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Remote sensing fluvial de escala múltipla – Um estudo das discrepâncias de escala espacial entre dados multiespectrais de Sentinel-2 e UAV em zonas ripárias no 

nordeste de Portugal 

RESUMO 

 

Dados provenientes de deteção remota e observação da Terra são cada vez mais utilizados para 

a monitorização e avaliação do estado da saúde de ecossistemas bem como das suas funções. 

Com o desenvolvimento de novas tecnologias, sensores montados em plataformas UAV fornecem 

dados de deteção remota a resoluções com maior precisão que aquela encontrada em satélites, 

apesar de não conseguirem cobrir tanta área como estes últimos. A ponderação destes prós e 

contras dá origem ao problema de correlacionar os dados provenientes de ambas as fontes. Nesta 

tese são apresentadas uma análise detalhada e uma comparação entre dados multiespectrais de 

habitats ripários captados em quatro afluentes (CAB1, RAB2, VEZ2 and VEZ3). Com base em 

dados multiespectrais capturados por um sensor Micasense Rededge™ montado num DJI 

Phantom 4 RTK e pelos satélites Sentinel-2, foi feita a caracterização dos afluentes utilizando o 

índice NDVI (normalized difference vegetation index). O NDVI foi considerado para este estudo uma 

vez que a sua relação com o estado de saúde das comunidades de plantas é bem conhecida. As 

imagens captadas por UAV foram redimensionadas em três processos diferentes para igualar a 

resolução espacial do satélite (10x10m): média, mediana e terceiro quartil.  Para testar qual das 

imagens redimensionadas se aproximava mais à de satélite, foram usadas medidas de goodness 

of fit (RMSE e R2). Os resultados demonstram que nas resoluções nativas, os valores de NDVI 

apresetam o máximo de dispersão, o que é esperado dada a maior divergência na escala das 

resoluções. O método de upscale por terceiro quartil foi o que mais se aproxima aos dados de 

satélite. Uma segunda análise foi feita para avaliar qual era a maior causa da dispersão de valores 

dentro do terceiro quartil. Foi encontrada uma maior influência do tipo de uso do solo que na 

localização dos rios, sendo os campos agrícolas os que apresentam maior discrepância, 

maioritariamente devido a diferenças no uso do solo (rotação de baldios) e a diferentes estádios 

de crescimento das colheitas. Este método comparativo devia ser utilizado em diferentes 

ecossistemas, índices e intervalos temporais para avaliar a sua fiabilidade 

 

 

 

Palavas-chave: deteção remota; UAV; Sentinel-2; vegetação ripária; escalamento 
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Multi-scale fluvial remote sensing – A study on spatial scaling discrepancies between Sentinel-2 and UAV multispectral data on riparian zones in Northwest Portugal 

ABSTRACT 

 

Remote sensed data is increasingly being used to monitor and evaluate ecosystem health and 

functions. With the dawn of new technologies, UAV platform mounted sensors provide remote 

sensing data at spatial resolutions that are far more precise than satellite, however the spatial 

extent to which a UAV covers is diminutive when compared to that of satellite. This trade-off 

between pros and cons raises a problem in correlating image data from both sources. In this thesis, 

a detailed analysis and comparison of riparian habitat multispectral data between UAV and satellite 

at four different river reaches (CAB1, RAB2, VEZ2 and VEZ3) is presented. Based on multispectral 

data, captured from a Micasense Rededge™ sensor mounted on a DJI Phantom 4 RTK and 

Sentinel-2 satellites, the characterization of the stream reaches was possible using the normalized 

difference vegetation index (NDVI) maps. NDVI was considered due to its well-known relationship 

to plant community health. UAV images were rescaled to match satellite resolution (10x10m pixel) 

by three distinct methods: average, median and third quartile. To test which one was closer to 

satellite values, goodness of fit measures (RMSE and R2) were considered. Results show that at 

native resolutions, NDVI values differ the most, as is expected due to the higher divergence of 

spatial resolution. The method that best fitted the satellite values was upscaling by third quartile. 

A second analysis was made to evaluate what caused dispersion within the third quartile upscale. 

Significantly higher influences of land cover type were confirmed when compared to river location, 

with farmland showing the greatest discrepancy mainly because of differences in farm plot use 

(fallow rotation) and crop growth stage. This proposed comparative method should be extended to 

different ecosystems, indices and time frames in future studies to further evaluate his reliability. 
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1. INTRODUCTION  

 

1.1.  Anthropogenic influence in riparian ecosystem functions and services 

As Human growth and expansion move ever onwards, we’ve become a major threat to 

ecosystems by changing their processes and functioning, leading to a worldwide decrease in 

biodiversity (Piégay et al., 2020; Tilman et al., 2012, 2017). Studies (Daily et al., 2000; Loreau et 

al., 2002)  show the changes in biodiversity directly affect the functioning of ecosystems and the 

goods and services they provide to society. Vitousek et al., (1997) calculated that 30-50 % of the 

world’s land surface has been transformed by human action. Pollution, waste disposal, riparian 

simplification, bank alteration, straightening and dam construction – human actions increasingly 

driven by our demands for energy – affect river ecosystems (Bruno et al., 2016; Pievani, 2014; 

Sabater, 2008).  As such, the Anthropocene is of interest for river scientists and fluvial 

geomorphologists who investigate future changes, management applications and decision-making 

support (Piégay et al., 2020).  

Freshwater ecosystems give crucial functions and services, by providing food, water supplies 

and water purification, transport of sediments and nutrients, habitats that support biodiversity, 

create recreational opportunities and enhance the overall quality of human life (Postel & Richter, 

2003), and yet, they are deteriorating especially fast due to anthropogenic pressures, being some 

of the most damaged ecosystems in the biosphere, with some of the highest rates of species loss 

(Rundle, 2002; Wall et al., 2001).  

Riparian zones represent transitional areas occurring between land and freshwater 

ecosystems, being recognized as areas of biological, physical and chemical interaction and, 

consequently, are typified by unusually high biodiversity and diversity of environmental processes 

(Gregory et al., 1991), containing a diverse collection of valuable species and being regarded as 

biodiversity corridors (Corbacho et al., 2003; Dwire et al., 2018). Riparian vegetation (i.e. plant 

communities in streams, riverbanks and in floodplains) is present across nearly all riverine 

domains, and as such, plays a vital role in the health of the ecosystem (Tomsett & Leyland, 2019), 

(Mligo, 2017). Being diverse in species, structure and regeneration processes (Maingi & Marsh, 

2006), riparian plant communities exhibit a high degree of structural and compositional diversity 

(Gregory et al., 1991), making it extremely difficult to access the current state of biodiversity loss 

as a result of human disturbance (Oliveira et al., 2004).  Fluvial changes are driven by a complex 

system of drivers, pressures and impacts, one of which is the composition and evolution of the 
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plant communities that inhabit riparian zones. Climatic change also leads to significant alterations 

at the physiological level of plants, namely leaf unfolding and flowering of plants in spring or colour 

changing and leaf fall in autumn (Gordo & Sanz, 2010), as well as an increase in the susceptibility 

of plant species to pathogens and pests, causing tree die-offs and changes in the distribution of 

vegetation at a regional level (Bodner & Robles, 2017; Breshears et al., 2005). It is therefore of 

major importance to monitor these river corridors to understand their processes, characterize 

evolutionary trajectories, maintain their ecological sustainability and preserve them as a resource 

for future generations (Piégay et al., 2020), (Tomsett & Leyland, 2019). 

 

1.2.  Remote sensing for monitoring ecosystems  

 Earth observation (EO) can be defined as the gathering of information about the physical, 

chemical, and biological systems of planet Earth. It can be performed via remote-sensing 

technologies and by ground-based techniques (International Journal of Applied Earth Observation 

and Geoinformation , 2012). As such, EO is instrumental in for monitoring ecosystems, for it 

provides information about changes in ecosystems at local, regional, and global scales, being a 

powerful tool for conservation planning (Vihervaara et al., 2017). Due to the rapid changes occuring 

throughout Earth’s biosphere, quick spatio-temporal assessment is difficult using conventional 

methods, however, thanks to technological advances, remote sensing platforms now come with 

higher spatial resolutions (which in turn translates to a decrease in pixel area, and an increase in 

homogeneity of soil/vegetation cover characteristics inside the pixel), broad coverages and high 

revisit frequency, which facilitates in the acquisition of data (Bollas et al., 2021; Torresani et al., 

2019; Westoby et al., 2012).However, this also raises new challenges in terms of processing and 

software needs for conservation and biodiversity activities (Corbane et al., 2015; He et al., 2015; 

Lang et al., 2015; Rocchini et al., 2015). 

 One of the growing fields in EO techniques in the past decades is remote sensing (from now on 

referred to as RS). RS can be defined as a range of techniques and methods used to monitor the 

earth’s resources and to acquire information about spatial objects and phenomena without physical 

contact (usually through platform mounted sensors) (Fig.1) (Bollas et al., 2021; Piégay et al., 

2020; Pinter et al., 2003). RS uses the electromagnetic spectrum (visible, infrared and 

microwaves) to extract data from the spectral reflectance characteristics of targets at a distance 

(Bollas et al., 2021; Shanmugapriya et al., 2019). 
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Figure 1. Elements and processes of a remote sensing system (modified from Walton, 1989). 

 

With a growth in multispectral and hyperspectral sensors, RS applications have been employed 

in different fields, such as crop growth monitoring, land use pattern and land cover changes, 

mapping of water resources and water status under field condition, monitoring of diseases and 

pest infestation, forecasting of harvest date and yield estimation, precision farming and weather 

forecasting purposes along with field observations (Atzberger, 2013; Di Gennaro et al., 2019; 

Kingra et al., 2016; Messina et al., 2020; Shanmugapriya et al., 2019). RS techniques (along with 

GIS) have recently been applicable in riparian zones with good results, for they allow the creation 

of spatio-temporal basic informative layers which can be successfully applied to diverse fields 

including flood plain mapping, hydrological modelling, surface energy flux, urban development and 

stress detection (Alleaume et al., 2018; Barton, 2012; He et al., 2015; Kingra et al., 2016; Nezhad 

et al., 2018; Pinter et al., 2003; Rocchini et al., 2015; Tomsett & Leyland, 2019).  The usage of 

satellites as platforms for remote sensing is not a novelty for the scientific world (Brekke & Solberg, 

2005; Holmgren & Thuresson, 1998; Martin, 2008; Tucker & Sellers, 1986; Verbyla, 1995), with 

studies dating back more than 40 years. Since the launch of the first civilian earth-observing 

satellite in 1972, satellite remote sensing has provided an ever increasing sophisticated information 

on the structures and functions of the earth’s surface (Iverson et al., 1989), with modern satellites 

systems like Pléiades 1, KOMPSAT-3 and SuperView-1 offering an impressive resolution of just 

0,5m/pxl. Sentinel-2 satellite has been extensively used (Bollas et al., 2021; Cavur et al., 2019; 

Di Gennaro et al., 2019; Ghoussein et al., 2019; Khaliq et al., 2019; Messina et al., 2020, 2020; 



4 
 

Nezhad et al., 2018, 2019; Pace et al., 2021; Revill et al., 2020; Xu et al., 2021) in different fields 

of knowledge (conservation, engineering, urban planning, etc) and it is a well-established and 

powerful remote sensing tool, most of the times chosen based on its decametric resolution in terms 

of space and time, with a ground sample distance of up to 10m, revisit time of six days, field of 

view of 290km and a free access dataset that is easily available. Similar to satellite platforms, UAV 

mounted sensors are being used more and more in scientific studies (Abdullah et al., 2021; Berni 

et al., 2009; Casado et al., 2015; De Luca et al., 2019; Dubbini et al., 2015; Kislik et al., 2018, 

2020; Pontoglio et al., 2021; Themistocleous, 2014) in recent years, mainly because these 

platforms are becoming increasingly more available and reliable, offering unrivalled spatial 

resolution over small and medium sized areas and a revisit time that’s basically defined by the 

user (Berni et al., 2009; Klemas, 2015; Piégay et al., 2020; Shanmugapriya et al., 2019). However, 

both technologies have a series of pros and cons that involve technological, economic and 

operational factors. UAV platforms come with limitations that hinder wide scale implementation, 

such as a limited payload and short flight endurance (Matese et al., 2015), while satellite surveys 

still present coarse resolutions for finer scale classifications, are subject to cloud cover and the 

fixed-timing acquisitions can, for instance, miss out on specific growth stages of vegetation (Matese 

et al., 2015). Although there is familiarity with both platforms for ecological purposes, the conjoined 

use and, most importantly, the comparison of both Sentinel-2 and UAV images is still a very recent 

endeavour that scientists are trying to understand (Alvarez-Vanhard et al., 2020; Bansod et al., 

2017; Bollas et al., 2021; Di Gennaro et al., 2019; Khaliq et al., 2019; Messina et al., 2020; Revill 

et al., 2020). This comparison of data with different native resolution involves the application of 

spatial statistics and requires tackling the problem of spatial autocorrelation and although methods 

are becoming available to compare maps accounting for the spatial structures present in the data, 

the most practiced procedures still rely on cell-by-cell evaluations (Matese et al., 2015). 

It’s also important to note that, even though UAV and satellite studies are being more 

commonplace (as shown above), studies using comparisons of both platforms in a riparian setting 

are still scarce (Gómez-Sapiens et al., 2021; Huylenbroeck et al., 2020). 

 

1.3.  Vegetation spectral indices 

Multispectral reflectance of the canopies is related to two important plant physiological  

processes (photosynthesis and evapotranspiration) (Kingra et al., 2016). Several studies (Asner, 

1998; Ceccato et al., 2001; Datt, 1998; Gupta et al., 2003; Pu et al., 2003; Stimson et al., 2005) 
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focused on the spectral reflectance properties of the plants, identifying key spectral wavebands 

related to plant physiological and structural properties and from there, derived vegetation spectral 

indices for their non-destructive estimation. The potential to spectrally estimate plant physiological 

properties over relatively large areas, and to predict plant water status and plant water stress has 

already been demonstrated in forestry species (Stimson et al., 2005). RS data has been used to 

estimate canopy characteristics by using spectral indices based approach (D’Urso et al., 2004). 

Chlorophyll pigments absorb radiation in the blue and red part of the electromagnetic spectrum 

and reflects in the green; nevertheless, the percentage of radiation reflected from the leaf is higher 

in the NIR than in the green (Chappelle et al., 1992; Gausman et al., 1971). The spectral 

reflectance of the leaf in healthy plants is characterized by high values of reflectance in the NIR 

region and low values in red portion (absorption) (Pinter et al., 2003), while the opposite behaviour 

(more red light reflectance and more absorption in NIR) can be expected in plants subjected to 

stress. 

Numerous spectral vegetation indices (VIs) have been developed to characterize vegetation 

(Kingra et al., 2016), but for the sake of this investigation, we shall only mention the Normalized 

Difference Vegetation Index (NDVI) proposed by Rouse et al., (1973), as this was the method 

implemented in the experiment. NDVI has become a commonly used vegetation index to assess 

vegetation condition (Barton, 2012; Wallace et al., 2004) for it allows to measure the state of the 

vegetation based on how it reflects light at certain frequencies. It’s designed to evidence 

photosynthetic activity from a surface, taking advantage of the strong contrast in vegetation 

reflectance observed between the red spectral and NIR spectral domain (Alleaume et al., 2018). 

However, it has to be taken into account that the validity of NDVI values are influenced by many 

factors, such as: surface properties, anisotropic effects (position of the sun and observer) and 

atmospheric conditions (Alleaume et al., 2018). 

 

1.4.  Study Objectives and Hypothesis 

With all these facts in mind, the main objectives for this study are:  

1) Evaluate the accuracy of satellite data by comparing to UAV data; 

2) Evaluate which rescale methods assure best fitness among drones and satellite; 

3) Evaluate the influence of land cover on the discrepancy among drone and satellite data. 

Native data source is expected to have higher dispersion from corrected (rescaled) data since 

there’s a bigger difference in pixel area from both platforms.  
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Higher dispersion in NDVI is also expected in natural land cover compared to anthropogenic 

land cover. Considering that NDVI is a vegetation index (meaning higher values for green 

vegetation), the lowest NDVI values are expected to belong to anthropogenic land cover, regardless 

the platforms used. In addition, it is expected that discrepancies (dispersion of data) in NDVI values 

for man-made buildings will be the lowest and not influenced by the spatial scale. On the other 

hand, it’s expected that the higher NDVI values will be found in natural land cover. However, in this 

case, it is also expected a major miss match between platforms due to the heterogeneity of forest 

and bush vegetation (i.e the presence of riparian trees, shrubs and mixed vegetation can be spatial 

scale dependent) is also predictable. 

 

2.  MATERIALS AND METHODS 

 

2.1.  Study sites 

Four stream reaches in two river basins across the Northwest of Portugal were selected: the 

Lima and the Cávado River basins, draining to the Atlantic Ocean (Fig. 2).  

 

 

Figure 2. Catchment site’s location within NW Portugal. 
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4 study sites within the study area were chosen for UAV image capturing: Ribeira de Cabril, 

Rabagão and two sites in Rio Vez (Fig. 3). 

The sites were chosen based on the location of the flights previous to this study.  Vez had two 

different sites (one before and other after the village of Arcos de Valdevez), as one of the original 

objectives was to evaluate the influence of human settlements in riparian ecosystem health. 

Although this objective was later abandoned, the sites chosen remained the same. 
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 In a general way, all sites are characterized by a corridor of riparian vegetation immediately 

adjacent to the river, with either one or both margins occupied mainly by small plots of farmland 

and variable areas with grass and bush vegetation cover. Manmade structures such as houses, 

sheds and barns are present in all sites, with most of the buildings having road accesses from 

main roadways.  

Study sites were named based on the tributary where the images were captured (Table 1) 

and from this point forward they will be addressed by their respective code. 

 

Table 1. Catchment sites specifications and coordinates. 

 

2.2. Materials and Methods 

2.2.1. UAV-Based Imagery 

UAV image acquisition took place at 3 different dates: the 10th of July 2018, the 5th of August 

2019 and the 11th of October 2019. The chosen images were randomly picked from a database of 

UAV flights made for the CLIMALERT initiative before the investigation. 

Spatial resolution of captured UAV images is 0.08 m at ground level (Fig. 3). The 

multispectral sensor consists of five spectral cameras collecting blue, green, red, red edge and 

near infrared (NIR) imagery (Table 2). 

The duration of each flight was approximately 5-10 min, and the images were collected 

between 10:45 and 12:00, in clear sky conditions for all rivers. Flights were carried out at 100 m 

height from starting point. Mapping took part with an average overlap 80% forward and sideways. 

In flight triggers were: 233 at CAB1; 287 at RAB2; 351 at VEZ2; 409 at VEZ3.  

Table 2. Bands and their wavelengths for both Sentinel-2 (adapted from Bertini et al., 2012) and 
Micasense Rededge™ (RedEdge User Manual (PDF)) camera mounted on the DJI Phantom 4 RTK. 

Code Stream name River Basin Latitude Longitude 

CAB1 Ribeira de Cabril Cávado 41.721487 -8.032822 

RAB2 Rabagão Cávado 41.71956 -7.903389 

VEZ2 Rio Vez Lima 41.896635 -8.438900 

VEZ3 Rio Vez Lima 41.815080 -8.426453 

Sensing 
Platform 

Band 
Number 

Band 
Central 

Wavelength (nm) 
Bandwidth 

(nm) 
Spatial 

Resolution (m) 

Sentinel -2 1 Violet 443 20 60 



10 
 

2.2.2.  Satellite time series imagery 

The Sentinel-2 mission is a two satellite (Sentinel-2A and Sentinel-2B) constellation launched 

by the Copernicus European Program for Earth observation, providing high-resolution, multispectral 

images (European Space Agency, 2015). The captured data of Sentinel-2 ranges from the visible 

to the shortwave infrared parts of the electromagnetic spectrum with 13 spectral bands at 3 

different spatial resolutions. Satellite data was downloaded via https://scihub.copernicus.eu 

(accessed on 5 June 2021) from both the S2A (CAB1 and RAB1) and S2B (VEZ2 and VEZ3) 

satellites with the spatial resolution of 10 m at ground level. All acquired images are located within 

the 29TNG tile (UTM tiling grid) from a Level-2A product (atmospherically corrected). Images for 

RAB2 are from 9 July 2018 at 14:23:05 UTC (10.59% cloud cover), for CAB1 from 3 August 2019 

at 14:18:08 UTC (0.89% cloud cover) and for both VEZ2 and VEZ3 from 10 October 2019 at 

14:13:58 UTC (0.17% cloud cover) and the images were chosen based on the temporal proximity 

(1-2 days) to the previously made UAV flight dates to allow for a more viable correlation between 

the data, as temporal differences account for different stages of vegetation growth, and as such, 

different NDVI values. 

 

2.3.  Earth observation data 

For this study, all image post-processing was done using QGIS v3.16.15 “Hannover” (long 

term release) software. UAV orthophotos (Fig 4) were used to classify land cover in all sites for 

2 Blue 490 65 10 
3 Green 560 35 10 
4 Red 665 30 10 
5 Rededge 705 15 20 
6 

Near Infrared 

740 15 20 
7 783 20 20 
8 842 115 10 
8b 865 20 20 
9 945 20 60 
10 1380 30 60 
11 Short 

Wavelength 
Infrared 

1610 90 20 

12 2190 180 20 

 

Micasense 
Rededge™ 

1 Blue 475 20 

0.08 
2 Green 560 20 
3 Red 668 10 
4 Near Infrared 840 40 
5 Rededge 717 10 

https://scihub.copernicus.eu/
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they allow by far the best perception of the study site, enabling a more trustworthy description and 

classification of land cover. Classification was achieved by manually “drawing” each different 

polygon and labelling them accordingly. The reason for manually doing this instead of using an 

object-based machine learning image classification software was that most of the software’s tried 

and easily available didn’t have enough precision to correctly classify different land covers at the 

scale of the UAV images (some polygons have areas of <0.2m2). 7 distinct categories were 

attributed to the polygons based on their different characteristics: River; Road; Bush Vegetation; 

Forest Vegetation; Grass; Farm; Man Made Structure (see ANNEX IV).  

 

2.4. Normalized Difference Vegetation Index 

The normalized difference vegetation index (NDVI) as proposed by Rouse et al., (1973) was 

designed to evidence photosynthetic activity from a surface, taking advantage of the strong contrast 

in vegetation reflectance observed between the red spectral and NIR spectral domain.  

Taking only into account these two spectral bands, NDVI is calculated as seen bellow in 

Equation 1: 

NDVI = 
NIR-RED

NIR+RED
      (1) 

where NIR stands for near infrared band reflectance and RED for the red band reflectance (see 

Table 2 for more information regarding the bands). 

 

2.5.  Data processing and analysis 

A well-defined step-by-step process was created for the conduction of data processing and 

analysis to achieve all goals of the study (Fig. 5). 

All images were registered to CRS WGS84/UTM zone 29N with EPSG:32629. NDVI maps 

were obtained using the Equation 1 in the “Raster Calculator” tool using the respective NIR and 

Red bands for each platform (Fig. 6). 
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Figure 4. Flow chart of the proposed methodology for data processing and analysis used in the current 
study. 

 

Figure 5. Example of raw and processed satellite images from 09/07/2018 directly downloaded from 
source. NIR and Red band can be seen in (A) and (B) respectively and the calculated NDVI resulting layer 

(C). 

 

2.5.1. Data processing 

UAV images where rescaled to match the spatial resolution of the satellite imagery (10 m) 

using the “Raster Warp” built-in tool directly on the NDVI layer at native resolution (0.08 m) (Fig. 

15). 
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 Figure 6. Example of information loss from the averaging process in the upscaling method. 

 

3 of the 12 rescaling methods in QGIS, were chosen based on their apparent proximity to 

the satellite image, the following being: average, third quartile and median. For the sake of brevity, 

from now on, these rescaling methods shall be addressed to as AV (average), 3Q (third quartile) 

and MN (median). 

A set of 5000 random points was generated for each site using the “Random Points in 

Polygon” vector research tool. These same points are used to retrieve both the NDVI values from 

UAV and satellite images and the type of land cover at which point is located. This is attained by 

using the “Point Sampling Tool” (v 0.5.3) plugin. Datasets generated were exported in text format 

with integer values. 

 

2.5.2.  Data analysis 

First, in order to evaluate discrepancies among NDVI values from satellite with NDVI from 

UAV platform, linear regression models (lm command in Rstudio) were applied. Statistical 

assumptions were previously tested before application of linear models. 4 models were tested 

using the native resolution and the three rescaled algorithms (AV, 3Q and MN). The dataset used 

in this analysis has the entirety of sampling points (n = 75544).  

Second step was to attribute features relative to land cover categories and river reach to 

each sampling point based on land cover maps (see ANNEX IV). Next step was to test new linear 

regression models considering land cover and river reach variables associated to each sampling 

point (Equation 3, 4 ,5 and 6). 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑀𝑜𝑑𝑒𝑙 = 𝑙𝑚 (𝑁𝐷𝑉𝐼𝑁𝑎𝑡𝑖𝑣𝑒  ~ 𝑁𝐷𝑉𝐼𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 + 𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 + 𝑅𝑖𝑣𝑒𝑟 𝑅𝑒𝑎𝑐ℎ) (3) 
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𝐿𝑖𝑛𝑒𝑎𝑟 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑀𝑜𝑑𝑒𝑙 = 𝑙𝑚 (𝑁𝐷𝑉𝐼𝐴𝑉  ~ 𝑁𝐷𝑉𝐼𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 + 𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 + 𝑅𝑖𝑣𝑒𝑟 𝑅𝑒𝑎𝑐ℎ) (4) 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑀𝑜𝑑𝑒𝑙 = 𝑙𝑚 (𝑁𝐷𝑉𝐼3𝑄  ~ 𝑁𝐷𝑉𝐼𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 + 𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 + 𝑅𝑖𝑣𝑒𝑟 𝑅𝑒𝑎𝑐ℎ) (5) 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑀𝑜𝑑𝑒𝑙 = 𝑙𝑚 (𝑁𝐷𝑉𝐼𝑀𝑁  ~ 𝑁𝐷𝑉𝐼𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 + 𝐿𝑎𝑛𝑑 𝑢𝑠𝑒 + 𝑅𝑖𝑣𝑒𝑟 𝑅𝑒𝑎𝑐ℎ) (6) 

This way we can assess the influence of land cover on the discrepancy among drone and 

satellite data. 

In addition to this, 2 out of 20 Goodness-of-fit (GOF) measures were considered for different 

purposes – in order to find the best fit model we used RMSE and to evaluate dispersion of values 

within methods we used R2. These metrics can be calculated by Equations 7 - 8. RMSE and R2 

were chosen based on their extensive use in remote sensing studies (Cai et al., 2018; Han et al., 

2018; ten Harkel et al., 2019; van der Meij et al., 2017), reliability and capability to both assess 

how the regression models fit the datasets and quantify the proportion of the variance in the 

response variable that can be explained by the predictor variable. 

𝑅𝑀𝑆𝐸 =  
√∑(𝑃𝑖−𝑂𝑖)2

𝑛
  (7) 

where Pi is the predicted value for the ith observation in the dataset and Oi is the observed value 

for the ith observation in the dataset 

𝑅2 =  
𝑇𝑆𝑆−𝑅𝑆𝑆

𝑇𝑆𝑆
  (8) 

where TSS is the Total Sum of Squares and RSS is the Residual Sum of Squares. 

All data analysis in this study was performed in Rstudio (v1.4) with the aid of ggplot2 and 

HydroGof (v 0.4) packages. 

 

3. RESULTS  

3.1.  Evaluating discrepancies between satellite and UAV images. 

The results for linear regression models between satellite NDVI data with UAV, at native and 

rescaled resolutions, data is reported in Table 3 and Fig. 8.  

Significant relationships (p-value = < 2E-16) were found in rescaled and native resolutions 

of data. However, R2 values varied among linear models. The model based on native data presented 

the lower R2 (R2
native= 0.2397), whereas the highest values were found for the Average rescaled 

algorithms (R2
AV= 0.4228).  High dispersion of data was found when total NDVI values between 

satellite and UAV, at native and rescaled resolutions, were compared (See ANNEX VII). 
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Table 3. Results of linear regression models applied to total NDVI data of different rescaled methods. 

  Native 3Q AV Median 

  Estimate 
Std. 
Error 

t value Estimate 
Std. 
Error 

t value Estimate 
Std. 
Error 

t value Estimate 
Std. 
Error 

t value 

intercept 0.050 0.006 8.525 0.178 0.004 46.04 0.069 0.004 18.94 0.046 0.005 9.403 

ndvi_sat 0.648 0.008 77.158 0.601 0.006 108.21 0.619 0.005 117.6 0.662 0.007 94.131 

 

R2 0.2397  0.3827 0.4228 0.3199 

p value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 

 

 

 

 

 

Figure 7. Comparison between UAV and satellite NDVI values at native resolutions for all catchment 
sites. 
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3.2.   Influence of land cover 

Land cover maps for each river were reported in ANNEX IV. 7 land cover categories were 

identified: Forest vegetation, bush vegetation, grass, farm, road, river and manmade structures.  

By using the classified land cover maps (Fig. 9) in conjunction with point sampling tool, 

random points for data extraction gained land cover and river reach values based on their location 

(Fig. 16). Forest vegetation has less than half area coverage in RAB2 than the rest of the rivers. 

The same situation is verified with man-made structures, road and river. This can be partially 

explained, in part, by RAB2 being the catchment site with the smallest area, about 44,5% smaller 

than VEZ3 which is the largest, associated with the fact that all riparian zones in this study are 

scarcely populated, with most houses being isolated.  

 

 

 

Figure 8. CAB1 site land cover classification map (the rest of the land cover classifications can be 
consulted in appendix). 
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Figure 9. Composition (%) for each land cover classification by (A) area and (B) number of polygons. (see 
in ANNEX VI) 

 

 

 

Figure 10. Composition for each land cover classification by (A) area (m2) and (B) number of polygons. 

   

Results on linear regression including land cover and river as predictor variables are reported 

in ANNEX VI. Table 4 shows an example of the output for the Av algorithm model that resulted 

with the highest R2 (R2 = 0.483). 
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Table 4. Results of linear regression model applied to AV algorithm. 

 Estimate Std. Error t value 

Intercept 0.122 0.005 24.271 

ndvi_sat 0.528 0.006 92.155 

RAB2 0.038 0.002 16.117 

VEZ2 0.027 0.002 11.919 

VEZ3 0.0215 0.002 8.975 

Farm -0.028 0.003 -8.645 

Forest 0.041 0.003 12.452 

Grass -0.042 0.004 -10.511 

Manmade -0.1 0.006 -15.608 

River -0.098 0.005 -20.322 

Road -0.065 0.006 -6.016 

    

R2 0.483 

p value < 2.2e-16 

  

Like previous linear regression models applied to total NDVI values, significant relationships 

(p-value = < 2E-16) were found among all linear regression models applied this time. This tells us 

that land cover and catchment site are significant parameters in influencing the dispersion of values 

within upscaling algorithms. GOF measures for 3Q model showing the lowest RMSE (RMSE = 0.12) 

are reported in Table 5 and Fig. 12.  

Highest value of RMSE (RMSE = 0.510) is seen in native resolution while the lowest in seen 

in 3Q rescale algorithm (RMSE= 0.12). Average and median rescaled algorithms show similar 

RMSE values with median Average=0.225 and median Median=0.235. In contrast, R2 had the lowest value 

in native resolution (R2 = 0.00) and the highest in average upscaling method (R2 = 0.670). 

 

Table 5. Calculated GOF values for 3Q algorithm. 

LandUse River RMSE R2 

Forest 

CAB1 0.12 0.21 

RAB2 0.14 0.26 

VEZ2 0.14 0.14 

VEZ3 0.14 0.27 

Bush CAB1 0.15 0.28 

RAB2 0.16 0.15 

VEZ2 0.13 0.28 

VEZ3 0.12 0.32 

Farm CAB1 0.18 0.53 

RAB2 0.24 0.01 
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VEZ2 0.14 0.59 

VEZ3 0.15 0.54 

Road CAB1 0.16 0.39 

RAB2 0.16 0.17 

VEZ2 0.18 0.28 

VEZ3 0.16 0.39 

Man CAB1 0.25 0.1 

RAB2 0.15 0.3 

VEZ2 0.17 0.54 

VEZ3 0.18 0.36 

River CAB1 0.2 0.16 

RAB2 0.16 0.36 

VEZ2 0.21 0.06 

VEZ3 0.29 0.07 

Grass CAB1 0.17 0.1 

RAB2 0.12 0.61 

VEZ2 0.14 0.26 

VEZ3 0.17 0.28 

 

 

 

 

Figure 11. Boxplot of GOF measures resulting from linear regression model to evaluate best fit of rescale 
to satellite values. 

 

Data subsets containing the GOF values of land cover and type within each different method 

were created to assess the cause of discrepancy within methods (Fig. 13). 
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Figure 12. Boxplot representation of linear regression applied to 3Q algorithm subset of GOF measures 
within a rescaling method. 

 

In Fig. 14 the relationship between Satellite NDVI with UAV NDVI for 3Q Algorithms. 

Different trend lines are present for each category of land cover. 

 

 

Figure 13. Facet_wrap plot for CAB1. (see ANNEX VII) 
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4. DISCUSSION 

4.1. Comparing NDVI values from UAV and Satellite 

An expected higher degree of dispersion between native resolutions was confirmed, with 

CAB1 and RAB2 showing the strongest dispersion values of the 4 sites. This is because the biggest 

discrepancy between pixel area is at native level. While higher NDVI values follow a similar trend 

both in satellite and UAV (between 0.5 and 1) at native resolution, lower values are much more 

present in UAV native image capturing. This can be explained by the much higher resolution of the 

UAV being able to capture more pixels with low values over the same area as satellite. 

When comparing rescaling methods, NDVI values show less dispersion, but at the same 

time, because of the loss of information associated with upscaling process (Fig. 7) (Messina et 

al., 2020) the homogenization of values is high, especially at lower values. A trend (peak) in higher 

NDVI values can be seen in every rescale. The same peak is present in satellite image histograms 

for values between 0,5 and 1 (see ANNEX V).   
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4.2.  Finding the best rescaling method and influence factors. 

The proposal for “best method” is based on the one that differs less from the satellite image 

NDVI values, in other words, the one which produces less error during the upscaling process. 

Because RMSE measures how far apart the predicted values are from the observed values in a 

dataset, the choice for best rescaling method was based upon the RMSE values present at Table 

5 and Fig. 12. It was concluded that out of the three methods, upscaling via third quartile (3Q) 

had the best fit with satellite values (RMSE median values (0,16); p-values < 2e-16). 

By creating a subset of GOF measures by land cover and river within the best method (3Q) 

we can find an explanation for dispersion within the group. R2 is used to measure how statistically 

similar values in the two datasets are (using a simple linear regression model). This explains the 

variation within the model or in other words, how land cover or river site affects these values. As 

confirmed in Fig. 13, river sites have very similar median R2 values, which means they all 

contribute with about the same level to the dispersion of values, hence, it’s concluded they’re not 

the main reason for value differences. On the contrary, by examining land cover, it is evident that 

there are big differences between R2 values. Fig. 13 accounts for catchment site in the land cover 

values, so what we see is the total R2 for that land cover within all rivers. Greatest disparity is 

confirmed in Farm, and by cross referencing this data with a clustered column chart of GOF 

measures in the subset (see ANNEX VIII) we can see that the lowest value comes from RAB2. 

Revisiting the map in QGIS (Fig. 16) gives insight regarding the lowest R2 value (0.01). RAB2 has 

the whole east margin covered in farmland. Although there was no in situ validation to check if 

farms were monoculture, at the time the images were captured, some fields were uncultivated, as 

fallow ground is still widely used in agriculture during crop rotation (Collins et al., 1992) and/or 

presented different growth stages. Low overall average R2 (0.22) for “Forest Vegetation” can be 

associated with different plants that make up the riparian forest community, as different species 

tend to have different NDVI values. “Forest Vegetation” polygons were drawn based on the tree 

canopies visible by the UAV orthophotos, ignoring bushes and grasses that make up the entire 

forest per se, which in turn, have different NDVI values than those of the tree canopies. These NDVI 

values can give us a very coarse idea of plant species richness (Fairbanks & McGwire, 2004), but 

because there was no ground validation for the study, further research is needed to validate. Lowest 

overall R2 belongs to the land class River, probably because the thin and very shallow water column 

of the analysed streams allowed satellite and UAV to capture NDVI values from river substrate, 
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algae and macrophytes. Although not accounted for during land classification, algae and 

macrophyte communities do exist in these rivers (Dodkins et al., 2012; Ribeiro & Torgo, 2008) and 

account for different NDVI values. 

 

 

Figure 15. RAB2 farmland examination where (A) is the NDVI map with correspondent randomised 
points and (B) is the division of land cover with the same points. 

 

4.3.  Land cover and Heterogeneity 

The highest value accounted for % of area coverage in all sites was that of farmland in RAB2 

with almost half the map (48,55%), while in the same site we get the lowest value of all, with just 

0,98% coverage by manmade structures. On average, throughout all sites, farmland is the type of 

land cover with more % of area covered, with an average of 41,32 and following the same order, 

manmade structures only account for 2,12% of total area coverage. Regarding the number of 

polygons, forest vegetation shows the greater number of polygons per map in CAB1 with 167 

polygons of the class present (or 29,98% of the map) being, at the same time, the most polygon 

rich class across all sites, with 23,58% (or 107,25) of total polygons. On the low end is river 

polygons with 8,02% (32,75) polygon coverage over all sites, and with the lowest value of all in 

VEZ3 with only 2 polygons to account for the entire river sections (see ANNEX IX). 
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5. CONCLUSIONS AND FUTURE PERSPECTIVES 

 The ecological importance of this thesis resides in the ability to correlate satellite and UAV 

imagery, hence, being able to get the best of both methods in conservation efforts regarding plant 

community health in riparian zones.  

 In this study, a detailed analysis and comparison of multispectral imagery of riparian zones 

in NW Portugal, is presented with the aim to calculate NDVI disparity between both methods, at 

native as well as rescaled (for UAV) resolutions and based on these results find the upscale method 

that is closer to satellite imagery. Statistical comparison between NDVI values at native resolution 

show, as expected, a bigger difference in values than those found in UAV upscaled version, due to 

the higher spatial resolution of the UAV’s sensor.  

 Upscaling via third quartile seems to be the closest rescale method to satellite (RMSE < 0.2) 

when it comes to measuring NDVI values in riparian zones with similar characteristics than those 

in this study. However, we concluded that homogenization of values tends to be highest at lower 

NDVI values, because UAV image upscaling tends to attribute smaller pixel value than those found 

in satellite images, which can contribute to reading errors.  

 Land cover was proven to be the main factor influencing value dispersion within each 

method, primarily caused by farmland, most of which, at the time of image capturing, had a mix 

of fallow and cultivated and/or different crop growth stages. Further studies within a time frame 

that represents a full vegetative season should be considered to greatly reduce or even eliminate 

this error. Forest and bush vegetation data should also be complemented in further studies with 

ground validation, for a more accurate classification of riparian ecosystems.  

 In conclusion, both platforms provide important information for the vegetation cover and 

land cover on riparian zones, and they are proven again to be important tools for conservation 

work. The choice for the most appropriate platform depends mainly on the use and the aim of the 

intended data, as they have different spatial resolutions, cost, and requirements. Sentinel-2 is a 

valuable platform when information for areas of large extent is needed and therefore is not the 

optimal method to evaluate ecosystems as complex as riparian zones or as spatially small as the 

farms of the chosen sites, as these farms resource to farming practices which are typical of this 

region of Portugal (small, highly fragmented plots of cultivated land, usually with a mix of crops in 

a small area). As such, UAV platforms are a better choice when detailed information is required. 

 The lack of studies on the comparison of multispectral data retrieved between Sentinel-2 

and UAV imagery was what motivated the explorative approach taken in the present work. Most of 
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the times it proved to be an obstacle, since no term of comparison and further discussion could 

be traced between the results found here and the ones described in the literature.  

 As remote sensing techniques are gradually picking up the pace to become the standard 

method for evaluation of ecosystem health throughout the globe. Although further studies and 

techniques in correlating data between UAV and satellite need to be developed, this study 

demonstrated the potential for the comparison of multispectral data to interpret riparian zone 

ecosystems. 
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SUPPLEMENTARY MATERIAL 

ANNEX I – Orthophotos of study sites 

 

Figure I A. CAB1 stream reach orthophoto. 
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Figure I B. RAB2 stream reach orthophoto. 
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Figure I C. VEZ2 stream reach orthophoto. 
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Figure I D. VEZ3 stream reach orthophoto. 
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ANNEX II - NDVI maps of study sites based on UAV images 

 

Figure II A. CAB1 stream reach UAV NDVI map. 
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Figure II B. RAB2 stream reach UAV NDVI map. 
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Figure II C. VEZ2 stream reach UAV NDVI map. 
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Figure II D. VEZ3 stream reach UAV NDVI map. 
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ANNEX III – NDVI maps of study sites based on Sentinel-2 images 

 

Figure III A. CAB1 stream reach Sentinel-2 NDVI map. 
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Figure III B. RAB2 stream reach Sentinel-2 NDVI map. 
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Figure III C. VEZ2 stream reach Sentinel-2 NDVI map. 
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Figure III D. VEZ3 stream reach Sentinel-2 NDVI map. 
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ANNEX IV – Land cover maps of study sites 

 

Figure IV A. Land cover classification map of CAB1. 
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Figure IV B. Land cover classification map of RAB2. 
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Figure IV C. Land cover classification map of VEZ2. 
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Figure IV D. Land cover classification map of VEZ3. 
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ANNEX V – Histograms of NDVI values 

 

 

Figure V A. Histograms of UAV native resolution NDVI values. (A), (B), (C) and (D) correspond to CAB1, RAB2, VEZ2 and VEZ3, respectively. 
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Figure V B. Histograms of NDVI values found in satellite and UAV rescaled images at CAB1. 
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Figure V C. Histograms of NDVI values found in satellite and UAV rescaled images at RAB2. 
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Figure V D. Histograms of NDVI values found in satellite and UAV rescaled images at VEZ2. 
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Figure V E. Histograms of NDVI values found in satellite and UAV rescaled images at VEZ3. 
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ANNEX VI - Results on linear regression models with land cover and river as predictor variables 

Table VI A. Results of linear regression model applied to native. 

 Estimate Std. Error t value 

Intercept 0.241 0.008 31.764 

ndvi_sat 0.442 0.009 51.044 

RAB2 0.047 0.004 13.359 

VEZ2 0.046 0.003 13.548 

VEZ3 0.046 0.004 12.797 

Farm -0.122 0.005 -25.261 

Forest 0.016 0.005 3.115 

Grass -0.125 0.006 -20.733 

Manmade -0.3 0.01 -31.06 

River -0.243 0.007 -33.404 

Road -0.316 0.008 -37.182 

    

R2 0.387 

p value < 2.2e-16 
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Table VI B. Results of linear regression model applied to 3Q algorithm. 

 Estimate Std. Error t value 

Intercept 0.276 0.005 51.598 

ndvi_sat 0.511 0.006 83.766 

RAB2 -0.002 0.003 -0.908 

VEZ2 -0.006 0.002 -2.369 

VEZ3 -0.004 0.003 -1.66 

Farm -0.064 0.003 -18.805 

Forest 0.016 0.004 4.578 

Grass -0.037 0.004 -8.733 

Manmade -0.115 0.007 -16.932 

River -0.092 0.005 -17.995 

Road -0.034 0.006 -5.703 

    

R2 0.437 

p value < 2.2e-16 
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Table VI C. Results of linear regression model applied to MN algorithm. 

 Estimate Std. Error t value 

Intercept 0.114 0.007 16.722 

ndvi_sat 0.561 0.008 71.891 

RAB2 0.047 0.003 14.703 

VEZ2 0.036 0.003 11.697 

VEZ3 0.029 0.003 8.997 

Farm -0.046 0.004 -10.673 

Forest 0.028 0.005 6.299 

Grass -0.062 0.005 -11.459 

Manmade -0.134 0.009 -15.404 

River -0.108 0.007 -16.562 

Road -0.076 0.008 -9.933 

    

R2 0.367 

p value < 2.2e-16 
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Table VI D. Results of linear regression model applied to AV algorithm. 

 Estimate Std. Error t value 

Intercept 0.122 0.005 24.271 

ndvi_sat 0.528 0.006 92.155 

RAB2 0.038 0.002 16.117 

VEZ2 0.027 0.002 11.919 

VEZ3 0.0215 0.002 8.975 

Farm -0.028 0.003 -8.645 

Forest 0.041 0.003 12.452 

Grass -0.042 0.004 -10.511 

Manmade -0.1 0.006 -15.608 

River -0.098 0.005 -20.322 

Road -0.065 0.006 -6.016 

    

R2 0.483 

p value < 2.2e-16 
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ANNEX VII – Point dispersion plots for UAV rescaled images 

 

Figure VII A. Comparison between UAV and satellite NDVI values at native and rescaled resolutions in CAB1. 
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Figure VII B. Comparison between UAV and satellite NDVI values at native and rescaled resolutions in RAB2. 
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Figure VII C. Comparison between UAV and satellite NDVI values at native and rescaled resolutions in VEZ2. 
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Figure VII D. Comparison between UAV and satellite NDVI values at native and rescaled resolutions in RAB2. 
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ANNEX VIII - Stacked column chart for land cover based on R2 measurements 

 

 
Figure VIII A. Stacked column chart for land cover based on R2 measurements. 
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ANNEX IX – Land cover occupancy by polygon n.º and area 

Table IX A. Land cover occupancy values in % and n.º of polygons at all river reaches. 
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ANNEX X – Facet wraps plots of value dispersion taking land cover into account. 

 

Figure X A. Facet graph plot for CAB1. 
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Figure X B. Facet graph plot for CAB1. 
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Figure X C. Facet graph plot for VEZ2. 
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Figure X D. Facet graph plot for VEZ3. 
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