNMP man-
ager. The CAN interface would also allow for efficient and reliable data transfer between the
SNMP enabled micro controller boards and SNMP manager, additionally, off board commu-
nication can be handled by cellular technologies. Although a promising start, [2] does not
specify how this solution is to be implemented or the structure of its MIB and its proposal
of multiple SNMP agents in a vehicle, one per type of sensor, goes against normalized ITS
architectures proposed by institutions like ETSI or the one proposed in [9].
In [3], the use of SNMP in the context of vehicles with OBUs capable of communicating and
integrating with VANETs is mentioned although, once again, no MIB is proposed or any de-
tails on how this solution may be integrated.
Out of the three research papers, [9] is the one that provides themost insight into how SNMP
can be integrated into a modern ITS architecture and as such it will form the basis of this so-
lution despite also lacking a MIB specification.

2.1 SNMP

Originally developed and introduced by university researchers in the 1988, SNMP is a stan-
dard protocol for networkmanagement. It’s used byNetwork Administrators to monitor and
map network availability, performance and error rates [12] and uses UDP as the transport
protocol, however TCP can be used as well.

It was aproved as an internet standard by Internet Architecture Board (IAB) in 1990 to
address a clear and growing need for network management [1]. In this solution, SNMP will
be used to allow an Agent integrated in the OBU to communicate and transfer data to a
manager, installed somewhere in the vehicle.

SNMP comes in 3 main versions:

• SNMPv1-Released in 1990.

• SNMPv2-Released in 1993.

• SNMPv3-Released in 1999.

SNMPv1

SNMPv1, as the name implies, is the first publicly available version of SNMP and while it
accomplished its goal of being an open, standard protocol, it was lacking in key areas. More
specifically, it only supports 32-bit counters, which hampers its ability to manage modern
networks, and has poor security features.

2.1. SNMP 8

SNMPv2

Released in 1993, the main differences between this version and SNMPv1 are improved error
handling, the addition of SET operations and support for 64-bit counters. Security features
are exactly the same as in SNMPv1, which is in the form of community strings, a simple
password that devices need to be able to talk to each other and transfer information.

SNMPv3

SNMPv3 is the newest version of SNMP, released in 1999, and its new features primarily re-
volve around enhanced security. Each SNMP entity now has an Engine ID which is used to
generate a key for authenticated messages. Besides authentication SNMPv3 now also sup-
ports encrypting of SNMP messages with USM/VACM.

2.1.1 USM/VACM

Introduced as part of SNMPv3, USM/VACM allows for better message security and access
control respectively.
USM, User-Based Security Model, provides message security by:

• Data integrity checking, to ensure that the data was not altered in transit.

• Data origin verification, to ensure that the request or response originates from the
source from which it claims to have come from.

• Message timeliness checking and, optionally, data confidentiality, to protect against
eavesdropping.

While View-Based Access Control Model (VACM) is the ability to control exactly what data
an individual user can read or write.
It should also be noted that these security models can be used concurrently with the older
community string based security [1].

With these functionalities enabled it’s required that users provide the following informa-
tion when invoking commands.

Parameter Command-line Option Description
engineID -e <EngineID> Engine ID of the SNMP agent

securityName -u <Name> User name
authProtocol -a <MD5|SHA> Authentication Type

authKey -A <PASSPHRASE> Passphrase
securityLevel -I <authNoPriv|AuthPriv|noAuthNoPriv> Security Level
privProtocol -x <none|des> Privacy protocol
privPassword -X <password> Password

Table 2: SNMPv3 Security Parameters [1]

2.1. SNMP 9

2.1.2 How it works

An SNMP network is usually composed by three different parts:

• Manager- Installed in a Network Management System NMS:

– Queries Agents.

– Sets variables on Agents.

– Gets responses from Agents.

– Acknowledges asynchronous events from Agents.

• Agent- Installed in a device that is to be monitored:

– Collects management information about its local environment.

– Stores and retrieves management information as defined in the MIB.

– Signals an event to the Manager.

– Acts as a proxy for some non–SNMP manageable network node.

• MIB:

– Contains an information database describing the managed device parameters.

– Both the Agent and Manager share this database and the latter uses it to request
specific information from the former.

These requests are done via a set of operations:

• GET- Retrieves the object instance from an Agent.

• GETNEXT- Retrieves the next object variable.

• GETBULK- Retrieves a large amount of objects variables, without needing several GET-
NEXT operations.

• SET- Tells the NMS to modify the value of an object variable.

• TRAPS- Alerts the SNMP manager about a condition on the network.

• INFORMS- Traps that include a request for confirmation of receipt from the SNMP
manager.

2.1. SNMP 10

In summary, we have a Manager installed in an NMS which communicates with Agents
installed in one or more devices, where each Agent is keeping track of several parameters of
that device via aMIBwhich is in turn shared between bothManager andAgent thus allowing
the former to request specific information from the latter.

Figure 1: Simplified SNMP architecture. From [13].

Figure 2: Management Information Base. From [14].

2.2. SNMPMessage Format 11

2.2 SNMP MES SAGE FORMAT

The Structure ofManagement Information (SMI) is a standard that defines all types of objects
that can be included in SNMP messages.

In this project the latest version, SMIv2, will be used.
The main propose of the SNMP is to define rules that allow agents and managers to ex-

change management information. An SNMP message is formed by a single PDU sent over
UDP (port 161 and 162 are standards).

In figure 3 the SNMPv3 PDU format is presented.

Figure 3: SNMPv3 PDU. From [15]

2.2. SNMPMessage Format 12

Field Syntax Size (bytes) Description
Msg Version Integer 4 Describes the SNMP version num-

ber of this message, used for ensur-
ing compatibility between versions.
For SNMPv3, this value is 3

Msg ID Integer 4 A number used to identify an SN-
MPv3 message and to match re-
sponse messages to request mes-
sages

Msg Max Size Integer 4 The maximum size of message that
the sender of this message can re-
ceive. Minimum value of this field
is 484.

Msg Flags Octet String 1 A set of flags that controls process-
ing of the message

Msg Security Model Integer 4 An integer value indicating which
security model was used for this
message. For the user-based secu-
rity model (the default in SNMPv3)
this value is 3.

Msg Security Paramenters - Variable A set of fields that contain param-
eters required to implement the
particular security model used for
this message. The contents of this
field are specified in each docu-
ment describing an SNMPv3 secu-
ritymodel. For example, the param-
eters for the user-basedmodel are in
RFC 3414.

Scoped PDU - Variable Contains the PDU to be transmit-
ted, along parameters that identify
a SNMP context.

Table 3: SNMPv3 PDU Message Fields

2.3. MIB 13

2.3 M I B

In an SNMP based solution, a MIB is a local database of information relevant to the network
management that both the manager and agent maintain. ThisMIBwill contain the definition
and information regarding the proprieties of managed resources/services, called objects or
variables, these object can be divided into two types, scalar objects which define a single ob-
ject instance and tabular objects that definemultiple related object instances that are grouped
in MIB tables. Additionally different OIDs can be grouped into MIB groups if needed. The
structure of theMIB information and allowable data types is defined by the structure of man-
agement information (SMI). This SMI identifies how resources within the MIB are defined
and named.
A MIB object is defined by the following keywords:

• Syntax- Defines the abstract data structure corresponding to the object type. For exam-
ple, Unsigned32, Integer, etc.

• Max-Access- Defines whether the object value may only be retrieved but not modified
(read-only) or whether it may also be modified (read-write).

• Description- Contains a textual definition of the object type. The definition provides all
semantic definitions necessary for interpretation.

Additionally each object in a MIB has an object identifier (OID)[16], which the management
station uses to request the object’s value from the agent. An OID is a sequence of integers
that uniquely identifies a managed object by defining a path to that object through a tree-
like structure called the OID tree or registration tree. When an SNMP agent needs to access
a specific managed object, it traverses the OID tree to find the object. In this tree the top-
level OIDs belong to different standard organizations while the lower levels are allocated by
associated organizations.

Figure 4: SNMP MIB Object Identifier Hierarchy and Format. From [17]

2.4. OBD-II 14

2.4 OBD - I I

First introduced in the early 1980s OBD is an automotive term referring to a vehicle’s self-
diagnostic and reporting capability. OBD systems give the owner/repair technician access to
the status of various vehicle sub-systems thus allowing for easier repairs and even preventive
maintenance of failing sub-systems.

Circa 1994, OBD-II specification is developed and by 1996 is made mandatory in the US.
In Europe, EOBD is developed and made mandatory by 2001/2004 for all petrol and diesel
vehicles respectively. EOBD is essentially a copy of OBD-II, using the same connector and
signal protocols [18]. OBD-II will be the protocol with which the proposed solution will be
compared

Figure 5: OBD-II connector. From [18]

As mentioned in 1, OBD-II supports five different signal protocols:

• SAE J1850 PWM- Pulse Width Modulation 41.6kbps, used by FORD Motor Company
and Mazda.

• SAE J1850 VPW- Variable Pulse Modulation 10.4/41.6kbps, used by General Motors.

• ISO 9141-2- 10.4kbps, used by Chrysler and some Asian/European Manufacturers be-
tween 2000-2004.

• ISO 14230-4 KWP2000- Keyword Protocol 2000 10.4kbps, commonly used after 2003
by various manufacturers.

• ISO 15765-4 CAN-BUS- From 2008 onward all vehicles sold in the US must implement
CAN as one of their signalling protocols.

This standard has some disadvantages that prevent it from being used in VANETs. First
of all it requires specialized hardware to connect with the vehicle’s own OBD-II connector,
then it requires specialized software that is able to read the messages/write to the car’sOBU,
has some serious security flaws [19], it has too much latency to be of use in time sensitive
applications and finally it’s limited in the number of ECUs it can query at the same time and
in the ECUs it can query.

2.5. CAN 15

2.5 CAN

A CAN provides a cheap durable network that allows vehicle devices to speak through the
Electronic Control Unit (ECU) while allowing it to only have one CAN interface instead of
several analog inputs for all devices in the system.

Figure 6: Example of a vehicle CAN network. From [20]

Originally developed between 1983 and 1986, it would in 1991 see Bosch publish its latest
specification in the form of CAN 2.0. This specification has two parts, CAN 2.0A and 2.0B,
where the former uses 11-bit identifiers and the latter 29-bit identifiers [21]. Being one of
the five protocols supported by OBD-II, CAN would see wide range of adoption in the car
manufacturing world, especially since OBD-II became mandatory in the US and Europe.

In 2012 Bosch extended the CAN standard by releasing Controller Area Network Flexible
Data-Rate (CANFD). This specification uses a different frame format which allows for differ-
ent data length and switching to a faster bit rate after arbitration is decidedwhilemaintaining
backwards compatibility with CAN 2.0. CAN will be the protocol used when testing the per-
formance of the proposed solution.

2.5. CAN 16

Lastly CAN provides a fast interface, 1Mbit/s if the bus length is less than 40meters, which
should provide latency’s of around 330 𝜇s, which includes, for bus transport, 130𝜇s if it’s a
full length CAN message or 53𝜇s if it’s a short CAN message, and around 100𝜇s for both the
transmitting and receiving node to prepare the transfer/reception of a message [22].

2.5.1 How it works

The CAN bus is a broadcast type of bus. This means that all nodes can “hear” all transmis-
sions made by other nodes. There is no way to send a message to just a specific node; all
nodes will invariably pick up all traffic. The CAN hardware, however, provides local filter-
ing so that each node may react only on the messages directed to it.

Figure 7: Example of CAN communication. From [23]

Since all CAN controllers share the same bus there needs to be some process where two
or more of them agree on who is allowed to use the bus. Any CAN controller can start a
transmission if it detects an idle bus. This may result in two or more different nodes starting
to send amessage at the same time causing a conflict. This conflict is resolved in the following
manner:

• The transmitting node monitors the bus while it is sending a message.

• If a node detects a message with a dominant level when it is sending a recessive level
itself, it will quit the arbitration process and become receiver.

• This arbitration is performed over the whole arbitration field andwhen this field is sent
only one node will be transmitting.

• Once the message is transmitted the other node can restart the transmission of its own
message.

2.5. CAN 17

2.5.2 Message Types

There are four different types of messages, or frames, that can be transmitted by a node on a
CAN bus:

• Data Frame- Most common message type, used to send data on the CAN bus.

• Remote Frame- Used to solicit the transmission of the corresponding Data Frames.

• Error Frame- Used to request re-transmission of a message.

• Overload Frame- Used to indicate when a node is too busy.

2.5.3 Message Fields

A CAN frame can have up to 7 fields:

• Start of Frame- Marks the beginning of a frame, consists of one bit only.

• Arbitration Field- Contains an Identifier and a Remote Transmission Request bit. Total
size of 11 or 29-bit.

• Control Field- Indicates the total number of bytes on Data Field.

• Data Field- Depending on the type of frame, will either be empty or contain the data
that is getting transmitted up to a maximum of 8 bytes.

• CRC Field- Contains CRC Sequence, and CRC delimiter.

• ACK Field- Contains two bits with an ACK Slot and ACK Delimiter.

• End of Frame- Contains a series of recessive bits.

As previously mentioned there are three main specifications being used in the CAN stan-
dard.

2.5. CAN 18

CAN2.0A

This version is mostly used in light vehicles and features an 11-bit identifier.

Figure 8: CAN2.0A message. From [24]

CAN2.0B

This version is mostly used in heavy vehicles, like trucks and buses, and features an 29-bit
identifier.

Figure 9: CAN2.0B message. From [24]

CAN FD

Newest specification of CAN standard, it’s expected to provide up to five times the speed of
classical CAN, at 5Mbit/s, will increase the maximum data payload from 8 bytes to 64 bytes
and is expected to appear on all vehicles from 2019 onward.

Figure 10: CANFD message. From [25]

2.5. CAN 19

Other Network Types

Before exploring other communication network protocols it’s important to to clearly define
SAE network classes. These range from A (lowest speed) to C (highest speed). Every proto-
col will fit into at least one of these classes but some like CAN, class B and C, can actually fit
into two [26]:

• Class A- low speed (less than 10Kb/s) for convenience features such as body and com-
fort.

• Class B- medium speed (between 10 and 125Kb/s) for general information transfer,
such as emission data, instrumentation.

• Class C- high speed (greater than 125Kb/s) for real-time control such as traction control,
brake by wire, etc.

While CAN it the most widely used in-vehicle communication network protocol, it doesn’t
mean it’s the only one in existence. Many of these protocols were created by different com-
panies or consortium’s a way to meet the different performance requirements throughout a
vehicle.

LIN

Local Interconnect Network (LIN) is a low-cost serial communication system used as SAE
class A network, which is a network that is used when the needs, in terms of communica-
tion, do not require the implementation of higher-bandwidth multiplexing networks such
as CAN[27]. The typical applications involving LIN include controlling doors (e.g., door
locks, opening/closing windows) or controlling seats (e.g., seat position motors, occupancy
control). The maximum data rate of LIN is 20Kb/s.

MOST

Media Oriented System Transport (MOST) is a SAE class C network with a data rate of
25Mb/s that provides point-to-point audio and video data transfer with different possible
data rates. MOST supports end-user applications like radios, GPS navigation, video displays
and entertainment systems and has become the de-facto standard for transporting audio and
video streams within vehicles[28].

2.5. CAN 20

FlexRay

Also a SAE class C network, FlexRay is an automotive network communications protocol
developed by the FlexRay Consortium, now disbanded, which was a consortium of vehicle
manufacturers that included the likes of:

• BMW.

• Daimler.

• Volkswagen.

• General Motors.

The aim of this consortium was to develop a faster and more reliable automotive network
communications protocol than CAN.

FlexRay specifies three different bit-rates, all of which are faster than classical CAN [29]:

• 10Mbit/s.

• 5Mbit/s.

• 2.5Mbit/s.

A FlexRay signal can carry up to 254 bytes, much higher than both classicalCAN andCANFD
at 8 and 64 bytes respectively, and has three CRC, which allows it to be more reliable and
flexible than its main competitor.

However it hasn’t seenwide adoption due to higher installation costs andproblemswith ex-
tending network length, being only used by high-endmanufacturers like BMW,Audi, Bentley
and Mercedes in their latest top of the range models, and as such it’s expected to be replaced
by Ethernet systems in the near future.

2.6. SNMP and IOT 21

2.6 SNMP AND IOT

Now, more and more objects are becoming embedded with sensors and gaining the ability
to communicate. Many IOT devices have sensors that can register changes in temperature,
light, pressure, sound andmotion. Tomonitor/configure thismyriad of sensors, SNMP based
solutions can prove to be ideal due to the fact that SNMPwas designed to be used in resource
constrained devices [30]. These same requirements also exist when it comes to OBUs since
they are also resource constrained devices, although not at the same level as IOT sensors
and as such frameworks have already been proposed that provide remote vehicular sensor
monitoring through SNMP [2][3]. By nature, this will require OBUs with an SNMP agent
integrated and luckily modern ones do already come with such an agent incorporated in
them to configure/monitor some aspects of their every day running however this agent is
unable to access sensors/actuators of the vehicle.

2.7 SUMMARY

In this chapter a general overview of the CAN protocol and SNMP was given, as well as
how each of these two protocols work, their architecture, real world uses and how different
versions of each protocol, and competitors, compare to each other so that the best options
would be chosen for the project. Additionally a short introduction to theOBD-II standardwas
given, since it will be compared throughout this dissertation with the developed solution.

3

SNMP- BA SED SOLUT ION

In this chapter the requirements, design goals andmain issues to overcomewill be presented
as well as the proposed solution to meet them. This solution will be based on the perfor-
mance of already existing protocols, SNMP versions, SNMP commands, security features
and more. Lastly the system architecture will also be presented as well as any API that aids
in the development of this project.

Since the most commonly used protocol within a vehicles’ internal network is CAN, this
solution will be developed with it in mind, in essence, using both SNMP and CAN to allow
outside entities to access the internal network of a vehicle.
This solution needs to be universal, that is, it can be used by anymanufacturer independently
of its proprietary internal architecture, and it must allow:

• Monitoring sensor data from a vehicle.

• Control over a vehicles actuators in a way that is:

– As direct as possible.

– As safe as possible.

– As reliable as possible.

– With as little delay as possible.

– With as high of a data rate as possible.

Due to security reasons, no manufacturer will allow direct access to actuators or sensors of
a vehicle to any third party applications, and as such, the only current options are to access
these components via theOBU, or any other application ormechanism that themanufacturer
may or may not provide. Due to this, the only truly universal method to obtain sensor/actua-
tor access is to do it throughOBD-II port, however this is limited both in terms of performance
and in terms of what sensors/actuators we can access.
This project hopes to develop another method to access to these components with the use
of SNMP and a custom made MIB, since through these we can overcome most of the limita-
tions ofOBD-II and mitigate others, i.e. security requirements can be met through the use of
SNMPv3, by avoiding constant and active polling we can also increase data rate and decrease
delay.

22

23

Nevertheless, even with SNMP, it is not wise to allow direct access to the agent that is
integrated in the OBU since it can be dangerous to allow an outside entity direct access to
the vehicles actuators and instead only allow applications in the vehicle’s local network to
directly access the SNMP agent in the OBU. These applications, each with their own SNMP
manager, can be roughly split into three types:

• Applications that are only useful to the driver, passenger or other internal vehicle ap-
plications/services. These applications can also obtain additional data from external
sources, V2X, to implement features like:

– Adaptive Cooperative Cruise Control.

– Cooperative Cruise Control.

– Emergency Breaking.

• Applications that contribute to the implementation of another distributed service, or
application system, that requires V2X communications to trade information between
the multiple components in it. This includes features like:

– Platooning.

– Cooperative Mapping.

– Cooperative Traffic Management.

• Applications that serve as a proxy to allow indirect access to external services. This
includes:

– Billing tolls and parking spaces.

– Information gathering services for brand/dealer clouds.

– Transport fleet monitoring systems.

– Vehicle diagnostics and inspection

The overall architecture of this project shall include an SNMP Agent instegrated in a vehi-
cle OBU, this Agent will manage and store data captured from the vehicles ECU in a MIB.
This MIB will be shared between the Agent and Manager, thus allowing for the latter to re-
quest data from the former. The same MIB can also be used by the Manager to send Set
messages that change data in an Agent which will in turn allow for error management and
configuration of an vehicle’s actuators. This Manager can then be used in both ITS applica-
tions or a manufacturers’ diagnostic software.

In addition to this, since the primary goal of any C-ITS application is to both save lives and
improve traffic flow[31] any application developed to work in this environment needs its
communication with other entities on the road, be them OBUs, RSUs or even pedestrians, to
be both fast and secure and as such this solution should provide an alternative that improves
on the performance, when compared to other universal solutions like OBD-II.

3.1. System Architecture 24

3.1 SYST EM ARCH I T EC TURE

As shown in Figure 11 this solutionwill require one ormore applications to be installed in the
car, but outside of the OBU, and one SNMP Agent that is integrated directly on the vehicles
OBU.

The SNMPAgent main function will be to store data recorded by the vehicles’ sensors and,
based on requests from the application, transmitting that data to the application, which may
then forward it to the relevant entities. If this application is being used to communicate to
outside entities its SNMP manager should also serve as a gateway application, filtering, pre-
processing and even allowing/blocking access to certain functionalities based on the entity
as a security feature.

In the architecture represented in Figure 11 we have a car, its local network, OBU and ITS-
LCI (Intelligent Transport System Local Common Interface). As part of the OBU we have a
SNMP agent and three types of services modules[9]:

• Communication Services Module - This interface module will permit sharing of all
medium-access technologies supported by the OBU by all application environments
in the ITS station and deployed on resources outside the OBU, or hosts

• Information Services Module- This interface module will permit access and manipula-
tion of data generated by all sensors, actuators and other devices in the vehicle, indi-
rectly or directly connected to the OBU

• Function ServicesModule- This interface module will permit access to lower-level func-
tionality procedures. These are functions that themanufacturers, due to security, safety,
performance and liability issues, should have the responsibility and the desire to imple-
ment (or closely control its implementation).

The SNMP agent is integrated in theOBU and is part of the Information ServiceModule. Cer-
tain internal OBU services included in the Function Service Module can communicate with
the SNMP agent directly, through SNMPv3. These services can then be accessed with other
access technologies that are defined in the ITS-LCI.
Otherwise, one can directly access the SNMP agent through SNMP manager(s) outside the
OBU. These will be integrated within one of the three types of applications mentioned above
and no matter the type of application, it has to be connected to the vehicles internal net-
workwhile communicationwith external distributed applications/services is done indirectly
though modules or proxies.
Finally, if and when sensor data is being monitored by local network applications where
authentication is not essential, which can happen if the development and installation envi-
ronment of applications in the vehicles local network is more ”closed-off” and secure, using
SNMPv2c instead of SNMPv3 to monitor sensor data can be more efficient in terms of delay
and throughput.

3.2. Management Information Base 25

Figure 11: System Architecture

3.2 MANAGEMENT IN FORMAT ION BAS E

The MIB that was developed for this project will contain tabular objects that were grouped
up based on their function:

• System Group- This group will contain all the objects/tables related to vehicle/OBU
metadata.

• Sensor Group- This group will contain all objects/tables related to sensor readings.

• Error Group- This small group will contain all objects/tables related to error manage-
ment.

• Actuator Group- This small group will contain all objects/tables related to actuators.

3.2. Management Information Base 26

Note: For simplicity sake certain nodes were not implemented in the prototype and as such,
the OIDs defined in this dissertation will differ from the OIDs used in the prototype. This
does not invalidate the results obtained with this prototype.

3.2.1 System OBU Group

This group will contain all information regarding the installedOBU, for example: Date of in-
stallation, VersionNumber, Runtime, alongside capabilitiesTable and connectedVehiclesTable,
these objects will serve mostly as a way to store the vehicles’ ”metadata”, this includes capa-
bilities, vehicle ID, mileage, age, country of origin, etc. These tables will be populated based
on information provided by the manufacturer on a per vehicle basis and as such it’s the least
developed part of this project.

systemOBUGroup
Object SMI type OID

numberOfCapabilties INTEGER 1.3.6.1.3.8888.1.1
capabilitiesTable Table 1.3.6.1.3.8888.1.2

numberOfConnectedVehicles INTEGER 1.3.6.1.3.8888.1.3
connectedVehiclesTable Table 1.3.6.1.3.8888.1.4
sysOBUDateandTime OBUDateandTime 1.3.6.1.3.8888.1.5
sysOBUNMonRequest Unsigned32 1.3.6.1.3.8888.1.6
sysOBUNEventRequest Unsigned32 1.3.6.1.3.8888.1.7
sysOBUNConfRequest Unsigned32 1.3.6.1.3.8888.1.8

sysOBUNErrors Unsigned32 1.3.6.1.3.8888.1.9
sysOBUVehicleID String[...] 1.3.6.1.3.8888.1.10

sysOBUDistanceType Integer/Enum 1.3.6.1.3.8888.1.11
sysOBUTotalDistance Unsigned32 1.3.6.1.3.8888.1.12

sysOBUCountry Integer/Enum 1.3.6.1.3.8888.1.13

Table 4: systemOBUGroup

Capabilities Table

This table will list the vehicle/OBU capabilities, including all available services.

capabilitiesTable
Object SMI type OID

CapabilitiesID Unsigned32 1.3.6.1.3.8888.1.2.1..1
SetOfCapabilitiesID Unsigned32 1.3.6.1.3.8888.1.2.1..2

SpecificCapabilitiesID Unsigned32 1.3.6.1.3.8888.1.2.1..3
CapabilityValue String[...] 1.3.6.1.3.8888.1.2.1.4

Table 5: capabilitiesTable

3.2. Management Information Base 27

Connected Vehicles Table

This table will be store all information regarding the vehicle itself and the Id of the entities
it’s connected to.

connectedVehiclesTable
Object SMI type OID

VehicleID Unsigned32 1.3.6.1.3.8888.1.4.1.1
LocalID String[...] 1.3.6.1.3.8888.1.4.1.2
GlobalID String[...] 1.3.6.1.3.8888.1.4.1.3

AssociatedOBUorRSU String[...] 1.3.6.1.3.8888.1.4.1.4
LocalOrRemote Integer/Enum 1.3.6.1.3.8888.1.4.1.5
Capabilities Unsigned32 1.3.6.1.3.8888.1.4.1.6

Table 6: vehiclesTable

3.2.2 Sensor Group

This group will consist of all tables that are in any way related to reading and storing data ob-
tained from sensors. It will include the both the tables containing the actual readings as well
as any auxiliary table that aid in the reading/understanding the recorded value and, lastly,
any table related to the request itself.

Map Type Table

The first part of this group are the tables that identify the sensors/actuators in the vehicle.
Each one of these will be assigned an unique entry, identified by an ID, where the name,
interface, description, precision, maximum delay, maximum sampling frequency, unit and
proprietary ID are stored. As a way to optimize memory usage, both the description and
unit will be stored in auxiliary tables. This is done since it’s possible for sensors/actuators to
share the same description and/or unit, in which case we only need to indicate the index of
the table where the description/unit is stored instead of repeating the same data thus saving
on memory usage.

This table will map proprietary manufacturers ECUs into generic types defined on gener-
icTypesTable and sampleUnitsTable. In essence it will be used to identify which sensor/ac-
tuator of which ECU is being read as well as the unit in which the values are being stored.

3.2. Management Information Base 28

mapTypeTable
Object SMI type OID

MapTypeID Unsigned32 1.3.6.1.3.8888.2.10.1
ProprietaryTypeID Unsigned32 1.3.6.1.3.8888.2.10.2
GenericMapTypeID Unsigned32 1.3.6.1.3.8888.2.10.3
SampleUnitMapID Unsigned32 1.3.6.1.3.8888.2.10.4

Precision Integer 1.3.6.1.3.8888.2.10.5
MaxSamplingFrequency Unsigned32 1.3.6.1.3.8888.2.10.6

MaxMapDelay OBUDateandTime 1.3.6.1.3.8888.2.10.7
DataSource Integer/Enum 1.3.6.1.3.8888.2.10.8

InterfaceSource Integer/Enum 1.3.6.1.3.8888.2.10.9

Table 7: mapTypeTable

Sample Units Table

This table will be used to identifywhich unit a stored valuewas recorded in, i.e ”Km/h”. This
will define the coding algorithm for the Precision object on the mapTypeTable. This table is
used so that a given unit isn’t getting repeated inmemory for every sensor that uses it, instead
only the ID of the entry that stores that unit will be repeated.

sampleUnitsTable
Object SMI type OID

SampleUnitID Unsigned32 1.3.6.1.3.8888.2.14.1.1
UnitDescription String[...] 1.3.6.1.3.8888.2.14.1.2

Table 8: sampleUnitsTable

Generic Types Table

This virtual/enumeration table will contain a generic description of the type of data a certain
sensor is generating, for example: ”Vehicle velocity”. This table exists so that an user can
know what is the function of every sensor/actuator.
Much like sampleUnitsTable, this table is used to optimize memory usage since there can be
more than one sensor/actuator sharing the same description.

genericTypesTable
Object SMI type OID

GenericTypeID Unsigned32 1.3.6.1.3.8888.2.11.1..1
TypeDescription String[...] 1.3.6.1.3.8888.2.11.1.2

Table 9: genericTypesTable

These first three tables, mapTypeTable, genericTypesTable and sampleUnitsTable, will be
populated on start-up based on the contents of an CAN Bus DataBase (DBC) file and are
used to provide information regarding the sensor whose data is being stored.

3.2. Management Information Base 29

Figure 12: mapTypeTable and its auxiliary tables

This next set of tables will be the ones that will store all information regarding a specific re-
quest. Due to this factor, they are the most important tables in the wholeMIB since the whole
functionality of monitoring sensors is dependant on them. When developing this solution
there were two lines of thought that were considered.

• Sensor reading driven approach

• Request driven approach

The first one is probably the simplest since the idea would be that all data read from CAN
interface would be stored in the MIB so that outside entities could access it at will, however
it didn’t take long to realize how inefficient and resource consuming this approach would be
so it was scraped.

The second approach was much more sensible since the MIB would only store data that
other entities have requested. While this approach had a slight downside, since it would be
more complex to implement, its advantages far outweighed the disadvantages.
In this approach, the first step lays in outside entities creating entries in a table so that when-
ever a new message arrives to theOBU the entries of that table would be checked against the
source sensors of the message, if there’s no request on that specific sensor the message would
be ignored, otherwise the relevant data would be added to theMIB. The entity that made the
original request would then only need to access the data related to its request.

3.2. Management Information Base 30

Request Monitoring Data Table

The following tablewas the one thatwas created to fullfill the role of storing all requestsmade
to the system. This table will store a variety of usefull information relating to requests, from
the last sample that was recorded for it, LastSampleID, to how many samples are associated
to it, NOfSamples. These requests can be limited either by a timestamp or by a maximum
number of samples, EndTime and MaxNOfSamples respectively. Additionally, the current
status of the request is also stored, which will aid in identifying which requests are active or
not, it will also store the SNMP username of the user that made the request in RequestUser.
Lastly, it will store the IDs of any related tables in the MIB.

requestMonitoringDataTable
Object SMI type OID

RequestID Unsigned32 1.3.6.1.3.8888.2.2.1.1
RequestControlID Unsigned32 1.3.6.1.3.8888.2.2.1.2
RequestMapID Unsigned32 1.3.6.1.3.8888.2.2.1.3

RequestStatisticsID Unsigned32 1.3.6.1.3.8888.2.2.1.4
SavingMode Integer/Enum 1.3.6.1.3.8888.2.2.1.5

SamplingFrequency Unsigned32 1.3.6.1.3.8888.2.2.1.6
MaxDelay Unsigned32 1.3.6.1.3.8888.2.2.1.7
StartTime OBUDateandTime 1.3.6.1.3.8888.2.2.1.8
EndTime OBUDateandTime 1.3.6.1.3.8888.2.2.1.9
WaitTime OBUDateandTime 1.3.6.1.3.8888.2.2.1.10

DurationTime OBUDateandTime 1.3.6.1.3.8888.2.2.1.11
ExpireTime OBUDateandTime 1.3.6.1.3.8888.2.2.1.12

LastSampleID Unsigned32 1.3.6.1.3.8888.2.2.1.13
NOfSamples Counter32 1.3.6.1.3.8888.2.2.1.14

MaxNOfSamples Unsigned32 1.3.6.1.3.8888.2.2.1.15
LoopMode Integer/Enum 1.3.6.1.3.8888.2.2.1.16

Status Integer/Enum 1.3.6.1.3.8888.2.2.1.17
RequestUser String[...] 1.3.6.1.3.8888.2.2.1.18

Table 10: requestMonitoringDataTable

3.2. Management Information Base 31

RequestStatisticsDataTable

This table was created since there may be a need to provide ”on the fly” statistical informa-
tion regarding a specific request. Not all requests will need this feature and as such it is
entirely optional, its existence being decided when a request is being created. These statistics
include minimum recorded value, maximum recorded value, average recorded value, how
many samples were recorded and for how long has the request been active.

requestStatisticsDataTable
Object SMI type OID

StatisticsID Unsigned32 1.3.6.1.3.8888.2.6.1.1
DurationTimeStatistics OBUDateandTime 1.3.6.1.3.8888.2.6.1.2
NOfSamplesStatistics Counter32 1.3.6.1.3.8888.2.6.1.3

MinValue Unsigned32 1.3.6.1.3.8888.2.6.1.4
MaxValue Unsigned32 1.3.6.1.3.8888.2.6.1.5
AvgValue Unsigned32 1.3.6.1.3.8888.2.6.1.6

Table 11: requestStatisticsDataTable

Request Control Data Table

The decision of using a request driven approach did bring with it an issue that needed to be
resolved where the same entity could create duplicate requests on the same sensor.

To fix this issue, among others, the following table was created. The idea is simple, every
request in requestMonitoringDataTable will have a related entry in this new table, this entry
can be shared among multiple requests only if those requests are made on the same sensor.
In essence, the entries in this table serve as a sort of summary to the various requests made
to the system and serves as a quick and easy way to know which sensors are currently being
monitored and the status of that monitoring. Both this table and requestMonitoringDataT-
able will be used to prevent duplicate requests on the same sensor by the same entity.

requestControlDataTable
Object SMI type OID

RequestControlID Unsigned32 1.3.6.1.3.8888.2.4.1.1
RequestControlMapID Unsigned32 1.3.6.1.3.8888.2.4.1.2

SettingMode Integer/Enum 1.3.6.1.3.8888.2.4.1.3
CommitTime OBUDateandTime 1.3.6.1.3.8888.2.4.1.4

EndControlTime OBUDateandTime 1.3.6.1.3.8888.2.4.1.5
DurationControlTime OBUDateandTime 1.3.6.1.3.8888.2.4.1.6
ExpireControlTime OBUDateandTime 1.3.6.1.3.8888.2.4.1.7

ValuesTableID Unsigned32 1.3.6.1.3.8888.2.4.1.8
StatusControl Integer/Enum 1.3.6.1.3.8888.2.4.1.9

Table 12: requestControlDataTable

3.2. Management Information Base 32

Samples Table

The next issue that needed solving was how sensor data was going be stored in theMIB, how
would the entries in requestMonitoringDataTable point to it and how to prevent duplicate
sensor readings from being added to the MIB when there are multiple requests on the same
sensor. While several ideas were considered the one that was most promising was a solution
similar to linked lists where every time a new reading from a sensor was added to the MIB,
all active requests on that sensor would be changed so that LastSampleID points to this new
reading. Then, to ”link” all those sensor readings into a linked list, this new entry only needs
to store the index of the entry it just replaced in LastSampleID.

To prevent duplicate sensor readings from being added to the MIB when there are multi-
ple requests on the same sensor a simple checksum is calculated. This checksum, alongside
MapTypeSamplesID, is used to check if a particular sample was already added to theMIB. If
it isn’t in the system it can be added, otherwise the only thing that needs changing is LastSam-
pleID on all requests made for to this sensor. This way duplicate entries can be prevented,
thus reducing memory usage.

In essence, this table will be used to store all sensor data relating to active requests in the
MIB. Among the information it stores is an index that points to an entry requestControl-
DataTable identified by RequestSampleID, as mentioned before it also stores the ID of the
last sample recorded from the same sensor, which can then be used to group all recorded
samples relating to a specific sensor, additionally, it stores the ID that points to an entry in
mapTypeTable which will help understand the data being stored and, finally, it also stores a
simple checksum which is created based on a timestamp and the name of the ECU that sent
the data which will allow samples from obtained from different sensors but from the same
ECU in the same message, to be identified as such.

samplesTable
Object SMI type OID

SampleID Unsigned32 1.3.6.1.3.8888.2.8.1.1
RequestSampleID Unsigned32 1.3.6.1.3.8888.2.8.1.2

TimeStamp OBUDateandTime 1.3.6.1.3.8888.2.8.1.3
SampleFrequency Unsigned32 1.3.6.1.3.8888.2.8.1.4
PreviousSampleID Unsigned32 1.3.6.1.3.8888.2.8.1.5

SampleType Integer 1.3.6.1.3.8888.2.8.1.6
SampleRecordedValue Integer 1.3.6.1.3.8888.2.8.1.7
MapTypeSamplesID Unsigned32 1.3.6.1.3.8888.2.8.1.8
SampleCheckSum String[...] 1.3.6.1.3.8888.2.8.1.9

Table 13: samplesTable

3.2. Management Information Base 33

Figure 13: requestMonitoringDataTable and its relationships

Figure 14: Sensor Group

3.2. Management Information Base 34

3.2.3 Error Group

This small group will be used to help diagnose the reasons why certain requests were not set.
These reasons can range from invalid mapTypeTable ID to duplicate requests on the same
object by an user. It will be similar to mapTypeTable in the sense that there’s a main table
where the errors are added and and auxiliary table where the descriptions of the errors are
stored. This way if there several instances of the same error the same description won’t be
repeated over and over again, only the index that points to that description will be repeated.

Error Table

This first table is where the errors that are currently active will be stored so as to allow the
user to know why their request was not set. It will store a timestamp of the error as well as
an expire time to delete this error entry. It will also store the username of the user whose
request triggered the error as well as the errorDescriptionTable ID.

errorTable
Object SMI type OID
errorID Unsigned32 1.3.6.1.3.8888.3.2.1.1

errorTimeStamp OBUDateandTime 1.3.6.1.3.8888.3.2.1.2
errorDescriptionID Unsigned32 1.3.6.1.3.8888.3.2.1.3

errorUser String[...] 1.3.6.1.3.8888.3.2.1.4
errorExpireTime String[...] 1.3.6.1.3.8888.3.2.1.5

Table 14: errorTable

Error Description Table

This auxiliary table will store a simple description of the error as well as an error code. It is
populated on start-up based on the contents of a text file.

errorDescriptionTable
Object SMI type OID

errorDescrID Unsigned32 1.3.6.1.3.8888.3.4.1.1
errorDescr String[...] 1.3.6.1.3.8888.3.4.1.2
errorCode Unsigned32 1.3.6.1.3.8888.3.4.1.3

Table 15: errorDescriptionTable

3.2. Management Information Base 35

Figure 15: Error Group

3.2.4 Actuator Group

This final group is intended to allow actuators to be activated/deactivated with as quickly
as possible, for example if the lead vehicle in a platoon were to break, all other vehicles in
that same platoon need to break with minimal delay, so as to avoid a crash. This could be
done by sending a message to the OBU of every vehicle in the platoon, which in turn would
send CAN messages to the relevant nodes of the vehicle’s CAN network to activate the brake
actuators.

Sadly, due to proprietary reasons, there’s not much insight into how these CAN messages
would look like, as such, this portion of theMIBwill probably require some changing before
it’s implemented in a real vehicle.

Command Template Table

This table is populated on start-up based on the contents of a text file. It includes a short
description of what the command will do, the target node, in hexadecimal, and a template of
the command, also in hexadecimal.
e.g. AA BB CC DD EE ** ** H1, where ’*’ indicate where the user input will be added.

commandTemplateTable
Object SMI type OID

commandTemplateID Unsigned32 1.3.6.1.3.8888.4.2.1.1
commandDescription String[...] 1.3.6.1.3.8888.4.2.1.2

targetNode String[...] 1.3.6.1.3.8888.4.2.1.3
commandTemplate String[...] 1.3.6.1.3.8888.4.2.1.4

Table 16: commandTemplateTable

3.2. Management Information Base 36

Command Table

This final table will store all commands that were not yet sent to theCAN network. It contains
the user input, an ID to commandTemplateTable and the SNMP username of the user that
sent the command.

The command will first be validated, then the CAN message will be created with the user
input and the template, following that, the message will be sent over the CAN network to the
target node and finally the entry will be deleted from commandTable.

If validation or the transmission of the CAN message fails, a new entry in errorTable will
be created and the entry in commandTable will be deleted.

commandTable
Object SMI type OID

commandID Unsigned32 1.3.6.1.3.8888.4.4.1.1
templateID Unsigned32 1.3.6.1.3.8888.4.4.1.2

commandInput INTEGER 1.3.6.1.3.8888.4.4.1.3
commandUser String[...] 1.3.6.1.3.8888.4.4.1.4

Table 17: commandTable

Figure 16: Actuator Group

These three groups can now be merged together into a full MIB providing us with a full
view of the whole tree.

3.2. Management Information Base 37

Figure 17: Full MIB

The following tables are presented as an example, in themwe have three requests and some
of the samples recorded for them.

requestMonitoringDataTable
ReqID ReqControlID ReqMapID ReqStatID ... LastSampleID NOfSamples ...

0 0 199 2 ... 18 10 ...
1 1 50 3 ... 8 8 ...
2 0 199 0 ... 18 4 ...

Table 18: Example requestMonitoringTable

• Request 0 - Request made for sensor whose ID is 199, it has statistics enabled, index nº2,
and 10 recorded samples. Its latest sample is sample nº 18.

• Request 1 - Request made for sensor whose ID is 50, it has statistics enabled, index nº3,
and 8 recorded samples. Its latest sample is sample nº 8.

• Request 2 - Request made on the same object as Request 0, confirmed by the fact that
”ReqMapID” and ”ReqControlID” are equal, it does not have statistics enabled and has
4 recorded samples. Much like request 0, its latest sample is nº 18.

3.2. Management Information Base 38

samplesTable
sampleID ... PreviousSampleID ... SampleRecordedValue ...

...
15 ... 14 ... 2000 ...
16 ... 15 ... 2500 ...
17 ... 16 ... 2450 ...
18 ... 17 ... 2300 ...

Table 19: Example samplesTable

If, for example, we wanted to get all the samples related to request 2 all we have to do is
go to sample nº18 and then, based on its ”PreviousSampleID”, go to the sample indicated by
it. By repeating this process 4 times, the number of samples indicated by ”NOfSamples”, we
can obtain all samples related to this request. In this case the samples related to request 2 are:

• Sample 18 - 2300

• Sample 17 - 2450

• Sample 16 - 2500

• Sample 15 - 2000

To aid in the understanding of this data we can then use ”ReqMapID” to check ”generic-
TypeID” and ”sampleUnitID” related to this request. These two indexes will point to the
unit description and type description of the request which may, for example, be ”rpm” and
”Actual engine speed which is calculated over a minimum crankshaft angle of 720 degrees
divided by the number of cylinders.” respectively. This indicates that both Request 0 and
Request 2 are being used to collect/monitor rpm data.

3.2.5 Structure of Management Information

With all tables, and their contents, defined all that is needed is to do is convert that informa-
tion into an SMI specification. As an example, a portion of the full MIB will be presented,
where the column ”SavingMode”, of the table requestMonitoringDataTable is defined.

In this example, we can verify that ”SavingMode” is an object that can be read, written or
created and that this object is of the type ”Integer” with two valid options, 0 and 1, meaning
”permanent” and ”volatile” respectively. Additionally we can also verify that ”SavingMode”
is the 5th column of the table requestMonitoringDataTable.

3.3. Summary 39

Max-Access Value Description
read-create Object can be read, written or created
read-write Object can be read or written
read-only Object can only be read

accessible-for-notify Object can be used only using SNMP notification (SNMP traps)
not-accessible Used for special purposes

Table 20: Max-Access values

1 . . .
savingMode OBJECT−TYPE

3 SYNTAX INTEGER {
permanent (0) ,

5 v o l a t i l e (1) }
MAX−ACCESS read−crea t e

7 STATUS current
DESCRIPTION

9 ”This ob j e c t w i l l i d en t i f y the mode in which a s p e c i f i c request w i l l be saved
”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 1 . 5
11 : := { requestMonitoringDataEntry 5 }

. . .

Listing 3.1: Partial MIB Specification

The full MIB definition developed for this project can be found in Full MIB Specification.

3.3 SUMMARY

In this chapter, an overview of the potential use cases for this solution as well as its objectives
was given followed by an overview of the the system architecture. Additionally, the most
important tables of the MIB were presented, including an introduction on how these tables
are defined in the SMI specification and the reasoning behind the specification of those tables.
Finally a brief example of how these tables can be used to monitor sensor data was given.

4

PROTOTYPE DEVELOPMENT & TE ST ING

In this chapter a summary of the development steps of the prototype created for this project
will be presented starting with the choice of language and API, followed by a short explana-
tion into how a CAN message are decoded. Following this a more in-depth dive into how the
sub-agent processes both CAN messages and manager requests will be given.
Additionally, regarding the manager, its functionalities will be presented alongside the rea-
soning behind the choice of protocol that will provide authentication and privacy to the data
being transmitted, followed by a short explanation into how the SNMP manager communi-
cates with the sub-agent.
Finally, the results of this solution will be presented alongside a comparison with OBD-II.

The first step in this type of development is deciding on the programming language that
is to be used. In this case the chosen programming language for this phase of the project
is C/C++, since its response times were roughly 3

4 those in Java while also being less com-
putationally intensive. Additionally C/C++ is the preferred language to develop software
modules within OBUs which makes it the best choice for this phase of the project.

Response Time (ms)
1attr/method Nattrs/method NMOs/method 1MO/method

C/C++ 0.8 1 6 37
Java 1 2 8 45

Table 21: Comparison between C++ and Java response times [32]

• 1attr/method - Response times for retrieving a single attribute from an object.

• Nattrs/method - Response times for retrieving all eight object attributes from an object.

• NMOs/method - Response times for retrieving all objects from all TCP connections (40
in total) using GETBulk.

• 1MOs/method - Response times for retrieving all objects from all TCP connections (40
in total) using GETNext.

40

4.1. NET-SNMP 41

The next step in the development was creating the MIB, which was already presented in
the previous chapter. This MIB should allow for sensor data to be read, actuators to be acti-
vated/deactivated, any requested data to be stored and, finally, all information regarding the
vehicle or its OBU to be stored.

4.1 NE T- SNMP

The API that was chosen for the development of this phase of the project is included in the
Net-SNMP application suite. This suite includes:

• Command-line applications to retrieve and manipulate information from SNMP capa-
ble devices.

• Graphical MIB browser (tkmib).

• SNMP Agent (snmpd) that supports Agent Extensibility (AgentX) protocols.

• Library for developing new SNMP applications with C and Perl APIs.

Lastly this suite also includes a tool (mib2c) that is designed to take a portion of the MIB
tree (as defined by a MIB file) and generate the template C code necessary to implement the
relevant management objects within it.

Through this tool every table defined in 3.2 will be converted to C code, so that our custom
AgentX SubAgent can handle communication with the manager andmanage all of our tables.

4.2 GENERAT ING V I RTUAL CAN MES SAGE S

Before creating the SNMP sub-agent, a simple program that can write CAN messages into a
virtual CAN interface was created. Since the SNMP sub-agent will also be connected to this
interface it will be able to receive CAN messages in real time much like it would happen in
real life. This simple program will read CAN messages from a .trc file containing raw CAN
bus logs and write the contents of that file into the previously created CAN interface. To do
this two simple structures were created.

4.3. SNMP Agent 42

typedef s t r u c t can
2 {

double timestamp ;
4 unsigned char ∗ id ;

i n t dlc ;
6 unsigned char data [MAXDATALENGTH] ;

} can ;
8 typedef s t r u c t c a n l i s t

{
10 i n t capac i ty ;

i n t current ;
12 can ∗ l i s t ;

} c a n l i s t ;

These structures are populated based on the contents of the log file and then iterated through
to write those messages into the CAN interface. Naturally, these CAN messages are encoded
by the ECUs prior to being sent, as such, the agent will need to decode them so they can be
stored in the MIB. Additionally the timestamp of the original CAN messages can be used to
replicate the time interval between the arrival of two consecutive messages.

4.3 SNMP AGENT

One feature within SNMP that will be used in this phase of the project is that of sub-agents.
These are independent SNMP daemons, that are transparent to the network management
station[33], that register to the master agent the MIB modules they want to take care of[34],
additionally, since theOBUmayneed to support otherMIBs besides the one developed above,
including the MIB-II Standard, it is recommended to manage custom MIBs, through sub-
agents especially since that is the only way to make use of the Net-SNMP API.

In the Net-SNMP API this feature is handled by an SNMP agent (snmpd) that supports
AgentX protocols. From this point on, the terms ”agent” and ”sub-agent” may be used inter-
changeably but they both indicate the same software module that was developed and imple-
ments the custom ”OBUMIB”.

When it comes to actually building the SNMP sub-agent in C code, the Net-SNMP website
does come with some very useful tutorials and example code snippets that were used in the
development of the sub-agent [35], which can, at its most basic level, be divided into 3 parts:

• Registering Sub-Agent with the master Agent.

• Registering and initializing the MIB tables the Sub-Agent will handle.

• A main loop which will handle the requests by the manager.

4.3. SNMP Agent 43

1 i n t agentx_subagent =1; /∗ change t h i s i f you want to be a SNMP master agent ∗/
. . .

3 i f (agentx_subagent) {
/∗ make us a agentx c l i e n t . ∗/

5 netsnmp_ds_set_boolean (NETSNMP_DS_APPLICATION_ID, NETSNMP_DS_AGENT_ROLE, 1) ;
}

7 . . .
/∗ i n i t i a l i z e tcpip , i f necessary ∗/

9 SOCK_STARTUP;
i n i t _ agen t (”example−demon”) ;

11 /∗ i n i t i a l i z e mib code here ∗/
. . .

13 init_snmp(”example−demon”) ;
. . .

15 keep_running = 1 ;
. . .

17 /∗ your main loop here . . . ∗/
while (keep_running) {

19 agent_check_and_process (0) ; /∗ 0 == don ’ t block ∗/
}

21 snmp_shutdown(”example−demon”) ;
SOCK_CLEANUP;

23 re turn 0

Listing 4.1: Sample sub-agent code

The next step was to convert the MIB tables into C code, this was done by another tool
included in the the Net-SNMPAPI called mib2c. To use it we first needed to add theMIB file
to the SNMP agent[36] and then simply use the command below to create a skeleton .c code
and accompanying header file.

1 mib2c −c mib2c . array−user . conf <TargetTable>

It should be noted that since both vehiclesTable and systemOBUGroup fall outside the
purview of this project they won’t be converted into C code. However, if and when this
solution is deployed in the real world, these two tables should be reintegrated as they will
contain information that is valuable in the real world.

4.3. SNMP Agent 44

Included in these files is the function needed to initialize a table, usually named init_<targetTable>()
which will be run by the sub-agent to initialize and register the table in the SNMP agent.

In the main loop, the sub-agent will need to manage the tables and user requests. Since
handling user requests is done by the API with the function 𝑎𝑔𝑒𝑛𝑡_𝑐ℎ𝑒𝑐𝑘_𝑎𝑛𝑑_𝑝𝑟𝑜𝑐𝑒𝑠𝑠(), we
could focus on managing the tables themselves. This included:

• Decoding CAN Messages.

• Managing Requests.

• Storing Sensor Readings.

4.3.1 Decoding CAN Messages

Much like in real life, a raw CAN message is not human readable and will first need to be
decoded before it can be stored on the MIB. The CAN messages we focused on are called
Data Frames, since these are the ones that include sensor readings.

These CAN messages usually contain the following information:

• Timestamp- Timestamp of when message was transmitted/received.

• ID- ID of component/part that transmitted the message.

• DLC- Size of data being transmitted, in bytes.

• Data- Data that is being transmitted.

Figure 18: Example CAN messages

As it stands these messages didn’t provide a lot of information since both the ID and Data
fields are in hexadecimal and as such they needed to be decoded to be usable.

Sadly, due to proprietary reasons, decoding these fields is not a matter of converting the
Hex data to Strings or Integer, instead requiring a file that indicates the rules on how to get
human readable information from these messages [37].

Such a file usually comes in a DBC format and manufacturers do not provide the end user
with this information, requiring projects like opendbc to have a glimpse on how data is de-
coded. Unfortunately even projects like opendbc have limited coverage over DBC files with
sometimes faulty or even incorrect information being included in them. Nevertheless a com-
plete CAN 2.0B file DBC was found, in this case for the J1939 standard which uses 29-bit
identifiers and is used on heavy-duty vehicles [38].

https://github.com/commaai/opendbc
https://github.com/commaai/opendbc
https://hackage.haskell.org/package/ecu-0.0.8/src/src/j1939_utf8.dbc

4.3. SNMP Agent 45

Inside such a file, a series of lines similar to figure 19 can be found. Lines starting with BO_
denote a message and contain the following:

• DBC ID: ID in decimal.

• Name: Name of ECU.

• Length: Length of data in bytes.

• Sender: Name of the transmitting node, Vector__XXX if no name is available.

Figure 19: Example information contained in DBC files. From [37]

Below these Messages, there will be one or more signals and the rules to decode them.
These signals are denoted by SG_ . These lines will contain the following fields:

• Name: Name of value that is being recorded. For example ”Engine Temperature”.

• Bit Start: The bit start counts from 0 andmarks the start of the signal in the data payload.

• Length: The bit length is the signal length.

• Endian: The @1 denotes little-endian/Intel, @0 denotes big-endian/Motorola.

• Signed: The value type is denoted as unsigned by an ’+’, ’-’ denotes signed.

• Scale,Offset: The (scale,offset) values are used in the physical value linear equation.

• Min,Max,Unit: The [min|max] and unit are optional meta information.

• Receiver: The receiver is the name of the receiving node (again, Vector__XXX is used
as default).

Starting for example with the message ”0CF00400 29 7D 87 68 13 00 F4 87”, we would first
need to match the ID ”0CF00400” to an DBC ID. To do this the mask ”0x1FFFFFFF” needs to
be applied to the 32-bit DBC ID to get the 29-bit CAN ID, which can then be mapped against
the message. This is done by going through all messages in the DBC file and applying the
mask to the DBC ID.
2364540158 & 0𝑥1𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0𝐶𝐹00400

4.3. SNMP Agent 46

Note: For 11-bit IDs a simple conversion from Hex to Decimal is needed to map the DBC ID
to CAN ID.

With theDBC IDmatched to the CAN ID,we could now identify the ECU that sent themes-
sage, in this case it was EEC1, along with all signals that can be used to decode the message.
In this example the signal ”EngineSpeed” in figure 19 will be used.

According to the decoding rules set for EngineSpeed, the relevant data starts on bit 24 and
has a length of 16 bits, it is a signed value in little-endian with a scale of 0.125 and offset of 0.
The minimum value is set to 0 and maximum to 8031.875. Finally the unit is ”rpm”.

We start then by extracting the relevant data from ”29 7D 87 68 13 00 F4 87”, which means
it starts on byte 3 (when counting from 0) and has a length of 2 bytes. This equals to ”68 13”
however since the signal is in little-endian we needed to reorder the byte sequence to ”13 68”.

To obtain the physical value we had to first convert this Hexadecimal value to decimal,
which is 4968, and then apply a linear conversion with the scale and offset.
𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 = 𝑂𝑓 𝑓 𝑠𝑒𝑡 + 𝑆𝑐𝑎𝑙𝑒 ∗ 𝑅𝑎𝑤𝑉𝑎𝑙𝑢𝑒
621 = 0 + 0.125 ∗ 4968

Thus, we could nowconclude that one of the signals included in theCANmessage ”0CF00400
29 7D 87 68 13 00 F4 87” can be decoded to ”EEC1 is reporting that engine speed is at 621
rpm”. This process can then be repeated for all signals in that message, thus allowing those
results to be stored in the MIB at will.

4.3. SNMP Agent 47

Decoding CAN Messages in C

To properly decode CAN messages we first needed to load all necessary information from
the DBC file into memory, this was done with the use of structs. More specifically, these 4
structs:

• BO_List -This struct will contain all messages contained in the DBC file.

• BO -This struct will contain all information regarding a particular message.

• SG_List -This struct will contain all signals of a particular message.

• SG -This struct will contain all information, e.g. decoding rules, of a particular signal.

These structs are created and populated on start-up and are later used to both decode CAN
messages and populate mapTypeTable, genericTypesTable and sampleUnitsTable.

Figure 20: DBC Structs

4.3. SNMP Agent 48

With these structs loaded we could now start decoding CAN messages. This is handled by
a child process created before the main loop in 4.1.

This child process is continuously reading data from the CAN network and whenever a
new message is received, it will first decode it into another struct which is then sent to the
parent process so that it can be processed. This struct is far simpler than the ones in figure
20, containing the name of themessage, number of signals in message and several lists which
will contain the decoded data.

1 char∗ name ; /∗message name∗/
i n t s i gna l s ; /∗number of s i gna l s in message∗/

3 char∗∗ signalname ; /∗name of a l l s i gna l s in message∗/
double∗ value ; /∗decoded values of a l l s i gna l s in message∗/

5 char∗∗ uni t ; /∗ un i t s used by a l l s i gna l s in message∗/

Listing 4.2: Decoded CAN struct

When the parent process receives this struct, it will first create a timestamp and checksum
and then, for every signal, check if there’s any active request for it. If there’s a request for a
particular signal, and this reading hasn’t yet been added into the MIB, then a new entry in
samplesTable will be created while at the same time requestControlDataTable, requestMon-
itoringDataTable and requestStatisticsDataTable will be updated.

4.3.2 Managing Requests

To accomplish the main objectives of this phase of the project, that is, allowing users to read
sensor data from theCAN network and allowuser to change the state of actuators in real-time,
we needed to allow the outside world to interact with the MIB.

This can be done by allowing users to, through a manager, use SNMP set commands on
both commandTable and requestMonitoringDataTable. Since human error is always a pos-
sibility, some validation of user inputs must be included when processing entries from com-
mandTable and requestMonitoringDataTable.

To achieve this two functions were created whose main objective is managing all entries,
both in terms of validating user inputs and deleting said entries whenever their role is ful-
filled.

The simpler of the two is checkActuators(), which is included in the files pertaining to
commandTable. This function, besides sending out CAN message to target ECUs, will also
be used to validatemanager requests and ensure that the commandwas received by the target
ECU.

4.3. SNMP Agent 49

To do this, it will first traverse commandTable in search of entries, when a entry is found it
will check if the indicated templateID is in the MIB, as an entry of commandTemplateTable,
if not, an entry in errorTable will be created followed by the deletion of this entry in com-
mandTable.

Then it will check whether or not the command input is valid, at least as far as the target
node is concerned, if it’s invalid, an entry in errorTable will once again be created followed
by the deletion of this entry in commandTable. If it’s a valid input a CAN message will be
created by adding the command input, in hexadecimal, to the command template and finally
the message will be sent to the CAN network.

To ensure that the message was received successfully by the receiver the CAN standard
does include a feature similar to TCP where the receiver will send an acknowledgement to
the transmitter to confirm the receipt of the message, in CAN this is done by sending a data
framewith a dominant bit during theACK slot [39]. If such a data frame is not received, a new
entry in errorTable will be created followed by the deletion of the entry in commandTable.

If the message transmission is successful, the entry in commandTable will now be deleted
since it’s no longer needed.

Figure 21: How an entry in commandTable is managed

4.3. SNMP Agent 50

The second function, checkTables(), is included in the files pertaining to requestMonitor-
ingDataTable and besides ensuring that the manager requests are valid, this function will
also change the status of an entry and create/delete any auxiliary entries to a specific request.
These status are the following:

• 0 - Off.

• 1 - On.

• 2 - Set.

• 3 - Delete.

• 4 - Ready.

To further understand how an entry in requestMonitoringDataTable is validated we first
needed to know what columns in the table does the user have access to. These were:

• requestMapID - Points to an entry in mapTypeTable which identifies the sensor whose
data is being recorded.

• requestStatisticsID - Points to an entry in requestStatisticsDataTable, 0 indicates no en-
try should be created while 1 indicates the opposite.

• savingMode - Indicates whether this entry is volatile or permanent.

• startTime - Indicates when the monitoring should start.

• waitTime - Indicates an (optional) time to prepare the system to handle the request.

• durationTime - Indicates how long should the monitoring go on for.

• expireTime - Indicates how long after the request ended should data be kept in theMIB.

• maxNofSamples - Maximum number of samples to be recorded.

• loopMode - Whether or not the request should be restarted after deletion.

When a new request is set by amanager, its entry in requestMonitoringDataTable will have
a status of 2 (SET). While in this state, the request will first be validated and, if successful, its
status will be changed to 4 (READY).

If it fails validation an entry will be created in errorTable and the entry in requestMonitor-
ingDataTable deleted.

4.3. SNMP Agent 51

Validating Manager Requests

To validate manager requests we needed to go to every single column set by the request and
check whether or not it’s valid. This is done via the following steps:

• 1-Check if startTimewas set by themanager, if not use current system time as startTime.

• 2-Compare current system timewith startTime and check if startTime is between 00:00:00
and 23:59:59.

• 3-Check if waitTime is between 00:00:00 and 23:59:59.

• 4-Check if durationTime is between 00:00:00 and 23:59:59.

• 5-Check if expireTime is between 00:00:00 and 23:59:59.

• 6-Check if maxNofSamples is greater than 0.

• 7-Check if savingMode is either 0 or 1.

• 8-Check if the manager who created this entry has already created another entry for
the same object.

• 9-Check if requestStatisticsID is either 0 or 1.

• 10-Check if requestMapID points to a valid entry in mapTypeTable.

• 11-Check if loopMode is either 1 or 2.

If it fails at any of these points, the status of the request will be changed to 3 (DELETE)
with an appropriate entry in errorTable being created explaining where the request failed.

Once validated, the status of the entry is changed to 4 (READY) and the next step is creat-
ing an entry in requestControlDataTable. Since there can be multiple requests on the same
object we had to first check if there’s an entry in requestControlDataTable with the same re-
questControlMapID as the requestMapID in the request. If an entry is found then there’s no
need to create a new entry in requestControlDataTable, requiring only updating the request
to take into account the ID of that entry. If no entry is found, then a new entry in requestCon-
trolDataTable will be created, returning it’s ID so it can be updated in the request.

4.3. SNMP Agent 52

Thenext step involves adding endTime to the entry, by adding startTime+waitTime+durationTime.
This endTime indicates at which time should the entry be set to 0 (OFF).

Following that, startTime+waitTime is compared to current system time to know if the
entry can be set to 1 (ON). If so, prior to changing status to 1, we had to first check whether
or not the request will need an entry in requestStatisticsDataTable, creating one if it’s indeed
necessary. Finally the status will change to 1 (On).

In addition to these previously mentioned features, checkTables() also fullfill any roles
regarding managing a request. These include:

• Updating in requestControlDataTable based on the status, savingModes and times of
entries in requestMonitoringDataTable related to it.

• Changing status from 1 (ON) to 0 (OFF) when current system time is after endTime.

• Changing status from 0 (OFF) to 3 (DELETE) when current system time is after expire-
Time.

• Deleting an entry when it’s status is 3 (DELETE).

This last feature will include multiple steps. First and foremost, the startTime of the entry
that is to be deleted will be compared to the commitTime of its related entry in requestCon-
trolDataTable. Since the times in requestControlDataTable will always be equal to the oldest
request on this object still in theMIB, we could find out if this entry is the oldest for this object
or not.

If there’s indeed an older request for the same object in the system then we don’t need
to delete any sample, and only need to delete the entry in requestMonitoringDataTable and
requestStatisticsDataTable, if this last one exists.

If both startTimes are equal, it can mean one of three options:

• It’s the oldest request among several others on the same object.

• It’s the joint oldest request among several others on the same object.

• It’s the only request on this object.

4.3. SNMP Agent 53

For the first of these situations, we must first find the second oldest request on this object
and oncewe find it wemust update the entry in requestControlDataTable to take into account
that request. Following that wewill delete all samples that predate this second oldest request
and finally delete the entry in requestMonitoringDataTable and all those uniquely related to
it.

For the second situation we only need to delete the entry in requestMonitoringDataTable
and requestStatisticsDataTable, if it exists.

For the last one, all entries in samplesTable related to this request will be deleted along-
side the entries in requestControlDataTable, requestMonitoringDataTable and, if it exists,
requestStatisticsDataTable.

Giving us the following flowchart:

Figure 22: How is an entry in requestMonitoringDataTable managed

It should be noted that after an entry with loopMode set to 1 (YES) is deleted, a new copy
of that request will be added to the system.

4.3. SNMP Agent 54

4.3.3 Storing Sensor Readings

In this section we will dive into how data from the CAN network is stored but, before going
into details we must first give a short introduction to containers, at least as far as the NET-
SNMP API is concerned.

Containers

In essence, containers are a generic data interface similar to a database, and just like one,
you use an index or key to access and sort data. These containers will keep our rows in
memory while also sorting them, when rows are added or removed, providing a specific
row for GET/SET requests without requiringOIDs and, as such, significantly simplifying the
process of obtaining data from tables. This simplification allows developers to concentrate
on operation the data rather than having to deal with SNMP GET/SET details[40].

These containers can be used to traverse tables and also include some easy to use operations
that allowed us to add, remove or find an entry in a table based on its index or even iterate
through all entries on a table:

• CONTAINER_INSERT - Given an container and an object, it will add the object to the
container.

• CONTAINER_REMOVE - Given an index and a container, it will remove the object
matching that index.

• CONTAINER_FIND - Given an index and a container, it will return the object matching
that index.

• CONTAINER_ITERATOR - Allows iterating through the contents of a container.

4.3. SNMP Agent 55

Since requestMonitoringDataTable is one of the two tables that the user can directly change,
the files pertaining to this table will be the ones to, for the most part, handle how CAN mes-
sages will be stored and how auxiliary entries in other tables are created.

This was already touched upon in 4.3.2, more specifically the function checkTables(), how-
ever, in this section the focus will be on the function checkSamples() which should provide
a slightly deeper dive into the internal logic of the program.

1 . . .
/∗ i n i t i a l i z e mib code here ∗/

3 BO_List ∗boLis t = readDBC(FILE LOCATION) ;
. . .

5 i n t fd [2] ;
i f (pipe (fd) < 0)

7 e x i t (1) ;
canDecoder = fork () ;

9 /∗ you ’ re main loop here . . . ∗/
i f (canDecoder == 0)

11 parseCAN(boList , fd) ;
e l s e

13 while (keep_running)
{

15 checkTables () ;
i f (agent_check_and_process (0) > 0)

17 checkActuators () ;
decodedCAN dc ;

19 i n t r e t v a l = f c n t l (fd [0] , F_SETFL , f c n t l (fd [0] , F_GETFL) | O_NONBLOCK) ;
r = read (fd [0] , &dc , s i z eo f (decodedCAN)) ;

21 i f (r>0 && dc . s igna l s >=0){
/∗Create checksum−>check and timestamp−>s∗/

23 fo r (i n t i = 0 ; i < dc . s i gna l s ; i++)
checkSamples (signalname , dc . value [i] , dc . s igna l s , s , check) ;

25 }
}

Listing 4.3: Final Sub-Agent code

Unlike checkTables(), that is executed once per loop, checkActuators() is only executed
whenever a SNMPmessage is received, while checkSamples() is only executed when a CAN
message is successfully decoded. Once the parent process receives the decoded message it
will, for every signal, traverse requestMonitoringDataTable looking for entries whose status
is 1 (ON) that are recording this signal.

4.3. SNMP Agent 56

This was done by first obtaining the entry in mapTypeTable that requestMapID points to
and then comparing its data source with the signal name. If they match the next step is to
traverse samplesTable and check if this particular sample has already been added by com-
paring the requestMapID and checksum with the ones included in samplesTable, if an entry
is found with both items matching then this sample has already been added to the system.

If the sample has been found, the only thingweneeded to do is update lastSampleIDwithin
requestMonitoringDataTable to the ID of this new sample and it’s entry in requestStatistics-
DataTable, if it exists. Otherwise the sample will be added to samplesTable and then both
requestControlDataTable, requestMonitoringDataTable and requestStatisticsDataTable, if it
exists, will be updated. This is done to prevent repeat samples of being added to the system.

For example this is the function that is used to check if a sample is already added to the
system.
/∗This funct ion wi l l check i f a sample was already added to the t ab l e by

comparing the checksum , i f i t e x i s t s i t s index wi l l be returned∗/
2 i n t checkSampleChecksum(char ∗checksum , unsigned long id)

{
4 i n t res = 0 ;

void ∗data ;
6 netsnmp_i terator ∗ i t ;

i t = CONTAINER_ITERATOR(cb . conta iner) ;
8 i f (NULL == i t)

e x i t ;
10 fo r (data = ITERATOR_FIRST(i t) ; data ; data = ITERATOR_NEXT(i t))

{
12 samplesTable_context ∗samples = data ;

i f (strcmp(checksum , samples−>sampleChecksum) == 0 && id == samples−>
mapTypeSamplesID)

14 {
res = samples−>sampleID ;

16 break ;
}

18 }
ITERATOR_RELEASE(i t) ;

20 re turn res ;
}

Listing 4.4: Ensuring repeat samples are not added

4.3. SNMP Agent 57

On the other hand the function that adds a new entry to samplesTable looks like this.
1 /∗ samplesStruct i s a s t r u c t s im i l a r to samplesTables_context tha t i s used to aid

in the c r ea t i on of new en t r i e s ∗/
void insertSamplesRow(samplesStruct ∗req)

3 {
samplesTable_context ∗ c tx ;

5 netsnmp_index index ;
oid index_oid [2] ;

7 index_oid [0] = req−>sampleID ;
index . oids = (oid ∗)&index_oid ;

9 index . len = 1 ;
c tx = NULL;

11 /∗ Search for i t f i r s t . ∗/
c tx = CONTAINER_FIND(cb . conta iner , &index) ;

13 i f (! c tx)
{

15 // No dice . We add the new row
ctx = samplesTable_create_row(&index , req) ;

17 CONTAINER_INSERT(cb . conta iner , c tx) ;
}

19 }

Listing 4.5: Adding entries to a table

Figure 23: How a signal is stored in the database

4.3. SNMP Agent 58

4.3.4 Saving Modes

Another functionality that was added was that of saving modes. These are part of request-
MonitoringDataTable and requestControlDataTable, as setting mode and commit mode re-
spectively, and are used to determine which requests present in the system are to be saved
in a cache file when the system is turned off.

Once the shutdown procedure has begun, requestMonitoringDataTable will be traversed
so as to delete all entries whose settingmode is set to ”Volatile”. Once such a request is found,
it’s status will be changed to ”Delete” so that all remaining entries in the system are those
with the setting mode as ”Permanent”.

The remaining entries in requestMonitoringDataTable will then be stored in a cache file as
well as the entries in requestControlDataTable, requestStatisticsDataTable and samplesTable
that are in the system. This is done by first adding all those entries to the following struct
which is then written to a file.

1 /∗ s t a t i s t i c sCa che , controlCache and samplesCache are s im i l a r to monitoringCache
∗/
typedef s t r u c t monitoringCache

3 {
requestMonitor ingDataTable_context ∗∗ items ;

5 i n t current ;
i n t capac i ty ;

7 } monitoringCache ;
typedef s t r u c t systemCache

9 {
monitoringCache mc ;

11 s t a t i s t i c sCa ch e sc ;
controlCache cc ;

13 samplesCache rc ;
} systemCache ;

Listing 4.6: Cache struct

On start-up, if a cache file is present, the contents of the file will be read and added back
to the system.

4.4. Manager 59

4.4 MANAGER

To test theMIB and agent presented above, a SNMPmanager was needed and, as referenced
in chapter 4.1, while the Net-SNMP suite includes a generic manager, it is not adequate for
this particular role and as such a custom Manager had to be made. This manager was then
used to communicate with the agent through SNMP commands to:

• Create new requests.

• View an existing request.

• Edit an existing request.

• View any table in the system.

• View active errors in the system.

• Send commands to specific actuators.

To achieve this we will only needed to use two SNMP commands, ”snmpset” and ”snmp-
bulkget”, which means we needed to write our own functions that would create the corre-
sponding PDU, send it and handle the response from the agent, additionally a simple termi-
nal based interface was also created to allow users to more easily use the manager.

4.4.1 Authentication and Privacy

Security is one of the main requirements set on chapter 4, as such, it must be included on
this solution. There are multiple protocols that can be used for this purpose like SSH, TLS,
DTLS. Each one of these protocols comewith their own downsides as far as raw performance
is concerned however they should still be considered [41].
Additionally, as mentioned in table 2,USM provides a solid security suite for SNMPv3 allow-
ing for three levels of security [42]:

• noAuthNoPrivmode (nn),USMprovides no authentication andno encryption services
and is from a security perspective comparable to the CSM, Community-based Security
Model.

• authNoPriv mode (an),USM provides message authentication, message integrity, and
timeliness checking services but no encryption.

• authPriv mode (ap), USM provides message authentication, message integrity, and
timeliness checking services plus encryption of the payload of SNMP messages.

As such, when it comes to security and privacy, it was decided that SNMPv3 with Auth
and Priv should be used since it allowed adequate levels of security with better performance
compared with other methods.

4.4. Manager 60

By enabling Privacy we can ensure that, for example, any communication between two
vehicles is encrypted, thus preventing any third party from reading any data between the 2
entities and potentially causing harm to any of those vehicles occupants by changing the con-
tents of the data being transmitted. Likewise, with Auth, we can ensure that only authorized
entities can communicate with our CAN agent, thus preventing unauthorized access to our
vehicles’ sensor and actuator data.

As per the Net-SNMP API, for the manager to be able to communicate with the agent, it
must first establish a session with it, this is done with the API function ”snmp_open” which
takes a ”session” struct as input. It’s in this session struct that we define which protocol to
use, and which functionalities we want enabled. In our case we used:

• SNMPv3.

• SHA-1 Authentication.

• AES Encryption.

. . .
2 /∗ se t the SNMP vers ion number ∗/

sess ion . vers ion = SNMP_VERSION_3 ;
4 /∗ se t the SNMPv3 user name ∗/

sess ion . securityName = strdup (snmpusername) ;
6 sess ion . securityNameLen = s t r l e n (sess ion . securityName) ;

/∗ s e t the s e cu r i t y l e v e l to authent i ca ted and encrypted ∗/
8 sess ion . s e cur i tyLeve l = SNMP_SEC_LEVEL_AUTHPRIV ;

/∗ s e t the au then t i c a t i on method to SHA ∗/
10 sess ion . securi tyAuthProto = usmHMACSHA1AuthProtocol ;

s e s s ion . securityAuthProtoLen = USM_AUTH_PROTO_SHA_LEN;
12 sess ion . securityAuthKeyLen = USM_AUTH_KU_LEN;

. . .
14 /∗ se t the encrypt ion method to AES ∗/

sess ion . s e cur i tyPr ivPro to = snmp_duplicate_obj id (usmAESPrivProtocol ,
USM_PRIV_PROTO_AES_LEN) ;

16 sess ion . secur i tyPr ivProtoLen = USM_PRIV_PROTO_AES_LEN;
sess ion . securi tyPrivKeyLen = USM_PRIV_KU_LEN;

18 . . .
s s = snmp_open(&sess ion) ; /∗ e s t a b l i s h the sess ion ∗/

Listing 4.7: Creating SNMPv3 session

Naturally, if we prefer SNMPv2 all that is neded to do is change the contents of that ”ses-
sion” struct.

4.4. Manager 61

4.4.2 GetBulk and Set

SNMP comes by default with commands that allow for a manager to get or set data from
an agent and in the case of the former there are multiple commands to choose from, Get,
GetNext and GetBulk. Out of this three, GetBulk is the most suitable this particular use case,
wheremultipleMIB object need to be obtained in quick succession, as by using it we can limit
network congestion since, otherwise, we would require several Get and GetNext messages
to achieve the same results as GetBulk [41]. To further lower network congestion TCP can
also be considered since there would be less re-transmissions thus increasing reliability and
efficiency while also lowering congestion[43], albeit at a cost to performance.

The version of ”snmpbulkget” that was created for this phase of the project will simply
create a PDU with the target table OID, send it to the agent and then, assuming everything
went according to plan, add the contents of the response to the following struct.

1 /∗example t ab l e OID∗/
s t a t i c oid commandTableOid[] = {1 , 3 , 6 , 1 , 3 , 8888 , 1 2 } ;

3 typedef s t r u c t t ab l e_con ten t s
{

5 s t r u c t t ab l e_con ten t s ∗next ;
ne t snmp_var iab le_ l i s t ∗data ; // ne t snmp_var iab le_ l i s t i s part of netsnmp API

7 } t ab l e_con t en t s ;

Listing 4.8: Table Contents struct

This linked list can then be traversed to obtain all the information from table, which allowed
us to, for example, list all active errors in the system in a human friendly manner.

The ”Set” command can be used to change data in an Agent’s MIB, thus allowing for ac-
tuators to be activated/deactivated at will and new requests for data to be made or old ones
edited. ”snmpset” will follow a similar logic presented for ”snmpbulkget”, where a ”sn-
mpset” PDU is created, with a list of OIDs for the target columns, their values and the data
type. This PDU is then sent to the agent and its response handled accordingly.

With the SNMP session created and both ”snmpset” and ”snmpbulkget” available, all that
is left to develop is the terminal based interface that will allow the user to create, view and
otherwise manage requests and commands in the system.

4.4.3 View any table in the system

This functionality was mostly included for debugging and, as such, is the simplest one of
them all since it will just send a ”bulkget” message to the agent and print the results. These
printed results will be similar to the ”snmpbulkget” command included in the NET-SNMP
daemon.

4.4. Manager 62

Figure 24: Viewing the contents of commandTemplateTable with the manager

4.4.4 Create new requests

Before explaining the process of how a new request is created we must first explain why the
user can only change to contents of some columns within requestMonitoringDataTable.

This is done mainly to prevent entries from being left ”hanging” by edits to a request, and
as such, certain columns can only be changed by the user in the beginning, while others can
only be changed at a later date, some can be changed anytime while others can’t be changed
at all.
For example, ”requestControlID” can’t be set or edited by the user since it will point to an
entry in requestControlDataTable and as such is solely managed by the agent while at the
same time ”status” is originally handled by the agent but the user can manually edit it later,
with some constraints, likewise some columns are originally set by the user but the userwon’t
be allowed to change them at a later date like ”requestMapID”.

As previously mentioned, the columns that the user can set when creating a new request
are the following:

• requestMapID - Points to the signal whose samples the user wants recorded.

• requestStatisticsID - Points to an entry in requestStatisticsDataTable.

• savingMode - Is it volatile or permanent.

• maxNOfSamples - Maximum number of samples to be recorded.

• loopMode - Should it restart once it’s deleted or not.

• startTime - When should request start.

• waitTime - How long after startTime should the request wait to start.

• durationTime - How long should the request run.

• expiretime - How long after the request ended should it stay in the system.

4.4. Manager 63

As such, to create a new request, the user inputs for all of these columns has to be obtained,
first of which being ”requestMapID”.

Since a vehicle will contain a considerable number of sensors within it, we had to first send
a snmpbulkget message for both mapTypeTable and genericTypesTable, and print the results
in a concise and user friendly manner, which will allow the user to know what is the ID of
every sensor, alongside its description.

Figure 25: Sensor Description

The user will then only need to provide the inputs for every single one of those columns
and send the snmpset command to the agent.

Figure 26: Creating a new request

Figure 27: Created request in requestMonitoringDataTable

Note: In the current prototype stage, the column ”requestUser” is also set by the user and
not by the agent but in its deployed version that column should be solely handled by the
agent.

4.4. Manager 64

4.4.5 View a request

This functionality is centered around viewing the results of any request present in the system,
thatmeans providing the userwith all samples relating to a request alongside their respective
timestamps, checksums, unit, signal name and, if relevant, statistics.

To do this we first needed to send bulkget messages to the agent for sampleUnitsTable,
mapTypeTable and requestMonitoringDataTable which allowed us to show all requests in
the system alongside their IDs so that the user can choose which request to inspect.

Figure 28: List of requests in the system

After the request is chosen themanagerwill send ”bulkget”messages to obtain the contents
of samplesTable and, if the request included statistics, requestStatisticsDataTable and print
all samples related to the chosen request in a concise manner.

Figure 29: Samples related to a request

These results contain the following information:

• Sample Number.

• Sample Value.

• Sample Unit.

• Sample Timestamp.

• Sample Checksum.

4.4. Manager 65

4.4.6 Edit a request

Much like ”View Request”, this functionality will also require the user to choose between
already existing request on the system, whichmeans it starts by sending a ”bulkget”message
for the contents of requestMonitoringDataTable to the manager.

Figure 30: Requests and the current contents of their editable columns

After choosing what request to edit, the user will choose the column to be edited and input
the new value. Finally, the manager will send the corresponding ”snmpset” message which
if successfully validated will change the corresponding entry.

As mentioned in 4.4.4, some columns can only be changed by the user on creation, some
can only be edited after creation, while others can’t be changed by the user at all. When it
comes to editing columns in a request, it was decided that the user should only be allowed
to change 4 of them:

• Saving Mode (0 or 1).

• Loop Mode (1 or 2).

• Max Number of Samples (>0).

• Status (0 to 4).

While for most of this columns validation is rather straightforward, meaning they only
need to meet a simple condition, when it comes to the ”status” some other restrictions must
be taken into account based on the current status of the request. For example, if the request
status is ”ready” or ”set” it can be changed to ”on”, ”off” or ”delete”, while at the same time,
if a request is ”off” it can only be be changed ”delete”. This is done due to the linked list
nature of how samples are stored in the MIB and will prevent a requests’ status from going
backwards in the sense that the proper path of all requests is set->ready->on->off->delete.

If the input given by the user is found to be invalid, a new entry in errorTablewill be created
while the edit itself will be canceled.

4.4. Manager 66

4.4.7 View Active errors in the system

This functionality will consist of sending bulkget commands to both errorDescriptionTable
and errorTable since the former contains the descriptions of the errorwhile the latter contains
the error itself as well as a timestamp and the user who made the error in the first place.

With the contents of these two tables we could now present the errors in a user friendly
manner.

Figure 31: Active Errors in the system

4.4.8 Send Command

This final functionality will, quite simply, send a ”bulkget” message for the contents of com-
mandTemplateTable and print all existing commands in an easy to understand manner. The
user will then choose the command it wants to send and input the new value.

Figure 32: Sending a command to the agent

The manager will then create a new entry in commandTable by sending a ”snmpset” mes-
sage containing the input given by the user and the template that was chosen so that the
agent can validate, build and send the correct CAN message to the network.

Figure 33: Confirmation that the agent sent the CAN message

4.5. Tests and Results 67

4.5 T E ST S AND RE SULT S

With development complete the next step is to run a few baseline performance tests and com-
pare them to already existing solutions, more specifically OBD-II. In this section, besides the
aforementioned tests, the testing environment will also be presented and finally a discussion
of the results will be made.

4.5.1 Testing Environment

Since this is still just a prototype there’s no vehicle or OBU where this can solution can be
tested in and as such the tests will be performed in an instance of Ubuntu 20.04.2 on VMWare
Workstation 16 Pro, version 16.0.0 build-16894299, on Windows 10 Pro.

System Specification (Available)
Intel Core i5-4670 @3.4Ghz 4(2) Cores

16(8)GB DDR3 1600Mhz

Any results obtained in this system won’t be totally conclusive of the performance in any
OBU however it can prove that this solution has promise and is worth further development.

When testing the simulator will write CAN messages from raw CAN log to a virtual CAN
interface, which the sub agent will listening into. The manager will be used to create some
requests and then view the results of those requests.

When it comes to choosing what signal the system is going to record, a few statistics of the
CAN logs were created so as to identify which ECU was transmitting more messages.

ECU Number of Messages Percentage
EEC1 19535 45.6%
EEC2 3907 9.12%
EEC3 3907 9.12%
LFE 1954 4.56%
PTO 1954 4.56%
...

Table 22: Number of messages per ECU

On all four raw CAN logs that were obtained to test this solution, the most active ECU was
EEC1 and as such all requests will be on signals coming from that ECU.

4.5. Tests and Results 68

4.5.2 Testing Results

There are four important metrics that are relevant when it comes to this solution:

• How long does it take to execute a command.

• How long does it take to decode a signal.

• How long does it take to insert a sample in the system.

• How long does it take a manager to get the results of a request.

Tomeasure time taken by anyprocess, we canuse clock() functionwhich is available time.h.
We can call the clock function at the beginning and end of the code for which we are measur-
ing time, subtract the values, and then divide by CLOCKS_PER_SEC (the number of clock
ticks per second) to get processor time, like following.

c lo ck_ t s t a r t = c lock () ;
2 . . . /∗ Do the work . ∗/

c lo ck_ t end = clock () ;
4 p r i n t f (”%f \n” ,(double) (end − s t a r t) / CLOCKS_PER_SEC) ;

Listing 4.9: Measuring Time

Executing a command and decoding a message

These two metrics were the simplest ones to measure since, to execute a command we only
needed to measure how long it takes to run the function checkActuators(), while to decode
we only needed to measure the time it takes to run the function decode().
After inserting the code above in the relevant parts of the program, some commands were
added by the manager to the system and the time taken to run those commands were mea-
sured. On average, each command took around 80μs to execute. This result only takes into
account how long the system takes to read the entry from the table, create a CAN message,
transmit it and delete the entry from the system. While this functionality is still incomplete,
and as such the result is fairly inconsequential, it can still give an idea of the possible perfor-
mance of this solution.

When it comes to decoding messages, the test consisted of running the simulator and sub-
agent at the same time, measuring how long it took to decode each CAN message. which
on average took around 30μs. Once again, while it’s not representative of real world perfor-
mance these can be used to measure the validity of this solution, additionally one can expect
that in-house decoders that are already in use by vehicle manufacturers are more efficient
than the one than the one that was created for this phase of the project.

4.5. Tests and Results 69

Inserting a sample in the system

To measure how long it takes to insert samples in the system two types of tests were run, one
where there’s only one request in the system and another where there were several requests
on the system. Since EEC1 is the most active ECU in the CAN logs that were used in these
tests, the requests will all be made for signals of this particular ECU.

For the test with a single request, the manager was used to make a request on the signal
EngSpeed, which is part of EEC1. The time it took the system to add new entries to the MIB
was then measured and printed out, giving the following results

Figure 34: Inserting samples on a single request

As can be seen above, outside of the first two entries, the amount of time it took to add
entries to the MIB was between 50μs and 130μs.

Next several requests were created on signals of EEC1, more specifically 10 requests were
created by 2 different users on the same set of sensors (EngSpeed, ActualEngPercentTorque,
EngTorqueMode, EngStarterMode, DriversDemandEngPercentTorque).

Figure 35: Inserting samples on multiple requests

Once again out of the 100+ samples that were added into the system, the longest it took
was around 200μs while on average the results were similar to those obtained in the first,
90μs.

4.6. Summary 70

Obtaining samples from a table

For these measurements the same tests as the section above were used, but this time the
measurements were taken by measuring how long it took the manager to run the function
bulkget() when attempting to view the results of a request.

For a single request, containing 10 samples, it took around 20ms to obtain the results, while
with 10 requests in the system, it took around 40 ms. It should be noted that with bulkget
function that was developed for this phase of the project, it will return all entries of a table.

Figure 36: Single request Figure 37: Multiple requests

Comparing with OBD-II

As it stands the results are rather one sided, while it must be mentioned that OBD-II was, as
the name implies, originally intended to be used in diagnosing possible issues with a vehicle,
the 20 query per second limit and accompanying slow refresh rate will impede its use with
any sort of VANET application while the prototype presented above will only be limited by
the computing power of the OBU and available bandwidth, since it’s wholly dependent on
the ability of the agent to respond immediately to the requests of themanager, which the Stan-
dard does not ensure. Nevertheless, as per [44] and [45], the response times presented above
are within margin for use in CACC (Cooperative Adaptive Cruise Control), ACC(Adaptive
Cruise Control) and platooning applications.

4.6 SUMMARY

In this chapter the various development steps of the prototype were presented, in addition
to this the development of the tools that allow a CAN message to be sent, decoded and han-
dled by the prototype was also presented alongside some code snippets and flowcharts for
individual functions within the agent.

The development of the manager was also presented, where each functionality, including
the choice of security protocol, of this manager was explained and demonstrated as well.

Finally, some metrics were measured so that this solution can be compared with the tools
that are currently in use.

5

CONCLUS ION

With the ever closing introduction of VANETs, the realization that the protocols that are cur-
rently in use to obtain data fromwithin a vehicle arewholly unsuitable for this newparadigm
as come to the surface, since while those protocols and solutions are quite capable when used
for their original purpose, they lack the performance required for future applications.

This means that new unprecedented solutions need to be developed so that those new
requirements are met and with this work a solution that does just that has been presented.
That is an agnostic and modular architecture that allows the development of cooperative ITS
applications.

This work proves that SNMP can indeed be used to monitor vehicular sensors while also
allowing some degree of control over a vehicle via its actuators. This solution provides the
basis through which any application that may require access to real-time sensor data or di-
rect access to actuators, so as to change their states in real time, can be developed around,
while also being an agnostic and modular architecture that allows the development of co-
operative ITS applications. Additionally, it can also provide the same functionalities whose
requirements are already met by standards like OBD-II without requiring the customer or
manufacturer to use specialized hardware.

Since this solution is based on SNMP, a manufacturer would only need to integrate an
SNMP sub-agent like the one developed for this project in the OBU as well as installing ap-
plications that integrate an SNMP manager, for example in the local vehicle system (outside
the OBU). After setting up the agent andmanager, the only requirement left would be an ITS
application, developed by the manufacturer or a third party, to handle the communication
between the different entities within a VANET.

From the results discussed in chapter 4 we can prove that, despite being an early prototype,
the performance of this solution is a marked improvement over already existing solutions
both in latency, number of sensors that can be queried at the same time and refresh rate of
any of those queries, while using a proven and reliable protocol in the form of SNMPv3.
Additionally, for certain use caseswhere authentication andprivacy is not required, SNMPv2c
can be used instead of SNMPv3 which will further improve the performance.

With this, we can safely say that the objectives listed in chapter 1.2 and chapter 3 were met,
since aMIB that can allow low level ITS functions implemented by the vehicles manufacturer
and is transparent to the chosen electronic communication bus was successfully created. Ad-

71

72

ditionally, a prototype SNMP agent and manager, and accompanying decoder/ generator,
that allow for the creation of monitoring requests and commands to the network were also
developed to test the validity of this project.

FU TURE WORK

This being said, the present work it still just a prototype and as such it can still be improved on
multiple fronts before being deployed. These range from overall stability and performance
improvements to refinement of the presented solution, for example when it comes to how
this solution changes the state of actuators.

One such improvement is that of the decoder, since the current decoder being used lacks
the ability to decodemessages from protocols other thanCAN2.0B andmore specifically data
frames. As such, the decoder should be refined so that it supports all kinds of CAN frames
from all CAN protocols, or its competitors. The main focus should be to make it compatible
with CANFD. Alternatively in-house decoders made by the manufacturer should be used
instead of a custom decoder since those will already be capable of achieving the same results
with optimum performance.

For security reasons it might be wise to limit the access of certain sensors/actuators based
on who the user is since currently there’s no such method in place, additionally the cur-
rent method of obtaining the username of the manager that made a request relies too much
on that manager inserting the right name, ideally the username should be obtained by the
agent when the packet arrives, this username can be the IP address or SNMPv2 Community
string/SNMPv3 User Name. This will most likely require converting the current sub agent
based solution to an custom SNMP agent.

Some new SNMP primitives should be created similar to SNMP traps so that when a trap
is triggered, it would transmit it in broadcast mode to all relevant entities. Additionally if
two entities made a request on the same sensor, instead of the source vehicle transmitting
the stored data individually to each of those entities it should transmit it in broadcast mode
similar to what CAN protocol already uses since it would lower the bandwidth being used.
A new primitive similar to ”bulkget” should also be created so that it only returns samples
related to a specific sensor or request, since currently, it will transmit all data in a table which
decreases performance.

Finally, some real world tests should also be performed to validate this solution since the
tests performed and presented in this document were done in a computer with performance
that does not represent real world capabilities of OBU.

RE FERENCE S

[1] O’Reilly Douglas Mauro, Kevin Schmidt. Essential SNMP. O’Reilly, 2 edition, 2003.

[2] G. Mohinisudhan, Sahana K. Bhosale, and Bharat S. Chaudhari. Reliable On-board and Re-
mote Vehicular Network Management for Hybrid Automobiles. In 2006 IEEE Conference
on Electric and Hybrid Vehicles, pages 1–4, 2006. doi: 10.1109/ICEHV.2006.352284.

[3] Joao AFF Dias, Joel JPC Rodrigues, Vasco NGJ Soares, João MLP Caldeira, Valery Korotaev,
and Mario L Proença. Network management and monitoring solutions for vehicular
networks: a survey. Electronics, 9(5):853, 2020.

[4] Ishak Aris, Mohamad Fauzi Zakaria, S. Bashi, and R Sidek. Development of OBD-II Driver
Information System. In International Engineering Convention, Jeddah, Saudi Arabia, March
2007.

[5] ISO 15031-5:2015. Road vehicles—Communication between vehicle and external equipment
for emissions-related diagnostics — Part 5: Emissions-related diagnostic services. Stan-
dard, International Organization for Standardization, Geneva, CH, 2015.

[6] How fast can OBD-II data update. https://customer.cradlepoint.com/s/article/What-

Is-the-Maximum-Refresh-Interval-for-OBD2, . Accessed:17/10/2021.

[7] OBD Knowledge Sampling Rate. http://www.mx.innova.com/en-US/TechnicalInfo/

OBDKnowledge, . Accessed:30/10/2021.

[8] Wilfried Voss. A comprehensible guide to J1939. Copperhill Technologies Corporation, 2008.

[9] Bruno Dias, Alexandre Santos, António Costa, Bruno Ribeiro, Fabio Goncalves, Joaquim
Macedo, Maria Nicolau, Oscar Gama, and Susana Sousa. Agnostic and Modular Archi-
tecture for the Development of Cooperative ITS Applications. Journal of Communications
Software and Systems, 14:218–227, 09 2018. doi: 10.24138/jcomss.v14i3.550.

[10] Keith McCord. Automotive Diagnostic Systems: Understanding OBD I and OBD II. CarTech Inc,
2011.

[11] Wilfried Voss. A comprehensible guide to controller area network. Copperhill Media, 2008.

[12] SolarWinds. A guide to understanding SNMP. In A guide to understanding SNMP, 2013.

[13] Cisco Systems. Introduction to SNMP and MIB. 2004.

[14] Nick Urbanik. The Structure of Management Information (SMI).

73

https://customer.cradlepoint.com/s/article/What-Is-the-Maximum-Refresh-Interval-for-OBD2
https://customer.cradlepoint.com/s/article/What-Is-the-Maximum-Refresh-Interval-for-OBD2
http://www.mx.innova.com/en-US/TechnicalInfo/OBDKnowledge
http://www.mx.innova.com/en-US/TechnicalInfo/OBDKnowledge

REFERENCES 74

[15] SNMP Version 3 (SNMPv3) Message Format. http://www.tcpipguide.com/free/t_

SNMPVersion3SNMPv3MessageFormat.htm. Accessed:24-12-2020.

[16] Dr. Marshall T. Rose and Keith McCloghrie. Structure and identification of management
information for TCP/IP-based internets. RFC 1155, May 1990.

[17] SNMP MIB. https://docs.oracle.com/cd/E13203_01/tuxedo/tux90/snmpmref/1tmib.

htm, . Accessed:24/12/2021.

[18] On-board diagnostics. https://en.wikipedia.org/wiki/On-board_diagnostics, .
Accessed:12-12-2020.

[19] Aastha Yadav, Gaurav Bose, Radhika Bhange, Karan Kapoor, N Ch Sriman Narayana
Iyenger, and Ronnie Caytiles. Security, Vulnerability and Protection of Vehicular On-
board Diagnostics. International Journal of Security and Its Applications, 10:405–422, 04
2016. doi: 10.14257/ijsia.2016.10.4.36.

[20] MdArafatur Rahman. Design of Wireless Sensor Network for Intra-vehicular Communications. 01
2014.

[21] Steve Corrigan HPL. Introduction to the controller area network (can). Application Report
SLOA101, pages 1–17, 2002.

[22] Controller area networks and the protocol can for machine control systems. Mechatronics, 4
(2):159 – 172, 1994. ISSN 0957-4158. doi: https://doi.org/10.1016/0957-4158(94)90041-8.
Special Issue Mechatronics in Sweden.

[23] Simple intro to CAN bus. https://www.csselectronics.com/screen/page/simple-intro-
to-can-bus/language/en. Accessed:24-11-2020.

[24] CAN bus the central networking system of vehicles. https://premioinc.com/blogs/blog/
can-bus-the-central-networking-system-of-vehicles. Accessed:12-12-2020.

[25] CAN bus serial protocol decoding. https://www.picoauto.com/library/picoscope/can-

bus-serial-protocol-decoding. Accessed:26-11-2020.

[26] A survey of automotive networking applications and protocols. 2015.

[27] Françoise Simonot-Lion Nicolas Navet. In-vehicle communication networks - a historical
perspective and review. International Journal of Security and Its Applications, 09 2013.

[28] JunHuang,Mingli Zhao, Yide Zhou, andCong-CongXing. In-vehicle networking: Protocols,
challenges, and solutions. IEEE Network, 33(1):92–98, 2019. doi: 10.1109/MNET.2018.
1700448.

[29] FlexRay Consortium. FlexRay Communications System Protocol Specification Version 3.0.1.
In FlexRay Communications System Protocol Specification, 10 2020.

http://www.tcpipguide.com/free/t_SNMPVersion3SNMPv3MessageFormat.htm
http://www.tcpipguide.com/free/t_SNMPVersion3SNMPv3MessageFormat.htm
https://docs.oracle.com/cd/E13203_01/tuxedo/tux90/snmpmref/1tmib.htm
https://docs.oracle.com/cd/E13203_01/tuxedo/tux90/snmpmref/1tmib.htm
https://en.wikipedia.org/wiki/On-board_diagnostics
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en
https://premioinc.com/blogs/blog/can-bus-the-central-networking-system-of-vehicles
https://premioinc.com/blogs/blog/can-bus-the-central-networking-system-of-vehicles
https://www.picoauto.com/library/picoscope/can-bus-serial-protocol-decoding
https://www.picoauto.com/library/picoscope/can-bus-serial-protocol-decoding

REFERENCES 75

[30] Huang Hui-Ping, Xiao Shi-De, and Meng Xiang-Yin. Applying snmp technology to manage
the sensors in internet of things. The Open Cybernetics & Systemics Journal, 9(1), 2015.

[31] D. Jiang and L. Delgrossi. IEEE 802.11p: Towards an International Standard for Wireless
Access in Vehicular Environments. In VTC Spring 2008 - IEEE Vehicular Technology Con-
ference, pages 2036–2040, 2008. doi: 10.1109/VETECS.2008.458.

[32] G. Pavlou, P. Flegkas, S. Gouveris, and A. Liotta. On management technologies and the
potential of Web services. IEEE Communications Magazine, 42(7):58–66, 2004. doi: 10.
1109/MCOM.2004.1316533.

[33] SNMP agents and subagents. https://www.ibm.com/docs/en/zos/2.3.0?topic=20-snmp-

agents-subagents, . Accessed:15-07-2021.

[34] Extending Net-SNMP. https://vincent.bernat.ch/en/blog/2012-extending-netsnmp#

extending-net-snmp. Accessed:15-07-2021.

[35] Writing a Sub Agent. https://net-snmp.sourceforge.io/wiki/index.php/TUT:Writing_

a_Subagent. Accessed:15-07-2021.

[36] Using and loading MIBS. https://net-snmp.sourceforge.io/wiki/index.php/TUT:

Using_and_loading_MIBS. Accessed:15-07-2021.

[37] CAN DBC File Database Intro. https://www.csselectronics.com/screen/page/can-dbc-

file-database-intro/language/en. Accessed:01-05-2021.

[38] J1939 standard. https://hackage.haskell.org/package/ecu-0.0.8/src/src/j1939_utf8.
dbc. Accessed:14-07-2021.

[39] Robert Bosch. CAN Specification version 2.0. 9 1991.

[40] NetSNMP subagent development manual. https://www.cnblogs.com/shipfi/articles/

1033365.html. Accessed:16-10-2021.

[41] J. Schönwälder and V. Marinov. On the Impact of Security Protocols on the Performance
of SNMP. IEEE Transactions on Network and Service Management, 8(1):52–64, 2011. doi:
10.1109/TNSM.2011.012111.00011.

[42] Uri Blumenthal and Bert Wijnen. User-based security model (USM) for version 3 of the
simple network management protocol (SNMPv3). Technical report, RFC 2574, April,
1999.

[43] X. Du, M. Shayman, and M. Rozenblit. Implementation and performance analysis of
SNMP on a TLS/TCP base. In 2001 IEEE/IFIP International Symposium on Integrated
Network Management Proceedings. Integrated Network Management VII. Integrated Manage-
ment Strategies for the New Millennium (Cat. No.01EX470), pages 453–466, 2001. doi:
10.1109/INM.2001.918059.

https://www.ibm.com/docs/en/zos/2.3.0?topic=20-snmp-agents-subagents
https://www.ibm.com/docs/en/zos/2.3.0?topic=20-snmp-agents-subagents
https://vincent.bernat.ch/en/blog/2012-extending-netsnmp#extending-net-snmp
https://vincent.bernat.ch/en/blog/2012-extending-netsnmp#extending-net-snmp
https://net-snmp.sourceforge.io/wiki/index.php/TUT:Writing_a_Subagent
https://net-snmp.sourceforge.io/wiki/index.php/TUT:Writing_a_Subagent
https://net-snmp.sourceforge.io/wiki/index.php/TUT:Using_and_loading_MIBS
https://net-snmp.sourceforge.io/wiki/index.php/TUT:Using_and_loading_MIBS
https://www.csselectronics.com/screen/page/can-dbc-file-database-intro/language/en
https://www.csselectronics.com/screen/page/can-dbc-file-database-intro/language/en
https://hackage.haskell.org/package/ecu-0.0.8/src/src/j1939_utf8.dbc
https://hackage.haskell.org/package/ecu-0.0.8/src/src/j1939_utf8.dbc
https://www.cnblogs.com/shipfi/articles/1033365.html
https://www.cnblogs.com/shipfi/articles/1033365.html

REFERENCES 76

[44] Rajesh Rajamani and Steven E Shladover. An experimental comparative study of au-
tonomous and co-operative vehicle-follower control systems. Transportation Research Part
C: Emerging Technologies, 9(1):15–31, 2001.

[45] Shahriar Hasan, Ali Balador, Svetlana Girs, and Elisabeth Uhlemann. Towards emergency
braking as a fail-safe state in platooning: A simulative approach. In 2019 IEEE 90th Ve-
hicular Technology Conference (VTC2019-Fall), pages 1–5. IEEE, 2019.

ANNEX A : OBU M I B

OBU−MIB DEFINITIONS : := BEGIN
2

IMPORTS
4 experimental ,

MODULE−IDENTITY ,
6 OBJECT−TYPE ,

Counter32 ,
8 Unsigned32

FROM SNMPv2−SMI
10 TEXTUAL−CONVENTION

FROM SNMPv2−TC
12 OBJECT−GROUP

FROM SNMPv2−CONF;
14

obuMIB MODULE−IDENTITY
16 LAST−UPDATED ”202103121429Z” −− Mar 12 , 2021 , 2 : 29 :00 PM

ORGANIZATION ”Universidade do Minho”
18 CONTACT−INFO

””
20 DESCRIPTION

”SMIv2 MIB module to be used in veh icu lar OBU”
22 REVISION ”202103121429Z” −− Mar 12 , 2021 , 2 : 29 :00 PM

DESCRIPTION
24 ” I n i t i a l vers ion . ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 −−
26 : := { experimental 8888 }

28 systemOBUGroup OBJECT−GROUP
OBJECTS {

30 numberOfCapabil i t ies ,
c apab i l i t i e s ID ,

32 se tOfCapab i l i t i e s ID ,
spe c i f i cCapab i l i t i e s ID ,

34 capabi l i tyValue ,
numberOfConnectedVehicles ,

36 vehicleID ,
local ID ,

38 globalID ,
associatedOBUorRSU ,

40 localOrRemote ,
c a p ab i l i t i e s ,

42 sysOBUDateandTime ,
sysOBUNMonRequest ,

77

REFERENCES 78

44 sysOBUNEventRequest ,
sysOBUNConfRequest ,

46 sysOBUNErrors ,
sysOBUVehicleID ,

48 sysOBUDistanceType ,
sysOBUTotalDistance ,

50 sysOBUCountry
}

52 STATUS current
DESCRIPTION

54 ”This group inc ludes a l l ob j e c t s r e l a t ed to sensor OBU system”
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 −−

56 : := { obuMIB 1 }

58 numberOfCapabil i t ies OBJECT−TYPE
SYNTAX INTEGER

60 MAX−ACCESS read−only
STATUS current

62 DESCRIPTION
”This ob j e c t w i l l count the number of c a p a b i l i t i e s ”

64 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 1
: := { systemOBUGroup 1 }

66

c apab i l i t i e s T ab l e OBJECT−TYPE
68 SYNTAX SEQUENCE OF Capab i l i t i e sEn t ry

MAX−ACCESS not−a c c e s s i b l e
70 STATUS current

DESCRIPTION
72 ”This t ab l e w i l l l i s t the veh i c l e /OBU capab i l i t i e s , inc luding a l l ava i l ab l e

s e rv i c e s . ”
−− 1 . 3 . 6 . 1 . 3 . 8 888 . 1 . 2 − −

74 : := { systemOBUGroup 2 }

76 c apab i l i t i e s En t r y OBJECT−TYPE
SYNTAX Capab i l i t i e sEn t ry

78 MAX−ACCESS not−a c c e s s i b l e
STATUS current

80 DESCRIPTION ””
INDEX {

82 c apab i l i t i e s ID }
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 2 . 1

84 : := { c apab i l i t i e s T ab l e 1 }

86 Capab i l i t i e sEn t ry : := SEQUENCE {

88 c apab i l i t i e s ID Unsigned32 ,
s e tOfCapab i l i t i e s ID Unsigned32 ,

90 s p e c i f i cCapab i l i t i e s ID Unsigned32 ,
capab i l i tyVa lue OCTET STRING }

92

REFERENCES 79

c apab i l i t i e s ID OBJECT−TYPE
94 SYNTAX Unsigned32 (1 . . 99999999)

MAX−ACCESS read−only
96 STATUS current

DESCRIPTION
98 ”This ob j e c t w i l l i d en t i f y a c a p a b i l i t i e s t ab l e row”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 2 . 1 . 1
100 : := { c apab i l i t i e sEn t r y 1 }

102 se tOfCapab i l i t i e s ID OBJECT−TYPE
SYNTAX Unsigned32

104 MAX−ACCESS read−only
STATUS current

106 DESCRIPTION ”This column wi l l i d en t i f y c a p a b i l i t i e s re l evan t to a s p e c i f i c
subsystem , e . g : Front Sensors ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 2 . 1 . 2
108 : := { c apab i l i t i e sEn t r y 2 }

110 s p e c i f i cCapab i l i t i e s ID OBJECT−TYPE
SYNTAX Unsigned32

112 MAX−ACCESS read−only
STATUS current

114 DESCRIPTION ”This column wi l l be used to inden t i fy a s p e c i f i c c apab i l i t y ”
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 2 . 1 . 3

116 : := { c apab i l i t i e sEn t r y 3 }

118 capab i l i tyVa lue OBJECT−TYPE
SYNTAX OCTET STRING

120 MAX−ACCESS read−only
STATUS current

122 DESCRIPTION ””
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 2 . 1 . 4

124 : := { c apab i l i t i e sEn t r y 4 }

126 numberOfConnectedVehicles OBJECT−TYPE
SYNTAX INTEGER

128 MAX−ACCESS read−only
STATUS current

130 DESCRIPTION
”This ob j e c t w i l l count the number of connected veh i c l e s ”

132 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 3
: := { systemOBUGroup 3 }

134

connectedVehic lesTable OBJECT−TYPE
136 SYNTAX SEQUENCE OF ConnectedVehiclesEntry

MAX−ACCESS not−a c c e s s i b l e
138 STATUS current

DESCRIPTION
140 ”This t ab l e w i l l l i s t the connected to t h i s veh i c l e ”

−− 1 . 3 . 6 . 1 . 3 . 8 888 . 1 . 4 − −

REFERENCES 80

142 : := { systemOBUGroup 4 }

144 connectedVehic lesEntry OBJECT−TYPE
SYNTAX ConnectedVehiclesEntry

146 MAX−ACCESS not−a c c e s s i b l e
STATUS current

148 DESCRIPTION ””
INDEX {

150 vehic le ID }
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 4 . 1

152 : := { connectedVehic lesTable 1 }

154 ConnectedVehiclesEntry : := SEQUENCE {
vehic le ID Unsigned32 ,

156 l oca l ID OCTET STRING,
globalID OCTET STRING,

158 associatedOBUorRSU OCTET STRING,
localOrRemote INTEGER,

160 c a p a b i l i t i e s Unsigned32}

162 vehic le ID OBJECT−TYPE
SYNTAX Unsigned32 (1 . . 99999999)

164 MAX−ACCESS read−only
STATUS current

166 DESCRIPTION
”This ob j e c t w i l l i d en t i f y a connectedVehic les t ab l e row”

168 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 4 . 1 . 1
: := { connectedVehic lesEntry 1 }

170

l oca l ID OBJECT−TYPE
172 SYNTAX OCTET STRING

MAX−ACCESS read−only
174 STATUS current

DESCRIPTION
176 ””

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 4 . 1 . 2
178 : := { connectedVehic lesEntry 2 }

180 globalID OBJECT−TYPE
SYNTAX OCTET STRING

182 MAX−ACCESS read−only
STATUS current

184 DESCRIPTION
””

186 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 4 . 1 . 3
: := { connectedVehic lesEntry 3 }

188

associatedOBUorRSU OBJECT−TYPE
190 SYNTAX OCTET STRING

MAX−ACCESS read−only

REFERENCES 81

192 STATUS current
DESCRIPTION

194 ””
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 4 . 1 . 4

196 : := { connectedVehic lesEntry 4 }

198 localOrRemote OBJECT−TYPE
SYNTAX INTEGER

200 MAX−ACCESS read−only
STATUS current

202 DESCRIPTION
””

204 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 4 . 1 . 5
: := { connectedVehic lesEntry 5 }

206

c a p a b i l i t i e s OBJECT−TYPE
208 SYNTAX Unsigned32 (1 . . 99999999)

MAX−ACCESS read−only
210 STATUS current

DESCRIPTION
212 ””

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 4 . 1 . 6
214 : := { connectedVehic lesEntry 6 }

216 sysOBUDateandTime OBJECT−TYPE
SYNTAX OBUDateandTime

218 MAX−ACCESS read−only
STATUS current

220 DESCRIPTION
””

222 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 5
: := { systemOBUGroup 5 }

224

sysOBUNMonRequest OBJECT−TYPE
226 SYNTAX Unsigned32 (1 . . 99999999)

MAX−ACCESS read−only
228 STATUS current

DESCRIPTION
230 ””

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 6
232 : := { systemOBUGroup 6 }

234 sysOBUNEventRequest OBJECT−TYPE
SYNTAX Unsigned32 (1 . . 99999999)

236 MAX−ACCESS read−only
STATUS current

238 DESCRIPTION
””

240 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 7
: := { systemOBUGroup 7 }

REFERENCES 82

242

sysOBUNConfRequest OBJECT−TYPE
244 SYNTAX Unsigned32 (1 . . 99999999)

MAX−ACCESS read−only
246 STATUS current

DESCRIPTION
248 ””

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 8
250 : := { systemOBUGroup 8 }

252 sysOBUNErrors OBJECT−TYPE
SYNTAX Unsigned32 (1 . . 99999999)

254 MAX−ACCESS read−only
STATUS current

256 DESCRIPTION
””

258 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 9
: := { systemOBUGroup 9 }

260

sysOBUVehicleID OBJECT−TYPE
262 SYNTAX OCTET STRING

MAX−ACCESS read−only
264 STATUS current

DESCRIPTION
266 ””

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 1 0
268 : := { systemOBUGroup 10 }

270 sysOBUDistanceType OBJECT−TYPE
SYNTAX INTEGER

272 MAX−ACCESS read−only
STATUS current

274 DESCRIPTION
””

276 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 1 1
: := { systemOBUGroup 11 }

278

sysOBUTotalDistance OBJECT−TYPE
280 SYNTAX Unsigned32 (1 . . 99999999)

MAX−ACCESS read−only
282 STATUS current

DESCRIPTION
284 ””

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 1 2
286 : := { systemOBUGroup 12 }

288 sysOBUCountry OBJECT−TYPE
SYNTAX INTEGER

290 MAX−ACCESS read−only
STATUS current

REFERENCES 83

292 DESCRIPTION
””

294 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 1 . 1 3
: := { systemOBUGroup 13 }

296

sensorGroup OBJECT−GROUP
298 OBJECTS {

numberOfRequests ,
300 requestID ,

requestMapID ,
302 requestMonControlID ,

savingMode ,
304 samplingFrequency ,

maxDelay ,
306 startTime ,

endTime ,
308 waitTime ,

durationTime ,
310 expireTime ,

lastSampleID ,
312 loopMode ,

nOfSamples ,
314 s ta tus ,

requestUser ,
316 numberOfRequestsControl ,

requestControlID ,
318 requestControlMapID ,

settingMode ,
320 commitTime ,

endControlTime ,
322 durationControlTime ,

expireControlTime ,
324 valuesTableID ,

s ta tusContro l ,
326 numberOfRequestsStat is t ics ,

s t a t i s t i c s ID ,
328 dura t ionT imeS ta t i s t i c s ,

nOfSamplesS ta t i s t i c s ,
330 minValue ,

maxValue ,
332 avgValue ,

numberOfSamples ,
334 sampleID ,

requestSampleID ,
336 timeStamp ,

sampleFrequency ,
338 previousSampleID ,

numberOfMapTypes ,
340 mapTypeID ,

proprietaryTypeID ,

REFERENCES 84

342 genericMapTypeID ,
sampleUnitMapID ,

344 prec i s ion ,
maxMapDelay ,

346 maxSamplingFrequency ,
in te r faceSource ,

348 dataSource ,
numberOfGenericTypes ,

350 genericTypeID ,
typeDescr ipt ion ,

352 numberOfSampleUnits ,
sampleUnitID ,

354 uni tDescr ip t ion ,
sampleRecordedValue ,

356 sampleType ,
mapTypeSamplesID ,

358 maxNOfSamples ,
r e que s t S t a t i s t i c s ID ,

360 sampleCheckSum }
STATUS current

362 DESCRIPTION
”This group inc ludes a l l ob j e c t s r e l a t ed to sensor data r e t r i e v a l ”

364 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 −−
: := { obuMIB 2 }

366

numberOfRequests OBJECT−TYPE
368 SYNTAX INTEGER

MAX−ACCESS read−only
370 STATUS current

DESCRIPTION
372 ””

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1
374 : := { sensorGroup 1 }

376 requestMonitoringDataTable OBJECT−TYPE
SYNTAX SEQUENCE OF RequestMonitoringDataEntry

378 MAX−ACCESS not−a c c e s s i b l e
STATUS current

380 DESCRIPTION
”This t ab l e w i l l l i s t a l l informat ion regarding a reques t s on a s p e c i f i c
ob j e c t . ”

382 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2
: := { sensorGroup 2 }

384

requestMonitoringDataEntry OBJECT−TYPE
386 SYNTAX RequestMonitoringDataEntry

MAX−ACCESS not−a c c e s s i b l e
388 STATUS current

DESCRIPTION ””
390 INDEX {

REFERENCES 85

requestID }
392 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1

: := { requestMonitoringDataTable 1 }
394

RequestMonitoringDataEntry : := SEQUENCE {
396 requestID Unsigned32 ,

requestMonControlID Unsigned32 ,
398 requestMapID Unsigned32 ,

r e qu e s t S t a t i s t i c s ID Unsigned32 ,
400 savingMode INTEGER,

samplingFrequency Unsigned32 ,
402 maxDelay INTEGER,

s tar tT ime OBUDateandTime ,
404 endTime OBUDateandTime ,

waitTime OBUDateandTime ,
406 durationTime OBUDateandTime ,

expireTime OBUDateandTime ,
408 lastSampleID Unsigned32 ,

nOfSamples Counter32 ,
410 maxNOfSamples Unsigned32 ,

loopMode INTEGER,
412 s t a tu s INTEGER,

requestUser OCTET STRING}
414

requestID OBJECT−TYPE
416 SYNTAX Unsigned32 (1 . . 99999999)

MAX−ACCESS read−crea t e
418 STATUS current

DESCRIPTION
420 ”This ob j e c t w i l l i d en t i f y an indiv idua l request ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 1
422 : := { requestMonitoringDataEntry 1 }

424 requestMonControlID OBJECT−TYPE
SYNTAX Unsigned32

426 MAX−ACCESS read−crea t e
STATUS current

428 DESCRIPTION
”This ob j e c t w i l l i d en t i f y the requestControlDataEntry r e l a t ed to a request ”

430 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 2
: := { requestMonitoringDataEntry 2 }

432

requestMapID OBJECT−TYPE
434 SYNTAX Unsigned32

MAX−ACCESS read−crea t e
436 STATUS current

DESCRIPTION
438 ”This ob j e c t w i l l i d en t i f y the mapTypeTable r e l a t ed to a reques t s ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 3
440 : := { requestMonitoringDataEntry 3 }

REFERENCES 86

442 r e qu e s t S t a t i s t i c s ID OBJECT−TYPE
SYNTAX Unsigned32

444 MAX−ACCESS read−crea t e
STATUS current

446 DESCRIPTION
”This ob j e c t w i l l i d en t i f y the r eque s t S t a t i s t i c sDa t aEn t ry r e l a t ed to a
request ”

448 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 4
: := { requestMonitoringDataEntry 4 }

450

savingMode OBJECT−TYPE
452 SYNTAX INTEGER {

permanent (0) ,
454 v o l a t i l e (1) }

MAX−ACCESS read−crea t e
456 STATUS current

DESCRIPTION
458 ”This ob j e c t w i l l i d en t i f y the mode in which a s p e c i f i c request w i l l be saved

”
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 5

460 : := { requestMonitoringDataEntry 5 }

462 samplingFrequency OBJECT−TYPE
SYNTAX Unsigned32

464 MAX−ACCESS read−crea t e
STATUS current

466 DESCRIPTION
”This ob j e c t w i l l s t o r e the sampling frequency”

468 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 6
: := { requestMonitoringDataEntry 6 }

470

maxDelay OBJECT−TYPE
472 SYNTAX INTEGER

MAX−ACCESS read−crea t e
474 STATUS current

DESCRIPTION
476 ”This ob j e c t w i l l s t o r e the maximum delay allowed”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 7
478 : := { requestMonitoringDataEntry 7 }

480 s tar tT ime OBJECT−TYPE
SYNTAX OBUDateandTime

482 MAX−ACCESS read−crea t e
STATUS current

484 DESCRIPTION
”This ob j e c t w i l l s t o r e the s t a r t time of a c e r t a i n request ”

486 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 8
: := { requestMonitoringDataEntry 8}

488

REFERENCES 87

endTime OBJECT−TYPE
490 SYNTAX OBUDateandTime

MAX−ACCESS read−crea t e
492 STATUS current

DESCRIPTION
494 ”This ob j e c t w i l l s t o r e the end time of a c e r t a i n request ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 9
496 : := { requestMonitoringDataEntry 9 }

498 waitTime OBJECT−TYPE
SYNTAX OBUDateandTime

500 MAX−ACCESS read−crea t e
STATUS current

502 DESCRIPTION
”This ob j e c t w i l l s t o r e the wait time of a c e r t a i n request ”

504 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 1 0 −−
: := { requestMonitoringDataEntry 10 }

506

durationTime OBJECT−TYPE
508 SYNTAX OBUDateandTime

MAX−ACCESS read−crea t e
510 STATUS current

DESCRIPTION
512 ”This ob j e c t w i l l s t o r e the durat ion time of a c e r t a i n request ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 1 1
514 : := { requestMonitoringDataEntry 11}

516 expireTime OBJECT−TYPE
SYNTAX OBUDateandTime

518 MAX−ACCESS read−crea t e
STATUS current

520 DESCRIPTION
”This ob j e c t w i l l s t o r e the expire time of a c e r t a i n request ”

522 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 1 2
: := { requestMonitoringDataEntry 12}

524

lastSampleID OBJECT−TYPE
526 SYNTAX Unsigned32

MAX−ACCESS read−crea t e
528 STATUS current

DESCRIPTION
530 ”This ob j e c t w i l l s t o r e the ID of the l a s t sample to be recorded”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 1 3
532 : := { requestMonitoringDataEntry 13 }

534 nOfSamples OBJECT−TYPE
SYNTAX Counter32

536 MAX−ACCESS read−only
STATUS current

538 DESCRIPTION

REFERENCES 88

”This ob j e c t w i l l s t o r e the t o t a l number of samples recorded”
540 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 1 4

: := { requestMonitoringDataEntry 14 }
542

maxNOfSamples OBJECT−TYPE
544 SYNTAX Unsigned32

MAX−ACCESS read−crea t e
546 STATUS current

DESCRIPTION
548 ”This ob j e c t w i l l s t o r e the max number of samples to be recorded for a

request ”
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 1 5

550 : := { requestMonitoringDataEntry 15 }

552 loopMode OBJECT−TYPE
SYNTAX INTEGER {

554 yes (1) ,
no(2) }

556 MAX−ACCESS read−only
STATUS current

558 DESCRIPTION
”This ob j e c t w i l l i d en t i f y whether the request w i l l loop or not”

560 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 1 6
: := { requestMonitoringDataEntry 16 }

562

s t a tu s OBJECT−TYPE
564 SYNTAX INTEGER {

o f f (0) ,
566 on(1) ,

s e t (2) ,
568 de le t e (3) ,

ready (4) }
570 MAX−ACCESS read−only

STATUS current
572 DESCRIPTION

”This ob j e c t w i l l i d en t i f y the current s t a tu s of a request ”
574 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 1 7

: := { requestMonitoringDataEntry 17 }
576

requestUser OBJECT−TYPE
578 SYNTAX OCTET STRING

MAX−ACCESS read−crea t e
580 STATUS current

DESCRIPTION
582 ”This ob j e c t w i l l s t o r e the expire time of a c e r t a i n request ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 2 . 1 . 1 8
584 : := { requestMonitoringDataEntry 18}

586 numberOfRequestsControl OBJECT−TYPE
SYNTAX INTEGER

REFERENCES 89

588 MAX−ACCESS read−only
STATUS current

590 DESCRIPTION
””

592 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 3
: := { sensorGroup 3 }

594

requestControlDataTable OBJECT−TYPE
596 SYNTAX SEQUENCE OF RequestControlDataEntry

MAX−ACCESS not−a c c e s s i b l e
598 STATUS current

DESCRIPTION
600 ”This t ab l e i s used to id en t i f y and s to r e informat ion regarding a l l reques t s

on an ob j e c t . ”
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 4

602 : := { sensorGroup 4 }

604 requestControlDataEntry OBJECT−TYPE
SYNTAX RequestControlDataEntry

606 MAX−ACCESS not−a c c e s s i b l e
STATUS current

608 DESCRIPTION
””

610 INDEX {
requestControlID }

612 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 4 . 1
: := { requestControlDataTable 1 }

614

RequestControlDataEntry : := SEQUENCE {
616

requestControlID Unsigned32 ,
618 requestControlMapID Unsigned32 ,

settingMode INTEGER,
620 commitTime OBUDateandTime ,

endControlTime OBUDateandTime ,
622 durationControlTime OBUDateandTime ,

expireControlTime OBUDateandTime ,
624 valuesTableID Unsigned32 ,

s ta tusCont ro l INTEGER }
626

requestControlID OBJECT−TYPE
628 SYNTAX Unsigned32 (1 . . 99999999)

MAX−ACCESS read−only
630 STATUS current

DESCRIPTION
632 ”ID of a c e r t a i n request ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 4 . 1 . 1
634 : := { requestControlDataEntry 1 }

636 requestControlMapID OBJECT−TYPE

REFERENCES 90

SYNTAX Unsigned32
638 MAX−ACCESS read−only

STATUS current
640 DESCRIPTION

”This ob j e c t w i l l i d en t i f y the requestControlMapID re l a t ed to a c e r t a i n
request ”

642 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 4 . 1 . 2 −−
: := { requestControlDataEntry 2 }

644

settingMode OBJECT−TYPE
646 SYNTAX INTEGER {

permanent (0) ,
648 v o l a t i l e (1) }

MAX−ACCESS read−only
650 STATUS current

DESCRIPTION
652 ”This ob j e c t w i l l i d en t i f y the mode in which a s p e c i f i c request w i l l be s e t ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 4 . 1 . 3 −−
654 : := { requestControlDataEntry 3 }

656 commitTime OBJECT−TYPE
SYNTAX OBUDateandTime

658 MAX−ACCESS read−only
STATUS current

660 DESCRIPTION
”This ob j e c t w i l l s t o r e the commit time of a c e r t a i n request ”

662 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 4 . 1 . 4 − −
: := { requestControlDataEntry 4 }

664

endControlTime OBJECT−TYPE
666 SYNTAX OBUDateandTime

MAX−ACCESS read−only
668 STATUS current

DESCRIPTION
670 ”This ob j e c t w i l l s t o r e the end time of a c e r t a i n request ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 4 . 1 . 5 −−
672 : := { requestControlDataEntry 5 }

674 durationControlTime OBJECT−TYPE
SYNTAX OBUDateandTime

676 MAX−ACCESS read−only
STATUS current

678 DESCRIPTION
”This ob j e c t w i l l s t o r e the durat ion time of a c e r t a i n request ”

680 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 4 . 1 . 6 −−
: := { requestControlDataEntry 6 }

682

expireControlTime OBJECT−TYPE
684 SYNTAX OBUDateandTime

MAX−ACCESS read−only

REFERENCES 91

686 STATUS current
DESCRIPTION

688 ”This ob j e c t w i l l s t o r e the expire time of a c e r t a i n request ”
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 4 . 1 . 7 −−

690 : := { requestControlDataEntry 7 }

692 valuesTableID OBJECT−TYPE
SYNTAX Unsigned32

694 MAX−ACCESS read−only
STATUS current

696 DESCRIPTION
”This ob j e c t w i l l i d en t i f y the lastSampleID of the r e spec t i ve value r e l a t ed
to a s p e c i f i c request ”

698 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 4 . 1 . 8 −−
: := { requestControlDataEntry 8 }

700

s ta tusCont ro l OBJECT−TYPE
702 SYNTAX INTEGER {

ina c t i v e (0) ,
704 a c t i v e (1) }

MAX−ACCESS read−only
706 STATUS current

DESCRIPTION
708 ”This ob j e c t w i l l be used to check i f there ’ s any request on t h i s ob j e c t

s t i l l a c t i v e ”
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 4 . 1 . 9 −−

710 : := { requestControlDataEntry 9 }

712 numberOfRequestsSta t i s t i cs OBJECT−TYPE
SYNTAX INTEGER

714 MAX−ACCESS read−only
STATUS current

716 DESCRIPTION
””

718 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 5
: := { sensorGroup 5 }

720

r eque s t S t a t i s t i c sDa t aTab l e OBJECT−TYPE
722 SYNTAX SEQUENCE OF Reques tS ta t i s t i c sDa taEn t ry

MAX−ACCESS not−a c c e s s i b l e
724 STATUS current

DESCRIPTION
726 ”This t ab l e w i l l be used to s to r e re l evan t s t a t i s t i c s regarding a c e r t a i n

request ”
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 6

728 : := { sensorGroup 6 }

730 r eque s t S t a t i s t i c sDa t aEn t ry OBJECT−TYPE
SYNTAX Reques tS ta t i s t i c sDa taEn t ry

732 MAX−ACCESS not−a c c e s s i b l e

REFERENCES 92

STATUS current
734 DESCRIPTION ””

INDEX {
736 s t a t i s t i c s I D }

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 6 . 1
738 : := { r eque s t S t a t i s t i c sDa t aTab l e 1 }

740 Reques tS ta t i s t i c sDa taEn t ry : := SEQUENCE {

742 s t a t i s t i c s I D Unsigned32 ,
dura t i onT imeS ta t i s t i c s OBUDateandTime ,

744 nOfSamplesS ta t i s t i c s Counter32 ,
minValue INTEGER,

746 maxValue INTEGER,
avgValue INTEGER }

748

s t a t i s t i c s I D OBJECT−TYPE
750 SYNTAX Unsigned32 (1 . . 99999999)

MAX−ACCESS read−only
752 STATUS current

DESCRIPTION
754 ” S t a t i s t i c s ID of a c e r t a i n request ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 6 . 1 . 1
756 : := { r eque s t S t a t i s t i c sDa t aEn t ry 1 }

758 dura t i onT imeS ta t i s t i c s OBJECT−TYPE
SYNTAX OBUDateandTime

760 MAX−ACCESS read−only
STATUS current

762 DESCRIPTION
”This ob j e c t w i l l s t o r e the durat ion time of a c e r t a i n request ”

764 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 6 . 1 . 2
: := { r eque s t S t a t i s t i c sDa t aEn t ry 2 }

766

nOfSamplesS ta t i s t i c s OBJECT−TYPE
768 SYNTAX Counter32

MAX−ACCESS read−only
770 STATUS current

DESCRIPTION
772 ”This ob j e c t w i l l s t o r e the number of samples recorded”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 6 . 1 . 3
774 : := { r eque s t S t a t i s t i c sDa t aEn t ry 3 }

776 minValue OBJECT−TYPE
SYNTAX INTEGER

778 MAX−ACCESS read−only
STATUS current

780 DESCRIPTION
”Minimum value recorded by a c e r t a i n request ”

782 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 6 . 1 . 4

REFERENCES 93

: := { r eque s t S t a t i s t i c sDa t aEn t ry 4 }
784

maxValue OBJECT−TYPE
786 SYNTAX INTEGER

MAX−ACCESS read−only
788 STATUS current

DESCRIPTION
790 ”Maximum value recorded by a c e r t a i n request ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 6 . 1 . 5
792 : := { r eque s t S t a t i s t i c sDa t aEn t ry 5 }

794 avgValue OBJECT−TYPE
SYNTAX INTEGER

796 MAX−ACCESS read−only
STATUS current

798 DESCRIPTION
”Average value recorded by a c e r t a i n request ”

800 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 6 . 1 . 6
: := { r eque s t S t a t i s t i c sDa t aEn t ry 6 }

802

numberOfSamples OBJECT−TYPE
804 SYNTAX INTEGER

MAX−ACCESS read−only
806 STATUS current

DESCRIPTION
808 ””

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 7
810 : := { sensorGroup 7 }

812 samplesTable OBJECT−TYPE
SYNTAX SEQUENCE OF SamplesEntry

814 MAX−ACCESS not−a c c e s s i b l e
STATUS current

816 DESCRIPTION
”This t ab l e w i l l s t o r e a l l values requested by a c e r t a i n RequestSampleID
which i d e n t i f i e s the r e spec t i ve requestMonitoringDataTable . ”

818 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 8
: := { sensorGroup 8 }

820

samplesEntry OBJECT−TYPE
822 SYNTAX SamplesEntry

MAX−ACCESS not−a c c e s s i b l e
824 STATUS current

DESCRIPTION
826 ””

INDEX {
828 sampleID }

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 8 . 1
830 : := { samplesTable 1 }

REFERENCES 94

832 SamplesEntry : := SEQUENCE {
sampleID Unsigned32 ,

834 requestSampleID Unsigned32 ,
timeStamp OBUDateandTime ,

836 sampleFrequency Unsigned32 ,
previousSampleID Unsigned32 ,

838 sampleType INTEGER,
sampleRecordedValue INTEGER,

840 mapTypeSamplesID Unsigned32 ,
sampleCheckSum OCTET STRING }

842

sampleID OBJECT−TYPE
844 SYNTAX Unsigned32 (1 . . 99999999)

MAX−ACCESS read−only
846 STATUS current

DESCRIPTION
848 ”This ob j e c t w i l l i d en t i f y a s p e c i f i c recorded value”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 8 . 1 . 1
850 : := { samplesEntry 1 }

852 requestSampleID OBJECT−TYPE
SYNTAX Unsigned32

854 MAX−ACCESS read−only
STATUS current

856 DESCRIPTION
”This ob j e c t w i l l be used to id en t i f y the request on requestControlDataTable ”

858 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 8 . 1 . 2
: := { samplesEntry 2 }

860

timeStamp OBJECT−TYPE
862 SYNTAX OBUDateandTime

MAX−ACCESS read−only
864 STATUS current

DESCRIPTION
866 ”This ob j e c t w i l l i d en t i f y the time at which a value was recorded”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 8 . 1 . 3
868 : := { samplesEntry 3 }

870 sampleFrequency OBJECT−TYPE
SYNTAX Unsigned32

872 MAX−ACCESS read−only
STATUS current

874 DESCRIPTION
”This ob j e c t w i l l s t o r e the sample frequency”

876 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 8 . 1 . 4
: := { samplesEntry 4 }

878

previousSampleID OBJECT−TYPE
880 SYNTAX Unsigned32

MAX−ACCESS read−only

REFERENCES 95

882 STATUS current
DESCRIPTION

884 ”This ob j e c t w i l l s t o r e the ID of the previously recorded sample from the
same request ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 8 . 1 . 5
886 : := { samplesEntry 5 }

888 sampleType OBJECT−TYPE
SYNTAX INTEGER {

890 shor t (0) ,
medium(1) ,

892 long (2) }
MAX−ACCESS read−only

894 STATUS current
DESCRIPTION

896 ”This ob j e c t w i l l s t o r e the type of data being recorded .
shor t=16 b i t

898 medium=32b i t
long=64b i t ”

900 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 8 . 1 . 6 −−
: := { samplesEntry 6 }

902

sampleRecordedValue OBJECT−TYPE
904 SYNTAX INTEGER

MAX−ACCESS read−only
906 STATUS current

DESCRIPTION
908 ”This ob j e c t w i l l s t o r e sensor readings ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 8 . 1 . 7 −−
910 : := { samplesEntry 7 }

912 mapTypeSamplesID OBJECT−TYPE
SYNTAX Unsigned32

914 MAX−ACCESS read−only
STATUS current

916 DESCRIPTION
”This ob j e c t w i l l point to the desc r ip t i on of a s igna l . ”

918 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 8 . 1 . 8 −−
: := { samplesEntry 8 }

920

sampleCheckSum OBJECT−TYPE
922 SYNTAX OCTET STRING

MAX−ACCESS read−only
924 STATUS current

DESCRIPTION
926 ”This ob j e c t w i l l be used to s to r e a checksum of an recorded value , t h i s

checksum wi l l be crea ted based on timestamp and the name of the CAN node , and
wi l l so as to i d en t i f y mult ip le readings from the same CAN message”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 8 . 1 . 9 −−
928 : := { samplesEntry 9 }

REFERENCES 96

930 numberOfMapTypes OBJECT−TYPE
SYNTAX INTEGER

932 MAX−ACCESS read−only
STATUS current

934 DESCRIPTION
””

936 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 9
: := { sensorGroup 9 }

938

mapTypeTable OBJECT−TYPE
940 SYNTAX SEQUENCE OF MapTypeEntry

MAX−ACCESS not−a c c e s s i b l e
942 STATUS current

DESCRIPTION
944 ”This t ab l e w i l l map propr ie ta ry manufacturers ECUs in to gener i c types

defined on genericTypesTable . ”
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 0

946 : := { sensorGroup 10 }

948 mapTypeEntry OBJECT−TYPE
SYNTAX MapTypeEntry

950 MAX−ACCESS not−a c c e s s i b l e
STATUS current

952 DESCRIPTION ””
INDEX {

954 mapTypeID }
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 0 . 1

956 : := { mapTypeTable 1 }

958 MapTypeEntry : := SEQUENCE {
mapTypeID Unsigned32 ,

960 proprietaryTypeID Unsigned32 ,
genericMapTypeID Unsigned32 ,

962 sampleUnitMapID Unsigned32 ,
p rec i s i on INTEGER,

964 maxSamplingFrequency Unsigned32 ,
maxMapDelay INTEGER,

966 dataSource OCTET STRING,
in t e r f a ceSource OCTET STRING }

968

mapTypeID OBJECT−TYPE
970 SYNTAX Unsigned32 (1 . . 99999999)

MAX−ACCESS read−only
972 STATUS current

DESCRIPTION
974 ”This ob j e c t w i l l i d en t i f y a c e r t a i n Map Type”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 0 . 1 . 1
976 : := { mapTypeEntry 1 }

REFERENCES 97

978 proprietaryTypeID OBJECT−TYPE
SYNTAX Unsigned32

980 MAX−ACCESS read−only
STATUS current

982 DESCRIPTION ””
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 0 . 1 . 2

984 : := { mapTypeEntry 2 }

986 genericMapTypeID OBJECT−TYPE
SYNTAX Unsigned32

988 MAX−ACCESS read−only
STATUS current

990 DESCRIPTION
”This ob j e c t w i l l conta in the gener i c type of data recorded , t h i s gener i c
type of data i s s tored on the genericTypesTable ”

992 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 0 . 1 . 3
: := { mapTypeEntry 3 }

994

sampleUnitMapID OBJECT−TYPE
996 SYNTAX Unsigned32

MAX−ACCESS read−only
998 STATUS current

DESCRIPTION
1000 ”This ob j e c t w i l l i d en t i f y the uni t in which samples are taken , t h i s uni t i s

s tored on the sampleUnitsTable ”
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 0 . 1 . 4

1002 : := { mapTypeEntry 4 }

1004 prec i s i on OBJECT−TYPE
SYNTAX INTEGER (0 | 1 . . 9999999)

1006 MAX−ACCESS read−only
STATUS current

1008 DESCRIPTION
”This ob j e c t w i l l i d en t i f y the prec i s i on of a pa r t i c u l a r sensor ”

1010 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 0 . 1 . 5
: := { mapTypeEntry 5 }

1012

maxSamplingFrequency OBJECT−TYPE
1014 SYNTAX Unsigned32

MAX−ACCESS read−only
1016 STATUS current

DESCRIPTION
1018 ”This ob j e c t w i l l i d en t i f y the maximum sampling frequency of a pa r t i c u l a r

sensor ”
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 0 . 1 . 6

1020 : := { mapTypeEntry 6 }

1022 maxMapDelay OBJECT−TYPE
SYNTAX INTEGER

1024 MAX−ACCESS read−only

REFERENCES 98

STATUS current
1026 DESCRIPTION

”This ob j e c t w i l l i d en t i f y the maximum delay of a pa r t i c u l a r sensor ”
1028 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 0 . 1 . 7

: := { mapTypeEntry 7 }
1030

dataSource OBJECT−TYPE
1032 SYNTAX OCTET STRING

MAX−ACCESS read−only
1034 STATUS current

DESCRIPTION
1036 ”This ob j e c t w i l l i d en t i f y the sensor , fo r example ’FMCW Sensor ’ ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 0 . 1 . 8
1038 : := { mapTypeEntry 8 }

1040 i n t e r f a ceSource OBJECT−TYPE
SYNTAX OCTET STRING

1042 MAX−ACCESS read−only
STATUS current

1044 DESCRIPTION
”This ob j e c t w i l l i d en t i f y the i n t e r f a c e from which data i s being read , fo r
example ’CAN 2 .0 ’ ”

1046 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 0 . 1 . 9
: := { mapTypeEntry 9 }

1048

numberOfGenericTypes OBJECT−TYPE
1050 SYNTAX INTEGER

MAX−ACCESS read−only
1052 STATUS current

DESCRIPTION
1054 ””

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 1
1056 : := { sensorGroup 11 }

1058 genericTypesTable OBJECT−TYPE
SYNTAX SEQUENCE OF GenericTypesEntry

1060 MAX−ACCESS not−a c c e s s i b l e
STATUS current

1062 DESCRIPTION
”This t ab l e w i l l conta in a gener ic desc r ip t i on of the type of data a c e r t a i n
sensor i s generat ing , fo r example : ’ Vehic le ve l o c i t y ’ . ”

1064 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 2
: := { sensorGroup 12 }

1066

genericTypesEntry OBJECT−TYPE
1068 SYNTAX GenericTypesEntry

MAX−ACCESS not−a c c e s s i b l e
1070 STATUS current

DESCRIPTION ””
1072 INDEX {

REFERENCES 99

genericTypeID }
1074 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 1 . 1

: := { genericTypesTable 1 }
1076

GenericTypesEntry : := SEQUENCE {
1078 genericTypeID Unsigned32 ,

typeDescr ipt ion OCTET STRING }
1080

genericTypeID OBJECT−TYPE
1082 SYNTAX Unsigned32 (1 . . 99999999)

MAX−ACCESS read−only
1084 STATUS current

DESCRIPTION
1086 ”This ob j e c t w i l l i d en t i f y a c e r t a i n type desc r ip t i on ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 1 . 1 . 1
1088 : := { genericTypesEntry 1 }

1090 typeDescr ipt ion OBJECT−TYPE
SYNTAX OCTET STRING

1092 MAX−ACCESS read−only
STATUS current

1094 DESCRIPTION
”This ob j e c t w i l l conta in gener ic informat ion regarding the types of data
tha t can be recorded”

1096 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 1 . 1 . 2
: := { genericTypesEntry 2 }

1098

numberOfSampleUnits OBJECT−TYPE
1100 SYNTAX INTEGER

MAX−ACCESS read−only
1102 STATUS current

DESCRIPTION
1104 ””

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 3
1106 : := { sensorGroup 13 }

1108 sampleUnitsTable OBJECT−TYPE
SYNTAX SEQUENCE OF SampleUnitsEntry

1110 MAX−ACCESS not−a c c e s s i b l e
STATUS current

1112 DESCRIPTION
”This t ab l e w i l l conta in the uni t with which a sensor i s recording data , fo r
example : ’Km/h ’ .

1114 This w i l l def ine the coding algorithm for the Prec i s i on ob j e c t on the
mapTypeTable . ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 4
1116 : := { sensorGroup 14 }

1118 sampleUnitsEntry OBJECT−TYPE
SYNTAX SampleUnitsEntry

REFERENCES 100

1120 MAX−ACCESS not−a c c e s s i b l e
STATUS current

1122 DESCRIPTION ””
INDEX {

1124 sampleUnitID }
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 4 . 1

1126 : := { sampleUnitsTable 1 }

1128 SampleUnitsEntry : := SEQUENCE {

1130 sampleUnitID Unsigned32 ,
un i tDesc r ip t ion OCTET STRING }

1132

sampleUnitID OBJECT−TYPE
1134 SYNTAX Unsigned32 (1 . . 99999999)

MAX−ACCESS read−only
1136 STATUS current

DESCRIPTION
1138 ”This ob j e c t w i l l i d en t i f y a c e r t a i n uni t des c r ip t i on ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 4 . 1 . 1
1140 : := { sampleUnitsEntry 1 }

1142 uni tDesc r ip t ion OBJECT−TYPE
SYNTAX OCTET STRING

1144 MAX−ACCESS read−only
STATUS current

1146 DESCRIPTION
”This ob j e c t w i l l conta in the un i t s in which sensors record t h e i r data”

1148 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 2 . 1 4 . 1 . 2
: := { sampleUnitsEntry 2 }

1150

errorGroup OBJECT−GROUP
1152 OBJECTS {

numberOfErrorDescriptions ,
1154 numberOfErrors ,

errorID ,
1156 errorTimeStamp ,

errorDescr ipt ionID ,
1158 errorDescrID ,

errorDescr ,
1160 errorUser ,

errorExpireTime ,
1162 errorCode }

STATUS current
1164 DESCRIPTION

”This group inc ludes a l l ob j e c t s r e l a t ed to e r ro r s ”
1166 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 −−

: := { obuMIB 3 }
1168

numberOfErrors OBJECT−TYPE

REFERENCES 101

1170 SYNTAX INTEGER
MAX−ACCESS read−only

1172 STATUS current
DESCRIPTION

1174 ””
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 . 1

1176 : := { errorGroup 1 }

1178 errorTable OBJECT−TYPE
SYNTAX SEQUENCE OF ErrorEntry

1180 MAX−ACCESS not−a c c e s s i b l e
STATUS current

1182 DESCRIPTION
”This t ab l e w i l l conta in informat ion regarding ac t i v e e r ror codes . ”

1184 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 . 2
: := { errorGroup 2 }

1186

errorEntry OBJECT−TYPE
1188 SYNTAX ErrorEntry

MAX−ACCESS not−a c c e s s i b l e
1190 STATUS current

DESCRIPTION
1192 ””

INDEX {
1194 errorID }

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 . 2 . 1
1196 : := { errorTable 1 }

1198 ErrorEntry : := SEQUENCE {

1200 errorID Unsigned32 ,
errorTimeStamp OBUDateandTime ,

1202 errorDescr ip t ionID Unsigned32 ,
errorUser OCTET STRING,

1204 errorExpireTime OCTET STRING }

1206 errorID OBJECT−TYPE
SYNTAX Unsigned32 (1 . . 99999999)

1208 MAX−ACCESS read−only
STATUS current

1210 DESCRIPTION
”This ob j e c t w i l l i d en t i f y a l l cur ren t ly a c t i v e reported e r ro r s ”

1212 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 . 2 . 1 . 1
: := { errorEntry 1 }

1214

errorTimeStamp OBJECT−TYPE
1216 SYNTAX OBUDateandTime

MAX−ACCESS read−only
1218 STATUS current

DESCRIPTION

REFERENCES 102

1220 ”This ob j e c t w i l l s t o r e the time in which an er ror was f i r s t reported ”
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 . 2 . 1 . 2

1222 : := { errorEntry 2 }

1224 errorDescr ip t ionID OBJECT−TYPE
SYNTAX Unsigned32

1226 MAX−ACCESS read−only
STATUS current

1228 DESCRIPTION
”This ob j e c t w i l l conta in the desc r ip t i on of a c e r t a i n error , t h i s
desc r ip t i on i s s tored on the er rorDescr ip t ionTab le ”

1230 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 . 2 . 1 . 3
: := { errorEntry 3 }

1232

errorUser OBJECT−TYPE
1234 SYNTAX OCTET STRING

MAX−ACCESS read−only
1236 STATUS current

DESCRIPTION
1238 ”This ob j e c t w i l l be used to s to r e the user whose ac t i ons t r iggered an er ror ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 . 2 . 1 . 4
1240 : := { errorEntry 4 }

1242 errorExpireTime OBJECT−TYPE
SYNTAX OCTET STRING

1244 MAX−ACCESS read−only
STATUS current

1246 DESCRIPTION
”This ob j e c t w i l l be used with errorTimeStamp to de l e t e an er ror entry a f t e r
the expire time has been passed”

1248 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 . 2 . 1 . 5 −−
: := { errorEntry 5 }

1250

numberOfErrorDescriptions OBJECT−TYPE
1252 SYNTAX INTEGER

MAX−ACCESS read−only
1254 STATUS current

DESCRIPTION
1256 ””

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 . 3
1258 : := { errorGroup 3 }

1260 er rorDescr ip t ionTab le OBJECT−TYPE
SYNTAX SEQUENCE OF ErrorDescr ipt ionEntry

1262 MAX−ACCESS not−a c c e s s i b l e
STATUS current

1264 DESCRIPTION
”This t ab l e w i l l be used to s to r e a l l poss ib l e errors , both a c t i v e or
otherwise , and t h e i r de s c r ip t i ons . ”

1266 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 . 4

REFERENCES 103

: := { errorGroup 4 }
1268

er rorDescr ip t ionEntry OBJECT−TYPE
1270 SYNTAX ErrorDescr ipt ionEntry

MAX−ACCESS not−a c c e s s i b l e
1272 STATUS current

DESCRIPTION
1274 ””

INDEX {
1276 errorDescrID }

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 . 4 . 1
1278 : := { er rorDescr ip t ionTab le 1 }

1280 ErrorDescr ipt ionEntry : := SEQUENCE {

1282 errorDescrID Unsigned32 ,
errorDescr OCTET STRING,

1284 errorCode Unsigned32 }

1286 errorDescrID OBJECT−TYPE
SYNTAX Unsigned32 (1 . . 99999999)

1288 MAX−ACCESS read−only
STATUS current

1290 DESCRIPTION
”This ob j e c t w i l l i d en t i f y a c e r t a i n e r ro r desc r ip t i on ”

1292 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 . 4 . 1 . 1
: := { er rorDescr ip t ionEntry 1 }

1294

errorDescr OBJECT−TYPE
1296 SYNTAX OCTET STRING

MAX−ACCESS read−only
1298 STATUS current

DESCRIPTION
1300 ”This ob j e c t w i l l provide a gener i c desc r ip t i on to the er ror being reported ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 . 4 . 1 . 2
1302 : := { er rorDescr ip t ionEntry 2 }

1304 errorCode OBJECT−TYPE
SYNTAX Unsigned32

1306 MAX−ACCESS read−only
STATUS current

1308 DESCRIPTION
”This ob j e c t w i l l conta in the current e r ro r code tha t was t r iggered by user
ac t ion ”

1310 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 3 . 4 . 1 . 3
: := { er rorDescr ip t ionEntry 3 }

1312

actuatorGroup OBJECT−GROUP
1314 OBJECTS {

numberOfCommandTemplates ,

REFERENCES 104

1316 numberOfCommands ,
commandID ,

1318 templateID ,
commandInput ,

1320 commandUser ,
commandTemplateID ,

1322 commandDescription ,
targetNode ,

1324 commandTemplate }
STATUS current

1326 DESCRIPTION
”This group inc ludes a l l ob j e c t s r e l a t ed to ac tua to r s ”

1328 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 −−
: := { obuMIB 4 }

1330

numberOfCommandTemplates OBJECT−TYPE
1332 SYNTAX INTEGER

MAX−ACCESS read−only
1334 STATUS current

DESCRIPTION
1336 ””

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 . 1
1338 : := { actuatorGroup 1 }

1340 commandTemplateTable OBJECT−TYPE
SYNTAX SEQUENCE OF CommandTemplateEntry

1342 MAX−ACCESS not−a c c e s s i b l e
STATUS current

1344 DESCRIPTION
”This t ab l e w i l l conta in CAN command templates to be used when a c t i v a t i ng /
deac t iva t ing ac tua to r s ”

1346 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 . 2
: := { actuatorGroup 2 }

1348

commandTemplateEntry OBJECT−TYPE
1350 SYNTAX CommandTemplateEntry

MAX−ACCESS not−a c c e s s i b l e
1352 STATUS current

DESCRIPTION ””
1354 INDEX {

commandTemplateID }
1356 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 . 2 . 1

: := { commandTemplateTable 1 }
1358

CommandTemplateEntry : := SEQUENCE {
1360 commandTemplateID Unsigned32 ,

commandDescription OCTET STRING,
1362 targetNode OCTET STRING,

commandTemplate OCTET STRING }
1364

REFERENCES 105

commandTemplateID OBJECT−TYPE
1366 SYNTAX Unsigned32 (1 . . 99999999)

MAX−ACCESS read−only
1368 STATUS current

DESCRIPTION
1370 ”This ob j e c t w i l l i d en t i f y a s p e c i f i c command template ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 . 2 . 1 . 1 −−
1372 : := { commandTemplateEntry 1 }

1374 commandDescription OBJECT−TYPE
SYNTAX OCTET STRING

1376 MAX−ACCESS read−only
STATUS current

1378 DESCRIPTION
”This ob j e c t w i l l s t o r e a shor t desc r ip t i on of what a command does”

1380 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 . 2 . 1 . 2 −−
: := { commandTemplateEntry 2 }

1382

targetNode OBJECT−TYPE
1384 SYNTAX OCTET STRING

MAX−ACCESS read−only
1386 STATUS current

DESCRIPTION
1388 ”This ob j e c t w i l l s t o r e the Node ID to which a command wi l l be sent ”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 . 2 . 1 . 3 −−
1390 : := { commandTemplateEntry 3 }

1392 commandTemplate OBJECT−TYPE
SYNTAX OCTET STRING

1394 MAX−ACCESS read−only
STATUS current

1396 DESCRIPTION
”This ob j e c t w i l l s t o r e a template of a command in hex . eg : FF FF FF ∗∗ ∗∗ FF
FF FF , where ∗ ind i c a t e where user input wi l l be placed”

1398 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 . 2 . 1 . 4 −−
: := { commandTemplateEntry 4 }

1400

numberOfCommands OBJECT−TYPE
1402 SYNTAX INTEGER

MAX−ACCESS read−only
1404 STATUS current

DESCRIPTION
1406 ””

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 . 3
1408 : := { actuatorGroup 3 }

1410 commandTable OBJECT−TYPE
SYNTAX SEQUENCE OF CommandEntry

1412 MAX−ACCESS not−a c c e s s i b l e
STATUS current

REFERENCES 106

1414 DESCRIPTION
”This t ab l e w i l l conta in a l l commands tha t are to be sent in to the CAN
network”

1416 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 . 4
: := { actuatorGroup 4 }

1418

commandEntry OBJECT−TYPE
1420 SYNTAX CommandEntry

MAX−ACCESS not−a c c e s s i b l e
1422 STATUS current

DESCRIPTION ””
1424 INDEX {

commandID }
1426 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 . 4 . 1

: := { commandTable 1 }
1428

CommandEntry : := SEQUENCE {
1430

commandID Unsigned32 ,
1432 templateID Unsigned32 ,

commandInput INTEGER,
1434 commandUser OCTET STRING}

1436 commandID OBJECT−TYPE
SYNTAX Unsigned32 (1 . . 99999999)

1438 MAX−ACCESS read−crea t e
STATUS current

1440 DESCRIPTION
”This ob j e c t w i l l i d en t i f y a c e r t a i n command”

1442 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 . 4 . 1 . 1 −−
: := { commandEntry 1 }

1444

templateID OBJECT−TYPE
1446 SYNTAX Unsigned32

MAX−ACCESS read−crea t e
1448 STATUS current

DESCRIPTION
1450 ”This ob j e c t w i l l be used to s to r e the ID of the commandTemplate to be used

in t h i s command”
−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 . 4 . 1 . 2 −−

1452 : := { commandEntry 2 }

1454 commandInput OBJECT−TYPE
SYNTAX INTEGER

1456 MAX−ACCESS read−crea t e
STATUS current

1458 DESCRIPTION
”This ob j e c t w i l l be used to s to r e the user inputs tha t are to be used in the
command”

1460 −− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 . 4 . 1 . 3 −−

REFERENCES 107

: := { commandEntry 3 }
1462

commandUser OBJECT−TYPE
1464 SYNTAX OCTET STRING

MAX−ACCESS read−crea t e
1466 STATUS current

DESCRIPTION
1468 ”This ob j e c t w i l l s t o r e the username of the user tha t s e t t h i s command”

−− 1 . 3 . 6 . 1 . 3 . 8 8 8 8 . 4 . 4 . 1 . 4 −−
1470 : := { commandEntry 4 }

1472 OBUDateandTime : := OCTET STRING (SIZE (11 | 13))

1474 END

Listing 1: Full MIB Specification

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Document Layout

	2 Related technologies
	2.1 SNMP
	2.1.1 USM/VACM
	2.1.2 How it works

	2.2 SNMP Message Format
	2.3 MIB
	2.4 OBD-II
	2.5 CAN
	2.5.1 How it works
	2.5.2 Message Types
	2.5.3 Message Fields

	2.6 SNMP and IOT
	2.7 Summary

	3 SNMP-Based Solution
	3.1 System Architecture
	3.2 Management Information Base
	3.2.1 System OBU Group
	3.2.2 Sensor Group
	3.2.3 Error Group
	3.2.4 Actuator Group
	3.2.5 Structure of Management Information

	3.3 Summary

	4 Prototype Development & Testing
	4.1 NET-SNMP
	4.2 Generating Virtual CAN Messages
	4.3 SNMP Agent
	4.3.1 Decoding CAN Messages
	4.3.2 Managing Requests
	4.3.3 Storing Sensor Readings
	4.3.4 Saving Modes

	4.4 Manager
	4.4.1 Authentication and Privacy
	4.4.2 GetBulk and Set
	4.4.3 View any table in the system
	4.4.4 Create new requests
	4.4.5 View a request
	4.4.6 Edit a request
	4.4.7 View Active errors in the system
	4.4.8 Send Command

	4.5 Tests and Results
	4.5.1 Testing Environment
	4.5.2 Testing Results

	4.6 Summary

	5 Conclusion
	References
	Annex A: OBU MIB

		2022-02-14T13:11:43+0000

