
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Bruno Renato Fernandes Carvalho

Analysis of Message Passing Software
Using Electrum

November 2020

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Bruno Renato Fernandes Carvalho

Analysis of Message Passing Software
Using Electrum

Master dissertation
Integrated Master’s Degree in Informatics Engineering

Dissertation supervised by
Alcino Cunha
Nuno Macedo

November 2020

D I R E I T O S D E A U T O R E C O N D I Ç Õ E S D E U T I L I Z A Ç Ã O D O
T R A B A L H O P O R T E R C E I R O S

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas
as regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor
e direitos conexos. Assim, o presente trabalho pode ser utilizado nos termos previstos na
licença abaixo indicada. Caso o utilizador necessite de permissão para poder fazer um uso
do trabalho em condições não previstas no licenciamento indicado, deverá contactar o autor,
através do RepositóriUM da Universidade do Minho.

Atribuicao
CCBY
https://creativecommons.org/licenses/by/4.0/

i

https://creativecommons.org/licenses/by/4.0/

A C K N O W L E D G E M E N T S

I would like to thank to all my family and friends for supporting me in every sense during
these last years of my life. Of these, I need to especially thank to Sequeira and Padrão for
being there during the whole year, sharing knowledge within a friendly environment. I also
need to give a special thank to Jorge, who was always available to help me with everything. I
would like too to thank Andre from being always there to answer and helping me whenever
I needed.

And last, but not least, I would like to thank to my Supervisors, Nuno and Alcino, for
always being present and supportive with me. I am very grateful to have had the opportunity
to absorb a fraction of your knowledge, within a great spirit and environment. Thank you
from the bottom of my heart.

This work is financed by the ERDF – European Regional Development Fund through the
Operational Programme for Competitiveness and Internationalisation - COMPETE 2020

Programme and by National Funds through the Portuguese funding agency, FCT -
Fundação para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-016826.

ii

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration. I further declare that I have fully acknowledged the
Code of Ethical Conduct of the University of Minho.

iii

A B S T R A C T

Automation developments are enabling industrial restructuring through the incorporation
of more efficient and accurate processes with less associated cost. Consequently, robots are
being increasingly used in the most various scenarios, including in Safety Critical domains.
In such cases, the use of suitable methods to attest both the system’s quality and their safety
is absolutely essential.

Following the current increase of complexity of cyber-physical systems, safety guards
which used to be fully hardware dependent, are constantly migrating to software. Here-
upon, middleware software to abstract systems hardware are constantly evolving and are
being increasingly adopted. The common feature of these systems is usually associated with
its modular architectures based on message-passing communication patterns. A notorious
case is the ROS middleware, where highly configurable robots are usually built by composing
third-party modules. The verification of such systems is usually very hard, and its implemen-
tation in real industrial environments is, in most cases, impracticable. To promote adoption,
this work advocates the use of lightweight formal methods associated with semi-automatic
techniques that require minimal user input and provide valuable intuitive feedback.

This work explores and proposes a technique to automatically verify system-wide safety
properties of ROS-based applications in continuous integration environments. It is based
on the formalization of ROS architectural models and nodes behaviours in Electrum, a
specification language of first-order temporal logic supported by a model-finder over which,
system-wide properties are subsequently model-checked. In order to automate the analysis,
the technique is deployed as an HAROS plug-in, a framework for quality assessment of ROS
software, specially aimed to its community.

The technique proposal and its implementation under the HAROS framework are eval-
uated with positive results on a real agricultural robot, AgRobV16, whose dimension and
complexity are industrially representative.

Keywords: Software Verification, Model Checking, Safety, Robotics, Electrum, ROS, HAROS.

iv

R E S U M O

O constante desenvolvimento em processos de automação tem motivado reestruturações
nos mais diversos processos industriais, aumentando a sua eficiência, e consequentemente,
reduzindo os custos associados. As vantagens provocadas pela automação impulsionam a
sua adopção nos mais amplos domı́nios, nomeadamente, em cenários considerados crı́ticos.
Nestes casos, é vital a existência e adopção de técnicas que forneçam fortes garantias da
qualidade e segurança dos sistemas.

Isto é de particular relevância aquando do desenvolvimento de sistemas ciber-fı́sicos, onde
se observa uma constante migração de safety guards, que eram usualmente implementadas
ao nı́vel do hardware, para lógica de software. De forma a acompanhar o aumento na com-
plexidade destes sistemas, middlewares que permitem abstrair hardware têm sido adoptados
de forma ubı́qua. Este são construı́dos predominantemente sobre arquiteturas modulares
baseadas em message-passing. Um caso notório são as aplicações ROS, onde robôs altamente
configuráveis são construı́dos através da composição de módulos externos.

Na maioria dos casos, a verificação destes sistemas é muito difı́cil, sendo que em ambientes
industriais é geralmente impraticável. Com vista a promover a adopção de técnicas que
promovam a qualidade do software em ambientes de produção, este trabalho defende a
utilização de lightweight formal methods associados a técnicas semi-automáticas que requerem
intervenções mı́nimas por parte dos utilizadores, retornando feedback valioso de forma
intuitiva.

Este trabalho explora e propõe uma técnica para verificação automática de system-wide
safety properties em aplicações ROS, cujos resultados podem ser estendidos para qualquer
arquitetura modular baseada em message passing. A técnica fundamenta-se na formalização
de modelos estruturais de arquiteturas ROS, e especificações comportamentais dos seus
nodos em Electrum. Após formalização do sistema, as propriedades são verificadas através
de técnicas de model-checking. De forma a automatizar a análise, a técnica descrita neste
documento é implementada através de um plug-in para HAROS, uma framework utilizada
no control de qualidade de software ROS.

A técnica proposta, assim como a sua implementação sobre o ambiente Haros, foram
positivamente avaliadas aquando da sua aplicação em um caso real, AgRobV16. Um robô
agrı́cola, cuja dimensão e complexidade são representativos daquilo que seria de esperar em
verdadeiros ambientes industriais.

v

vi

Palavras Chave: Verificação de Software, Model Checking, Safety, Robotica, Electrum, ROS,
HAROS.

C O N T E N T S

1 introduction 1

2 electrum specification framework 4
2.1 Language 4

2.1.1 Modeling Process 6
2.2 Analysis 15

2.2.1 Commands and Scopes 15
2.2.2 Electrum Analyzer 16
2.2.3 Model-Checking 18

3 software development in ros 21
3.1 Architecture and Concepts 21

3.1.1 Nodes and Nodelets 22
3.1.2 Communication 24
3.1.3 Launch Files 29

3.2 Quality Assurance 31
3.3 Static Analysis 31
3.4 Property Verification 32

4 verification of ros system-wide safety properties 34
4.1 Model-Checking ROS Safety Properties 35

4.1.1 ROS Meta-Model 36
4.1.2 Systems Architecture based on Topics 38
4.1.3 Systems Behaviour 40

4.2 HAROS Integration 46
4.2.1 HAROS Architectural Meta-Model 47
4.2.2 HAROS Specification Language 48

4.3 Modelling The Dummy Robot 49
4.3.1 Model-Checking Plug-In 54

5 evaluation 60
5.1 ROMOVI Case Study 60

5.1.1 Configurations 62
5.1.2 Properties 64
5.1.3 Specification 65
5.1.4 Technique Evaluation 66

6 conclusions and future work 71

vii

L I S T O F F I G U R E S

Figure 1 Electrum’s syntax. 5
Figure 2 An inappropriate Lightbot state. 9
Figure 3 A graphical representation of a concrete board configuration. Each

block coordinates are respective to the beginning of the block itself,
and its text correspond to the (block name: height value). Each block
as at most one light turn off, and distinct background colors were
used to identify different height values. The white blocks correspond
to height equal to one, while the grey block represents a block with
height value equal to two. 13

Figure 4 Partial graphical view of the two initial states. Adjacent instance states
are always presented side by side. The initial state is shown on the
left side, the second on the right side. 17

Figure 5 Electrum Architecture components. The Pardinus layer complements
the Alloy KodKod with temporal logic interpretation. The Electrod
component provides support to the symbolic model checkers [19]. 19

Figure 6 The advertise/subscribe process on the sensor_data topic. Each node
represents a process. The links are labeled with a sequence number,
representing the communication performed between them. Notice
that, up to the (4) step, every communication is made through XML-
RPC. After that, a TCP link is established. 27

Figure 7 The Figure depicts two possible configurations of the same robotic
system. Dashed lines are used to illustrate mutually exclusive com-
ponents. The first configuration shows how the first dummy_sensor and
safety_node are logically connected through the sensor_data topic.
The second one shows a slightly distinct configuration, where a dif-
ferent sensor is used. 30

viii

List of Figures ix

Figure 8 Representation of the main components within every model specifi-
cation structure. The figure is divided through an two dimensional
vector. Respectively depicting the distinction between the meta fea-
tures from the middleware, and a concrete application specification.
The second division represents the distinction between which features
are captured through Electrum signatures and Electrum axioms. Solid
connectors illustrate static or variable relations between top-level sig-
natures, while dashed ones represent the hierarchical relations. 39

Figure 9 The three layers illustrate the distinct levels of abstraction on the value
discretization. The first one is an abstract layer, defines an interface
through at the meta-model level. The second is defined through
extension, defining two disjoint sets of distinct value categories. The
third complements the second through including specific values into
one of the two categories. 41

Figure 10 Electrum translations of the fourth specification patterns used by the
Dwyer’s approach. The Absence and Precendence patterns are used
to specify safety properties. On the other hand, the Existence and
Response patterns focus on liveness specification. 44

Figure 11 The HAROS architectural meta-model, the features that are unsup-
ported by the verification technique are greyed out. 47

Figure 12 The HAROS behavioural language. The features that are unsupported
by the verification technique are greyed out.. 48

Figure 13 Conceptual parts of a ROS system specification in Electrum. The
image shows the relation between resources and the specification
blocks. The structure is obtained through the HAROS meta-model
and the HAROS specification. The property scopes are introduced
through a plug-in configuration file. 55

Figure 14 The Model-Checking plugin architecture main components. The plu-
gin interfaces with HAROS through the infrastructure support fea-
tures. The application outsources the model-checking techniques to
the Electrum Analyzer. The results are retrieved through the HAROS
user-interface. Solid arrows depict the flow of the information up to
the plug-in, the dashed lines illustrates the results opposite flow. 57

Figure 15 The configuration structure class diagram. Each class captures the
information regarding the respective named source entities. The in-
formation is merged from two distinct highlighted sources, namely
the HAROS meta-model and its properties specification. 58

Figure 16 AgRob V16, the platform for the RoMoVi project. 61

List of Figures x

Figure 17 The AgRob V16 software architecture simplified. The components
exclusive to the map configuration are grey out. The remaining com-
ponents are present in both main configurations. Each conceptual
division represents a given system functionality. In most cases, dis-
tinct functionalities result in different package groups. 63

Figure 18 A counter-example to the third property at the map configuration.
The counter-example is shown as a runtime issue based on concrete
steps. Each step describes an action that can be monitored through
the HAROS. 69

Figure 19 A counter-example to the fourth property at the startup configuration.
The counter-example is shown as a runtime issue based on concrete
steps. Each step describes an action that can be monitored through
the HAROS. 69

1

I N T R O D U C T I O N

Technology developments are enabling industrial restructuring through the incorporation of
more efficient and accurate processes, with less associated cost. Therefore, task automation
through the use of flexible tools to assist in the most various scenarios are sought by all the
spectra within the industry. Robotics is being applied in mass through a wide range of fields,
including in safety-critical scenarios where system fails might jeopardize human lives.

As the complexity and systems dimensions increase, dealing with hardware-level ap-
plications tends to become impracticable. Despite the development affords, dealing with
heterogeneous environment and the lack of virtualization seems to be a major issue among
all the industry. Thus, modular architectures based on message-passing communication
patterns are constantly appearing to address these issues.

One of the most relevant cases, is the Robot Operating System (ROS), which is a popular
open source robotic framework, built to provide the needed flexibility when developing
large-scale service robots. Despite the name, it is not a real operating system, but instead
a middleware that provides hardware abstraction and low-level device control, which is
required to develop complex software on heterogeneous environments. ROS-based applica-
tions are organized within a peer-to-peer architecture, where the system is built as a set of
processing nodes cooperating with each other through message-passing models.

With the extended use of robotics and with ever-closer robot-human interaction, such as
health or transportation, safety certification for robotics software are increasingly necessary.
These systems usually require high level of flexibility and reliability. Safety guards that were
implemented through physical ports, are gradually migrating to software logic’s. Thus, the
use of formal methods, especially in those domains, is advisable to avoid faults that can lead
to potentially catastrophic consequences.

Methods to perform formal analysis and verification of these systems need to have a specific
set of features. First, they must provide a flexible language, enabling the specification of rich
structures and complex behaviour. And second, they must provide access to features that
automatically check properties about the model specification.

Electrum [17] is a relevant language and framework within this context. The mixture
between relational and linear temporal logic (LTL), confers to the language the capacity to
express both rich structures as complex behaviour. Besides that, the toolkit that supports the

1

2

language provides automatic reasoning tools based on model-checking. These, exhaustively
and automatically check whether a model meets a specific property or not, performing
property verification on finite-state machines, that abstractly represent the system. The
benefits in the use of model-checkers rather than state-of-art test frameworks are quite
remarkable [2]. Model-checking techniques provide considerably higher degrees of coverage
than conventional testing, and therefore, more reliability. As model-checking techniques act
upon state-machines, there will be always a gap between the real system and the abstract one,
where the verification process takes place. Thus, a suitable approach towards the analysis and
verification of safety-critical properties on real systems, should start through the description
of a pipeline, that considers the real system extraction to an abstract model and the analysis
of some concrete pre-defined properties, and lastly, the verification results proper inspection.

Since most users of low-level programming languages have no familiarity with Formal
Methods, aiming to achieve high impact in the improvement of software quality, formal
techniques may be integrated through lightweight formal approaches, where completeness
is sacrificed in favor of potential automation. One of the major limitations to this are usually
associated with the real domain of action by the systems under analysis. Usually, for captur-
ing relevant elements to the analysis, it’s required to have high-knowledge of the execution
environment and systems reversing engineering. Such processes have weak potential for
automation.

During this dissertation, a novel technique to automatically verify system-wide safety
properties based on Electrum, is presented. Although focused on ROS, the developed tech-
niques and contributions are expected to be easily extended for modular message-passing
based architecture. The work was guided by the following set of requirements:

• The technique must able to automatically analyse components as they are developed.

• The technique must be able to be deployed by the usual ROS software developer.

• The technique must report comprehensible feedback for all stakeholders.

Thus, the proposal of this work is to develop a novel technique to allow the verification
of system-wide safety properties of message-passing based software. The technique will be
based on the usage of an Electrum back-end, and it’s expected to support complex multi-
configuration analysis with under-specified behaviours.

To integrate the approach in the ROS development process, the analysis approach is built
upon HAROS [30], a plugin-based framework for the continuous quality assessment of
ROS software. The framework makes feasible the whole process by providing the required
input and an integrated feedback environment. Besides that, it allows the common ROS
developer to specify loose specifications of the individual nodes expected behaviour for
testing purposes. Thus, the work of this thesis can be focused on the integration and

3

verification of ROS systems while avoiding to deal with the development of tools to extract
and display information.

The structure of this document is divided into four main chapters. Chapter 2 introduces
the Electurm framework and its logic, it presents a tour on the language and the analysis
process through a concrete example case. Chapter 3 describes the software development
in ROS, starts with the presentation of the middleware main concepts and its utility. It
also approaches the quality assurance state of art in ROS, also exploring some of non-ROS
relevant works. Chapter 4 presents the approach developed during this work, which allows
the automatic verification of system-wide safety properties in ROS applications. Chapter
5 evaluates the usability and performance of that same approach. Lastly, Chapter 6 draws
the conclusions, capturing the main limitations of using formal methods through less-formal
environments, providing insights on possible future work.

2

E L E C T R U M S P E C I F I C AT I O N F R A M E W O R K

Electrum [17] is a declarative specification language. It was forged as an Alloy [12] extension
with dynamic features, loosely inspired in the Temporal Logic of Actions (TLA) [15]. The
Alloy core provides a lightweight approach to model-based formal specifications. However,
it requires the explicit modelling of dynamic behaviours, and it’s presented within a frame-
work that only supports verification through bounded model-checking [1] techniques. Thus,
by extending the Alloy language through the inclusion of linear temporal logic with past
operators (PLTL), the Electrum language merges the high-expressiveness of Alloy with a
flexible form of dynamic specification as introduced in TLA [16], being therefore, well-suited
to express formal state models with rich structures and complex behaviours.

To make the specification systems feasible, the Electrum language is integrated in an
Electrum framework. The framework includes an IDE, to create and edit specifications, and
an Analyzer capable of performing verification through bounded and unbounded model-
checking techniques. The framework also includes a Visualizer that provides a graphical
view of the model during each step of the modelling process. These concepts, including the
proper use of the framework, will be discussed in further detail through this chapter.

2.1 language

The Electrum language is inspired in both Alloy and TLA, employing the former structural
concepts, and the latter’s ability to express and define dynamic operations.

As a language that describes software abstractions, Electrum presents itself as more than
just a logic. It embodies a set of features that are commonly found in programming and
modelling languages, such as polymorphism, parameterized functions and module patterns.
Therefore, it enables the development and maintenance of large specifications, within a
well-documented and well-known object oriented style.

Due to its complexity, the inner logic will be explained throughout the chapter. For better
understanding these concepts, as those ones that will be further discussed, the Electrum
formal syntax is given in the Figure 1.

4

2.1. Language 5

spec ····= module qualName [[name,+]] impor t ∗ paragraph ∗

impor t ····= open qualName [[qualName,+]] [as name]
paragraph ····= s igDec l | f ac tDec l | funDecl | predDecl | asser tDec l | checkCmd
sigDec l ····= [var] [abstract] [mult] sig name,+ [s igEx t] { varDecl , ∗ } [block]
s igEx t ····= extends qualName | in qualName [+ qualName] ∗

mult ····= lone | some | one
dec l ····= [disj] name,+ : [disj] expr
varDecl ····= [var] dec l
fac tDec l ····= fact [name] block
asser tDec l ····= assert [name] block
funDecl ····= fun name [[decl , ∗]] : expr { expr }
predDecl ····= pred name [[decl , ∗]] block
expr ····= const | qualName | @name | this | unOp expr
| expr binOp expr | expr arrowOp expr | expr [expr , ∗]
| expr [! | not] compareOp expr
| expr (=> | implies) expr else expr
| quant decl ,+ blockOrBar | (expr) | block
| { decl ,+ blockOrBar } | expr ’

const ····= none | univ | iden
unOp ····= ! | not | no | mult | set | ∼ | * | ˆ | eventually | always | after | before | once
binOp ····= || | or | && | and | <=> | iff | => | implies | & | + | - | ++ | <: | :> | . |
until | releases | since | triggered

arrowOp ····= [mult | set] → [mult | set]
compareOp :: in | =
l e t D e c l ····= name = expr
b lock ····= { expr ∗ }
blockOrBar ····= block | | expr
quant ····= all | no | mult
checkCmd ····= check qualName [scope]
scope ····= for numer [but typescope ,+] | for typescope ,+

typescope ····= [exactly] number qualName
qualName ····= [this/] (name/) ∗ name

Figure 1: Electrum’s syntax.

2.1. Language 6

2.1.1 Modeling Process

The structure specification is introduced by the declaration of signatures, which represent sets
of uninterpreted atoms, and fields, that relate these atoms. If a given signature is declared
as abstract, as in objected-oriented programming it will not have atoms beyond those within
its extensions. Hierarchy can be introduced in the signatures structure through extension
(keyword extends), or by the set-theory inclusion operator (keyword in). Additionally, both
signatures and fields may be attached with multiplicities. In the signature case, it will
constraint the number of atoms that it may contain. Whereas in fields, it will define the
relation multiplicity between atoms. Moreover, it is possible to tag both, signatures and
fields, as variables (keyword var). Meaning that, their evaluation may evolve through time.
Otherwise, both are considered as static by default, having the same evaluation throughout
every state within each given time trace.

Besides the implicit model constraints that are defined by the signature hierarchy and its
imposed multiplicities, there are additional axioms (keyword fact), that can be explicitly
expressed in Electrum’s language. Here, every value is a relation, and every axiom that can
be written is a constraint to such relations.

The Lightbot1 is an educational video game for learning basic software programming
concepts. The user’s goal is to turn on all the board lights, by choosing a set of commands
for the robot execution. As most of video games, there is an increasing level of difficulty
that is provided by the presentation of distinct puzzles. During the following subsections,
this case-study will be used to illustrate each step of a modelling and verification process in
Electrum. Besides the language use exemplification, this particular case provides an insight
on how to deal with variability issues. This is of great relevance, since this work frame is
focused on the analysis of robotic systems, which due to the usual multi-configuration nature,
are inherent characterized by high-degrees of variability.

With regard to the Lightbot software structure, there is a common set of behaviour con-
straints over every possible configuration, as well as a common structural part. The variability
is expressed on the modelling and analysis of the different game levels (puzzles), which are
pronounced by distinct board configurations. Thus, affecting only the system structure.

Common structure

In order to illustrate an Electrum structural specification, it follows the model depicted on
Listing 2.1. The modelling of the Lightbot software might have multiple approaches. This
one was built with a perception that the robot entity is placed in a unknown environment.
Regardless the environment, the robot position will always be defined by a concrete location
and orientation, which can vary throughout time. The environment itself can be abstractly

1 https://lightbot.com/

2.1. Language 7

1 module Lightbot
2

3 enum Orientation {North, South, East, Weast}
4 enum State {On, Off}
5

6 abstract sig Block {
7 x,y,height : one Int,
8 var light : lone State,
9 adj : set Block

10 }{

11 gte[x,0] and gte[y,0]
12 gte[height,0]

13 adj = adjacent[this]
14 light = none implies always {light = none}
15 }

16

17 one sig Robot {
18 var orientation : one Orientation,
19 var position : one Block
20 }

21

22 fun adjacent[b:Block] : Block→set Block {
23 b → (((x :> plus[b.x,1] + x :> minus[b.x,1]).Int & (y :> b.y).Int) +
24 ((y :> plus[b.y,1] + y :> minus[b.y,1]).Int & (x :> b.x).Int))
25 }

Listing 2.1: Excerpt of the Lightbot model - The structural part.

described as a maze, built as a concrete configuration of static spaced blocks. Each block
may or may not have a light on it, and it’s located on a two-dimensional space with a
three-dimension alike attribute, that captures its height.

Therefore, the structure of this LightBot model fraction consists of:

• Some static explicit signature declarations, labeled by the keywords sig (Block, Robot
). These will define, through a precise set of atoms, part of an immutable system
configuration. The former has the abstract keyword, meaning that, the Block set will
be defined only by an arbitrary number of atoms, each one within one of its possible
extensions. The Block is made abstract in this first model because its extensions will
be used to define a concrete table configuration. The latter is preceded by the one
keyword, that imposes an implicit constraint over the signatures, meaning that, each
model instance is required to have exactly one atom within the Robot set.

• Some static field declarations in the Block signature (x, y, height and adj). Each one
defines an immutable relation between atoms in its domain signature, and its range.
There are multiplicity relation constraints, which are made explicit through the use of
multiplicity operators (one, lone, set). From those, the more uncommon operator is the

2.1. Language 8

lone one, which in this particular case is used to state that, every block has at most one
light State.

• Some variable field declarations (light, orientation, position). Each one defines mu-
table relations between atoms, attached to a specific multiplicity. These relations may
evolve throughout time, as opposed to the static ones. Nevertheless, the relation is
always well-defined. Relating each Block with any, or one of both possible States,
namely, On and Off

• Some inner signature axioms that constraint the relations within the signature Block
(lines 10,11,12,13). These are made by relational expressions, and some of them use built
in predicates (Boolean evaluations), as gte, which implicitly evaluate if there is a relation
of greater-than-equal between its arguments. In the expression (line 12), an auxiliary
function (fun) named adjacent, is used. The use of the function is purely symbolic
with readability and re-use purposes. It defines a relation between the signature itself
(this), and its adjacent Block atoms, which is implicitly quantified over the whole trace.
The concrete expression (lines 22,23) uses a bunch of very common Electrum operators
and predicates over Int. Some of those are set-theory operators, such as intersection
(denoted by &) and conjunction (denoted by +). Others are purely relational based
operators, such as the set composition (denoted by .), the range explicit restriction
(denoted by :>) and the Cartesian product operator (denoted by →). With regard to
the Int predicates (plus,minus), they establish an obvious arithmetic relation between
the arguments, that were already built in the standard language libraries. Finally, the
axiom expressed in the line 14, denotes that, if a given block don’t have any light,
it must still without it during every possible time trace. Despite the rich vocabulary,
through the backend, every expression is automatically combined and translated to
Boolean formulas using FOL quantifiers and LTL operators.

• Some static implicit signature declarations, labeled by the keyword enum (Orientation
, State). This is only an abbreviate form of expressing a semantic-equivalent set of
statements, written in Listing 2.2. Each signature represents some entity in the game
structure. In this case, there is an explicit notion of hierarchy between them. For
instance, it’s explicit that the abstract signature Orientation is composed by atoms of
its sub-signatures (North,South,East,West, that represent disjoint subsets of the extended
set.

Then, by running our model through a process that will be later explained, the visual dia-
gram as shown in Figure 2 is obtained. The instance presents a non-acceptable configuration
for a Lightbot puzzle, since there are configurations where two distinct blocks are placed
within the same bi-dimensional coordinate.

2.1. Language 9

1 abstract sig Orientation{}
2 one sig North extends Orientation{}
3 one sig South extends Orientation{}
4 one sig East extends Orientation{}
5 one sig Weast extends Orientation{}
6

7 abstract sig State{}
8 one sig On extends State{}
9 one sig Off extends State{}

Listing 2.2: The non-abreviated form of declaring an enumeration of multiple signatures that
extend the abstract ones, namely Orientation and State.

Figure 2: An inappropriate Lightbot state.

2.1. Language 10

1 fact Space_Principle {
2 all b1,b2: Block | (b1.x = b2.x and b1.y = b2.y) implies b1 = b2
3 }

Listing 2.3: Fact stating that, if there are two distinct blocks with the same ’x’ and ’y’ coordinates.

1 fact Lights_Coherence {
2 all b:Block | b.light = none implies always b.light = none
3 else always b.light in (Off + On)
4 }

Listing 2.4: Fact stating that, if a given block doesn’t has any light on the initial state, this will not
be changed throughout the time trace. Otherwise will always be one of both, Off or
On.

Thus, besides the structural properties that are implicitly considered within the signature
hierarchy and fields multiplicity, there are some extra ones that should be explicitly expressed
to achieve a correct model definition. One of those is the invariant property, which states that
throughout every given time trace, it’s always impossible to have two distinct blocks with
the same (x,y) coordinates. This issue can be easily addressed by writing an explicit axiom
as the one expressed in Listing 2.3.

With regard to the light relation, there is an axiom that must be explicitly stated to obtain
a consistent model. If a given block doesn’t have any light on its initial state, it must hold like
that throughout every state of a given trace. This is not happening by default in the actual
configuration, since the light relation is labeled as variable.

The Listing 2.4 addresses the issue. The novelty here is the use of the always temporal
operator, whose semantics is alike an universal quantifier over time. Electrum integrates
PLTL into the standard Alloy, therefore, every primitive modal operator (both unary and
binary) used in linear temporal logic is available.

System Behaviour

As previously explained, the model assumptions that are not covered by the signatures
structure, should be declared within Electrum facts. However, not every property that we’re
interested in validating and reason about, should be an assumption. Predicates are reusable
boolean formulas built through Electrum expressions. All of these features, as well as the
notion of reusable expressions (fun) and model assertions (assert), are conceptually grouped
into Electrum paragraphs, as shown in the formal syntax (Figure 1).

Back to the Lightbot case, the actual model already defines precisely which are the valid
states in the system. However, nothing has been stated regarding to its possible evolution,
that is, the valid set of operations in each state.

2.1. Language 11

1 pred move{
2 Robot.position’.height = Robot.position.height

3 Robot.orientation = North

4 implies { Robot.(position’).y = plus[Robot.position.y,1]}
5 Robot.orientation = South

6 implies {Robot.(position’).y = minus[Robot.position.y, 1]}
7 Robot.orientation = East

8 implies {Robot.position’.x = plus[Robot.position.x, 1]}
9 Robot.orientation = Weast

10 implies {Robot.position’.x = minus[Robot.position.x,1]}
11 (Robot.position’.x = Robot.position.x or
12 Robot.position’.y = Robot.position.y)

13 orientation’ = orientation

14 light’ = light

15 }

Listing 2.5: Specification of the move operation through an Electrum predicate.

Due to Electrum high-expressiveness, there are multiple forms to introduce behaviour.
One of the simplest is through the declaration of implicit operations through predicates.
Following the assumption that, every possible trace within the system, needs to be a random
pseudo-permutation of these operations executed upon a well-defined initial state. This
method, when applied consistently, represents a model design pattern known as Implicit
Operation Idiom [10].

For instance, in the Lightbot software, the system state evolves, regarding to the configu-
ration, when the robot takes some action. That is, if the robot has some command to move,
jump, turn (left or right) or to switch some light (on or off). In order to express the complete
possible behaviour, a predicate must be specified for each possible action. Taking the move
operation as example, the predicate on Listing 2.5 illustrates a possible specification of the
operation under an Implicit Operation Idiom.

The pre-conditions (line 2) of this operation state that, the robot position height in the
next state must be the same as the actual. The pos-conditions (lines 3-11) declare the set of
conditions that must to be hold in the successor state, which may vary according to the actual
orientation. Finally, the frame-conditions (lines 11-14) express the conditions that depicted
the remain relations, which are supposed to keep the same after the operation.

As previously claimed, in order to be possible to check and reason about properties in the
system, it’s necessary to introduce the notion of an execution trace. Here, upon a macro-
perspective, it will be completely defined the allowed behaviour of the system, by restricting
the set of valid operations to those previously stated. Thus, after every possible operation
has been specified, the axiom shown in Listing 2.6 must be introduced.

2.1. Language 12

1 pred init{
2 Robot.orientation = North

3 Robot.position.x = 0

4 Robot.position.y = 0

5 }

6

7 fact traces {
8 init

9 always {
10 move or
11 jump or
12 switch or
13 turn_left or
14 turn_right or
15 nop

16 }

17 }

Listing 2.6: Trace constraint written as an Electrum fact. The predicate init defines the robot initial
position and orientation.

The init predicate is only used for readibility purposes. It states the set of conditions that
must hold in the first state. Thereafter, every assertion about the model will be evaluated
within a valid system trace.

Variability Points

The increasingly complexity of software systems tends to be gradually preceded by more
efficient and robust development methods. When the systems have an indeterminate range
of options and variability points, software engineering methods are applied. In this context,
the systems are characterized by a common part with well-defined variability points. When
this is taken into consideration, the improvements in cost and efficiency during the modelling,
development and analysis of software products may be extremely substantial.

Thus, being that this work is focused on the analysis of robotic systems, which in most
cases are inherently high-complex multi-configurable systems, it seems prudent to give a
first approach to model variability through a less-complex system, as the Lightbot.

The Lightbot software case can be depicted and developed as a set of distinct products.
There are common features that are globally used by every possible configuration and whose
specification was already approached. Namely, the robot entity, its relations, the valid
behaviour, and some abstract concepts that determine the kind of interface and rules that
should be invariant properties of all possible configurations. Into this context, a product is
built upon this common part by introducing of a concrete set of blocks arbitrarily arranged,
that is, a possible puzzle.

2.1. Language 13

Figure 3: A graphical representation of a concrete board configuration. Each block coordinates are
respective to the beginning of the block itself, and its text correspond to the (block name:
height value). Each block as at most one light turn off, and distinct background colors were
used to identify different height values. The white blocks correspond to height equal to one,
while the grey block represents a block with height value equal to two.

The Electrum specification framework seems well-suited to deal with variability modelling
and analysis. Mainly because is modular and allows the specification within multiple levels
of abstraction, which seems ideal to define and reason about families of software products.

For instance, let’s consider a specific puzzle configuration, portraits in Figure 3. The
configuration can be modelled through simply extension of the model abstract parts.

Finally, to model a specific product as the one depicted, it’s only necessary to import the
library that has been previously presented, where a mixture between a common part and
a meta-structure was defined. Listing 2.7 presents the specification of the puzzle, which
portrays a specific product.

The sub-model structure that regards to a specific configuration consists of:

• Some static signature declarations, with a concrete multiplicity attached. Each one
of those defines a concrete block, which is the building block of the table board that
defines a concrete puzzle. This specification is required to be expressed at the relational
level since in Electrum is impossible to write constraints at the atom’s level.

• Some inner axioms to each signature, that define the specific attributes of each relation,
completing the board concretization.

• An explicit fact, that defines that in the initial state, every light in the board must be
turned Off.

2.1. Language 14

1 module Lvl1
2 open LightBot
3

4 one sig b1 extends Block {}{
5 x = 0

6 y = 0

7 height = 1

8 light = none
9 }

10 one sig b2 extends Block {}{
11 x = 0

12 y = 1

13 height = 1

14 light = none
15 }

16 one sig b3 extends Block {}{
17 x = 0

18 y = 2

19 height = 1

20 }

21 one sig b4 extends Block {}{
22 x = 1

23 y = 2

24 height = 1

25 light = none
26 }

27 one sig b5 extends Block {}{
28 x = 2

29 y = 2

30 height = 1

31 }

32 one sig b6 extends Block {}{
33 x = 2

34 y = 1

35 height = 2

36 light = none
37 }

38 one sig b7 extends Block {}{
39 x = 2

40 y = 0

41 height = 1

42 }

43

44 fact lights {
45 Block.light in Off
46 }

Listing 2.7: A concrete product specification, that corresponds to the Lightbot software game
with the puzzle depicted in the Figure 3

2.2. Analysis 15

2.2 analysis

In order to endorse our intuition towards verification, or to reveal subtle flaws from scenarios
that have not been exploit, analysis may encourage us to explore, depicting our current system
configuration and behaviour through concrete examples.

This section will give a brief overview of the Electrum analysis system, describing the com-
mands that are provided by the language, as well as, how they are integrated in the analysis
process within the Electrum Analyzer. Lastly, to better understand the differences between
the available Model-Checking techniques, as well as how they complement themselves in
the analysis process, a further description on Bounded and Unbounded Model-Checking is
given.

2.2.1 Commands and Scopes

The verification commands used to verify the model properties are integrated in the spec-
ification file. As previously shown in Figure 1, there are check and run commands. The
check command is evoked with an assertion (the property), in which case the model checker
will produce two formulas, that respectively characterize the model (from the declarations
and facts) (ϕM) and its property (ϕP). Thus, the Electrum tries to find out if the formula
(ϕM =⇒ ϕP) is valid within the scopes, which are the maximum bounds for the number
of atoms within each declared signature. As will be discussed later, this will be reduced
to a SAT problem. Being that, this will be translated to find out if (ϕM ∧ ¬ϕP) is satisfied.
Regarding run commands, the model-checker is instructed to yield a concrete example of the
specification, reducing the problem to the satisfiability of the formula (ϕM ∧ϕP). Since there
are no decidable logics, which are rich enough to capture software abstractions, Electrum
logics is no exception and therefore, is undecidable. Thus, to make instance finding feasible,
as said before, the commands are always specified along with the signature scopes. These
should be explicitly specified for each signature, otherwise, they will assume a standard
default value.

Besides that, the maximum number of different time instants are defined in the command
as well, through a special Time scope. As will be further discussed, for both commands there
are two possible model-checking techniques that can be used, Bounded or Unbounded. The
former will use the Time bound, while the latter will simply ignore it.

In the Listing 2.8, referring to the Lightbot case, a run command labeled as try_solution is
used. Besides the expression, which will be further explained, it is relevant to notice how the
scope is specified along the command. In this particular case, none unless the Time scope is
explicitly declared. However, a general scope of four is defined. This means that, for each

2.2. Analysis 16

1 run try_solution{
2 move;

3 move;

4 turn_right;

5 switch;

6 move;

7 move;

8 turn_right;

9 switch;

10 jump;

11 jump;

12 switch;

13 always nop
14 } for 4 but 12 Time

Listing 2.8: Exemplification of a possible time trace that may solve the puzzle presented on the
Figure 3.

signature over which there is no contradictory implicit multiplicity constraint, the maximum
number of atoms that will contain, is four.

2.2.2 Electrum Analyzer

While analyzing an abstract system design, it’s expected to reason about properties that are
conceptually grouped within one of two distinct categories. One of those groups is known
as safety properties, which state that nothing bad happens, meaning that the system will not
step into an unexpected state during its execution. The other group, is known as liveness
properties, which state that something good will happen, meaning that an expected state
will eventually be reached during the system execution.

The specification process is usually performed interactively. The user takes a first approach
to the model specification, and then proceed to its refinement towards the model validation.
In order to ease this process and improve the user comprehension of model instances and
counter-examples, the Electrum Analyzer provides a Visualizer capable of showing a navi-
gable set of graphical instances that are produced by command executions. A set of features
that allow a full instance theme customization and an instant expression evaluation are also
provided by the Analyzer.

In order to better illustrate how these features are integrated and combined in the analysis
process, lets recover the Lightbot case. Considering the actual specification of the concrete
puzzle, which has been shown in the Figure 3, there are some properties expected to be held.

Producing a concrete instance may be quite useful during the modeling process. The
Listing 2.8 presented above, shows a possible use of the run command for this purpose.

2.2. Analysis 17

Figure 4: Partial graphical view of the two initial states. Adjacent instance states are always presented
side by side. The initial state is shown on the left side, the second on the right side.

1 assert reachability{
2 always (all b: Block | b in Robot.position.ˆadj)
3 }

4 check reachability for 4 but 10 Time

Listing 2.9: Specification and bounded verification of the reachability assertion.

The definition introduces a very useful operator (denoted by ’;’), that allows the creation
of traces by operation chaining. Finally, after the command has been executed, the analyzer
generates a concrete instance, and produce its visual form. In the Figure 4 is shown how the
time trace is displayed.

Although using the run command might be useful for obtaining feedback about the model
specification, it is not intended to be used for verification. Instead, the check command is
used. In the Listing 2.9, a safety property that should be held by the system is specified.

The property states that, regardless of the robot position, every block is always reachable.
The positive transitive closure operator (denoted by ˆ), of the binary relation adj, is the
smallest non-empty transitive relation containing the relation adj. The following definition
may be easier to illustrate the set that is produced by the relation:

ˆadj = adj + adj.adj + adj.adj.adj +

2.2. Analysis 18

Notice that, this definition is possible to be defined due to the finitude of the universe in
Electrum. As expected, after executing the check command upon the asserted property, the
Analyzer indicates that there are no counter-examples within the specified scope. Due to the
Electrum translation into LTL, every considered instance encodes an infinite trace through
looping states, both in bounded and unbounded model checking cases. For the sake of
performance, the Bounded Model Checking technique is usually the first approach towards
the model validation. However is not complete, since the assertion is only checked within
traces with a finite number of distinct states. These are limited to the Time specified scope.
Even so, instance finding through the use of SAT solvers and abstract models have far more
extensive coverage than traditional testing methods. And besides that, assuming the veracity
of the small scope hypothesis statement:

”Most bugs have small counterexamples” [12]

One can expect to have a good approach to a valid model once every property that is
expected to hold is checked, and no counter-examples were found. Then, when confident
that the specification is correct, unbounded model-checking techniques can be used through
the analyzer towards the model verification.

2.2.3 Model-Checking

Model checking is the automatic process towards the verification if a given specification
meets the system finite-state defined by a concrete model.

In Electrum, unlike other analysis tools, there is a non-clear distinction between the model
and the properties specification. By introduction of concrete abstraction processes and logic
translations, the relational model specifications may be converted to model-checking prob-
lems. There are two main categories of model-checkers that are included in the Electrum
framework. Bounded model-checkers, which only consider computational traces with a
limit number of distinct states, and unbounded ones, that discard this constraint.

As previously referred, on the enunciation of the small scope hypothesis, bounded model-
checkers are ideal to be used in the early states of analysis. They are able to produce
quick feedback’s, and the majority of bugs are identified through small counter-examples.
However, although bounded model-checking techniques can achieve much higher coverage
levels than standard testing, they are still not complete, covering only an infimus part of
every possible case. Thus, after the model under analysis has been validated, unbounded
model-checkers can complement the analysis process by offering high-levels of reliability,
towards verification.

2.2. Analysis 19

Figure 5: Electrum Architecture components. The Pardinus layer complements the Alloy KodKod
with temporal logic interpretation. The Electrod component provides support to the sym-
bolic model checkers [19].

To enable the use of both techniques, the Electrum architecture (Figure 5) was built follow-
ing the same principles as in Alloy. The Electrum Analyzer is implemented on top of the
Alloy Analyzer, and relies on the Pardinus model-finder, which was built upon KodKod [36].

An Electrum specification might be seen as FOLTL [3][14] logic’s with structure. However,
the Pardinus only uses FOLTL logic’s. Thus, a transformation is required. The main operation
consists on removing all relational terms present in the Electrum Kernel formulas, replacing
them with the corresponding FOLTL sub-formulas. When the interpretation is complete, the
Pardinus has two distinct options. One is to practice model-checking through SAT solvers
[6], while the other is to do it upon symbolic based model checkers (SMV [20]). The for-
mer performs bounded-verification, while the latter supports both, bounded or unbounded
verification.

If the option is to execute model-checking through SAT, the traces must be made explicit.
Thus, the FOLTL logic’s are expanded into FOL, and the Kodkod is used to interface with
multiple SAT-solvers. When the aim is to execute model-checking upon SMV, the FOLTL
logic’s are expanded into LTL, for later use of Electrod2. This tool compiles the LTL problems
into SMV.

In this work context it’s not relevant to understand the intermediates logic’s itself, or
how they are converted between components. Thus, the following sub-sections will give a
major focus on the Electrum options to perform verification. Namely, through bounded and
unbounded model-checking techniques.

Bounded model-checking

The conventional way to perform bounded model-checking is based on the use of SAT
solvers. The Electrum simply does the translation of its specifications into FOLTL formulas,
that can be directly encoded into Alloy. This translation is feasible by explicitly introducing

2 Stand-alone tool available under the MPL 2.0 license at https://github.com/grayswandyr/electrod.

2.2. Analysis 20

the time signature with a total order forced on it. In bounded model-checking using SAT
solvers, the Boolean formula is satisfiable, if the underlying encoded state transition system
can compute a finite sequence of state transitions, towards a given goal state. If the path
segment cannot be found at a given length, the search continues through incremental larger
ones. When checking some property that doesn’t hold, the Electrum Analyzer yields a first
counter example. The user can iterate allowing over all the different possible ones. This is
achieved by simply re-running a conjunction of the original SAT problem, with the negated
formulas that depicts the instances already produced. This is made efficient due to the use
of incremental solvers that don’t need to reboot the process. Notice that, each instance that
was found, is constrained to a maximum number of time instants, which value was specified
as the Time scope.

Unlike in theorem proving, this kind of analysis is not complete, since it only examines a
finite set of cases. However, due to the recent advances in constraint solving technologies,
namely in SAT solvers, the amount of cases that can be examined within a small amount of
time is huge (billion order), and therefore, a percentage of coverage that it’s impossible to
obtain through testing.

Unbounded model-checking

The Electrum unbounded model-checking technique is implemented through the embodi-
ment of the SMV-based tools, including NuSMV and NuXmv [5]. These equipped Electrum
with a series of algorithms that efficiently perform bounded and unbounded model-checking.

The incorporation of this tool into the analyzer is performed through a chain of model
translations. The model is translated to a FOLTL version, following to an LTL one. After the
conversion process is completed, the SMV version of the original Electrum model is obtained.
The LTL formula within the Electrum specification is translated as well. The initial explicit
transition system disappears, signatures and fields are converted to frozen or plain variables,
depending on they being static or variables. Formulas that were related with inclusion of
signatures and fields are combined as invariants, this allows to constrain and to reduce the
possible state space. Finally, the property under test is specified as an LTL formula as a SMV
specification, allowing the SMV-based tool to proceed with the verification.

Notice that, although this feature allows a possible verification of properties under un-
bounded time constraints, it does not allow the performing of scenario exploration by iter-
ating over counter examples, as it’s done by the bounded-model check technique based on
SAT.

3

S O F T WA R E D E V E L O P M E N T I N R O S

As the scale and scope of the robotics grows, the robotic software is being increasingly used
in the most diverse scenarios, from simple assisting on basic processes automatization, up
to full performance of critical tasks. Besides that, the growth in used domains is followed
by increases in complexity. Safety controllers are moving completely towards the software
level, replacing the previous safety guards which used to be fully hardware-implemented.

Writing robotic software is generally a difficult task. Different types of robots can vary
widely in their hardware as in fields of action. The reuse of code is non-trivial, and therefore,
the development in large scale is made unsustainable. In order to address these problems, the
Robotic Operation System (ROS) [28][23] presents itself as a middleware system, designed
to ease the development of robotic systems in large scale.

This chapter presents a detailed introduction to the ROS architecture and its basic concepts.
Thereafter, it will follow a full section dedicated to review the state-of-art on the Quality
Assurance (QA) of robotic software, namely regarding to ROS systems.

3.1 architecture and concepts

Essentially, ROS is a middleware that provides management services for heterogeneous com-
puter clusters, such as hardware abstraction, low-level device control, and core functionalities
as the message-passing between processes. It is displayed as a distributed layer between the
top application layer, the operation systems and its communication facilities.

Its architecture is based on a hybrid peer-to-peer implementation, where an arbitrary
number of computation nodes can cooperate with each other by communicating through
message-passing patterns. The non-necessity to hold state on a central server, and the
primarily use of publish/subscribe communication type, confers fault-tolerance features to
these systems, enabling its use in heterogeneous environments to compute and communicate.

For instance, one of the standard problems that have inspirit the ROS design was commonly
referred to as fetch an item problem [29]. In this case, a relatively large and complex robot
is equipped with cameras, several scanners, a manipulator arm, and a wheeler base. The
robot tries to find a requested item and deliver it on a default location. Usually, this kind

21

3.1. Architecture and Concepts 22

of systems has some architecture organization within groups. Heavy processing tasks are
usually delivered to high-performance machines dedicated to graphical computation, while
less-intensive tasks are attributed to less-expensive robot components. This naturally leads
to an architecture representation as a graph.

The computation graph of a ROS application is the network of named resources, that
process and share data. These processes are runtime entities, namely Node Instances, Topics,
Parameters and Services, which will be further discussed during this section.

3.1.1 Nodes and Nodelets

The software written in ROS is organized in packages. Packages might contain ROS nodes,
independent libraries, data-sets, configuration files, or something else that logically consti-
tutes a useful module. The Node is the minimal building block of a ROS application. It can
be seen as a standard computer process within a ROS package. In a ROS application, each
node is identified by an unique name, enabling an unambiguous communication between
them. The communication is mostly happens under message-passing models, which confers
fault tolerance features to ROS applications, since crashes are isolated to individual nodes.
Besides that, it naturally modules the code and its functionalities. This provides a well-suited
environment towards the development of complex robotic software systems in large scale.

Beside nodes, that in some sense, may be seen as operative system processes, there are
nodelets. These are another type of computation in ROS that can induce performance im-
provements over the entire system. Nodelets specifically aggregate multiple primal nodes
computation, as computer threads. Which might be useful to group lightweight processes
that constantly transfer high volumes of data between each other, preventing network over-
loading and increasing transfer rates.

A node can be implemented in any programming language, as long as there is binding
for ROS. However, the most common is the use of C++ or Python, due to the support focus.
This is made by providing ROS client libraries such as1:

• roscpp: A C++ client library for ROS. It the most used ROS client library, and was
designed to be the high performance library for ROS.

• rospy: The Python client library for ROS. It was designed to provide the advantages
of an object oriented scripting language to ROS. The design of rospy takes advantage
of the high-level language features, easing algorithm prototyping with inexpensive
configuration efforts, that are counterbalanced through performance costs.

Through the use of these libraries, a programmer can easily assess and make use of the
most relevant ROS resources. For exemplification purposes, the Listing 3.1 shows a dummy

1 http://wiki.ros.org/Client Libraries

3.1. Architecture and Concepts 23

1 #include "ros/ros.h"
2 #include "std_msgs/Int64.h"
3 #include <stdlib.h>
4
5 int main(int argc, char **argv){
6 ros::init(argc,argv,"dummy_sensor");

7 ros::NodeHandle n;

8 ros::Publicher pub = n.advertise <std_msgs::Int64>("sensor_data", 10);

9 ros::Rate loop_rate(10);

10
11 std_msgs:Int64 msg;

12 while(ros::ok()){
13 int value = rand() % 100 + 1;
14 msg.data = value;

15 pub.publish(msg);

16 loop_rate.sleep();

17 }

18
19 return 0;
20 }

Listing 3.1: A C++ node definition. It tries to mimic a sensor behaviour, which publishes random
values, between 1 and 100, on a given topic.

implementation of a ROS sensor emulator, that constantly generates integer random values
smaller than 100.

Aiming a better comprehension of this simple specification, the code can be broken into
two structural parts.

• The lines 1-3 are used to import libraries. The first to import the correspondent roscpp
library. The second and the third, to import external libraries that will be used in this
specification.

• The lines 5-16 are used to specify an emulation of a sensor behaviour. The first and
second roscpp calls (init, advertise) are used to declare that the node will be initiated
with the base name dummy_sensor, and that will be publishing data on the sensor_data
topic 3.1.2 using the message queue size specified as its second argument. Any future
use of this resource entity within the system, is made through this resource name. With
regard to the while cycle, it will be executed until the system stops, at a given frequency
of 10Hz. It will simply proceed in each interaction, with the generation of a pseudo-
random positive value (1-100), following with its publication on the sensor_data topic.

This code sample will be specially relevant in further sections along the chapter. The used
concepts that were not properly explained, as the topic use, as well as the different forms of
communication between nodes, will be further explained.

3.1. Architecture and Concepts 24

ROS Master

As said before, one of the main goals of ROS is to enable developers to design large scale
systems as collections of small independent programs. In order to develop complex systems,
the set of nodes need to be cooperative. The service that provides the necessary information
in order to enable nodes to communicate within a peer-to-peer context, is known as roscore2.
This service starts a node (Ros Master) that is globally known by the entire system. When all
the other nodes have started, immediately connects to roscore, passing it the register details
with its entire description, as its name and topics that it intends to publish/subscribe on. The
information request about services that they intend to use is also passed to the Ros Master.

Thus, the roscore node provides registration services, resource localization and service
lookup to the entire system. Lastly, it also provides a parameter server, that is usually used in
nodes configuration. Basically, it allows nodes to store arbitrary data, such as configuration
variables or algorithms parameters, to be used at runtime.

3.1.2 Communication

In ROS concepts, a message is a well-typed data structure, that by default is built upon some
set of ROS primitive types. These primitive types might include Floating Points (float32 or
float64), Booleans (bool), Integers (int8, int16 or int64), among less-common others. Besides
that, basic constructions as arrays of primitive types and constants are also supported.

The communication between nodes happens essentially through message passing models.
The concrete mechanisms that are used to pass message through topics will be discussed
throughout this section. Is important to notice that, every peer-to-peer connection and
negotiation occurs in XML-RPC, for which there are reasonable implementations in most
major programming languages. Thus, the concepts and details that are being discussed are
completely language-independent.

Topics

Topics are by far the most used form of communication in ROS systems. They are essentially
named buses over which nodes may exchange messages. A Publish/Subscribe semantic is
used to decouple the information production and its consumption. Through the development
of large-scale software within an heterogeneous environment, this communication pattern
provides all sort of advantages [9][35], such as:

• Separation of concerns: Since most robotic software that is developed through ROS is
modular, both in code and in functionality. By using this communication model, it’s

2 https://wiki.ros.org/roscore

3.1. Architecture and Concepts 25

possible to obviate the inherent iteration complexity between modules, enabling the
development of these systems in large scale.

• Improved testability: Due to the high control over topics that is achievable, it is easy to
test if the event buses are sending the correct messages.

• Reduced cognitive load for subscribers: From the subscriber perspective, the publisher
only exists as a black box. Therefore, subscribers don’t need to consider the publisher
work in its definition, being able to delay the message consumption as much as they
need.

• Scalability: This model provides better scalability through message caching, parallel
operations and default efficiently routing options.

• Improved Security and Fault Tolerance: This communication architecture rests on the
principle of assigning minimal privileges to its entities. Also, if some node publishes,
or subscribes some topic that is discarded, it won’t directly affect the rest of the system
components, since they are not aware of each others by build principle.

When some node intends to publish a message on a given Topic, it connects with roscore
to advertise it. Which, in its turn, is responsible to alert each subscriber with the publisher
details, enabling message passing between them. With the aim of better illustrating this
process, Listing 3.2 specifies a node that’s function is to receive data from the dummy sensor
(Listing 3.1), processing it, producing the results to a second topic. This example can be
interpreted as a micro robotic system, where the sensor captures data from the environment
and communicates with a safety node. This node will interpret the received data, computing
a velocity that will be publish to a given topic. This topic may be used, for instance, by an
arbitrary robotic actuator drive, whose definition is unknown.

The safety node implementation is pretty straightforward. The subscribe function is used
to receive data from the sensor_data. Its second parameter is the size of the message queue.
If messages are arriving faster than they are being processed, this number determines how
many messages will be buffered up before beginning to throw away the oldest ones. The
third and last subscribe parameter indicates the callback function that should process the
received messages.

The single peculiarity in this specification is the use of the roscpp spinOnce method (line
27). This method calls once all the callbacks waiting to be called at that point in time. There
are a multiple spin functions that can be used. However, this is simplest one, being specially
meant for single-thread applications. When a given message arrives, the thread will execute
the callback function which is associated to the respective topic. The use of a global variable
vel to carry results, is far from being a good practice, however, being that the spinOnce
function is single-threaded, possible concurrency issues can be discharged.

3.1. Architecture and Concepts 26

1 #include "ros/ros.h"
2 #include "std_msgs/Int64.h"
3
4 int vel;
5
6 void sensorCallback(const std_msgs::Int64::ConstPtr msg){
7 int value = msg.data;
8 if (value > 10){
9 vel = 5;

10 }

11 else{
12 vel = 0;

13 }

14 }
15
16 int main(int argc, char **argv){
17 ros::init(argc,argv,"safety_node");

18 ros::NodeHandler n;

19 ros::Subscriber sub = n.subscribe("sensor_data",1000,sensorCallback);

20 ros::Publisher pub = n.advertise <std_msgs::String >("safe_vel",10);

21 ros::Rate loop_rate(10);

22 std_msgs::Int64 msg;

23
24 while(ros::ok()){
25 msg.data = vel;

26 pub.publish(msg);

27 ros::spinOnce();

28 loop_rate.sleep();

29 }

30
31 return 0;
32 }

Listing 3.2: The safety node implementation in ROS.

3.1. Architecture and Concepts 27

Figure 6: The advertise/subscribe process on the sensor_data topic. Each node represents a process.
The links are labeled with a sequence number, representing the communication performed
between them. Notice that, up to the (4) step, every communication is made through
XML-RPC. After that, a TCP link is established.

Going back to the main point of this section, Figure 6 shows the necessary internal steps
taken by ROS to enable the communication between two nodes, for illustrative purposes, the
dummy_sensor and the safety_nodewere used.

Services

Although the topic-based publish/subscribe models are a flexible communication paradigm,
its broadcast routing scheme is not appropriate for synchronous communications, which are
often useful to achieve some design simplifications.

ROS provides Services as basic request-response pattern through a Remote Procedure Calls
(RPC) implementation. This is a bi-directional synchronous form of communication. It’s the
preferable method when facing simple request/response synchronous interactions, avoiding
the existence of decoupled processes.

Despite not being the ideal form of communication for the example presented during this
chapter, the Listing 3.3 shows how the specification might be changed to use this commu-
nication model, assuming that the dummy_sensor has a sensor_data service. Being that, the
new sensor might act as a server, and the new safety_node as the service client. The inter-
nal steps required to establish communication are similar to the ones taken in topic-based
communications. The server node advertises its service when it’s launched. After that, each
service client must require the service URL to the master node, following with a standard
RPC request to it.

3.1. Architecture and Concepts 28

1 #include "ros/ros.h"
2 #include "std_msgs/Int64.h"
3
4 int vel;
5
6 void sensorCallback(std_msgs::Int64 msg){
7 int value = msg.data;
8 if (value > 10){
9 vel = 5;

10 }

11 else{
12 vel = 0;

13 }

14 }
15
16 int main(int argc, char **argv){
17 ros::init(argc,argv,"safety_node");

18 ros::NodeHandler n;

19 ros::Publisher pub = n.advertise <std_msgs::String >("safe_vel",10);

20 ros::ServiceClient cl = n.serviceClient <std_msgs::Int64>("sensor_data");

21 ros::Rate loop_rate(10);

22 std_msgs::Int64 msg;

23
24 std_msgs::Int64::Request req;

25 std_msgs::Int64::Response resp;

26
27 while(ros::ok()){
28 if(cl.call(req,resp)){
29 sensorCallback(resp);

30 }

31 msg.data = vel;

32 pub.publish(msg);

33 ros::spinOnce();

34 loop_rate.sleep();

35 }

36
37 return 0;
38 }

Listing 3.3: The new safety node implementation, as the service client, instead of using topics for
communication with the sensor node.

3.1. Architecture and Concepts 29

From the presented C++ definitions, is obvious that the synchronous pattern of communi-
cation is not well-suited for this particular case. In fact, neither is for the majority of cases in
the robotic systems, that usually operate under heterogeneous and non-fixed conditions.

Remember that, although the client/server were written both in C++, through the inclusion
of the specific language proxies, the ROS middleware provides multilingual interfaces for the
RPC or Topic uses. Thus, it’s always possible to write both nodes in distinct languages.

3.1.3 Launch Files

A ROS application usually consists on a set of nodes cooperating between each others. Most
robotic systems are multi-configurable, which may yield multiple software configurations as
well. Thus, mechanisms that automatically deal with configuration issues that might emerge
from this are of special relevancy.

There are various forms to deploy a ROS application, however, the most common is
through the use of the roslaunch3 command-line tool. This was designed to launch both,
node collections as entire applications with pre-defined configurations. The alternative is
to initialize and configure every node and parameter individually, which can easily became
quite demanding and prone to human errors.

Thus, roslaunch uses launch files to perform initialization, rather than nodes. These are
XML files, where the set of nodes that must be launched are described along with parameters
and topic remapping. In order to illustrate the utility and specification process of launch
files, the Figure 7 shows two distinct configurations for the same robotic application. The
nodes specifications are based on the ones that were previously presented during the topics
section 3.1.2. As said before, the safety_node receives data from a sensor, and sends velocity
commands through a safe_vel, which will be used by an unknown ROS component to move
a given wheel base. For illustrative purposes, let’s consider the existence of two distinct
mutually exclusive sensors. Both based on publish/subscribe models of communication.

Each configuration can be easily managed and automatically launched through the simple
execution of a single file. The specification of each file is shown on Listing 3.4 and Listing
3.5, respectively. Notice that, although this configuration files are pretty straightforward,
in more complex systems they might be used to define parameters in the parameter server,
arguments passed by command-line, or even to launch more complex groups of nodes under
some specific circumstances.

3 https://wiki.ros.org/roslaunch

3.1. Architecture and Concepts 30

Figure 7: The Figure depicts two possible configurations of the same robotic system. Dashed lines are
used to illustrate mutually exclusive components. The first configuration shows how the
first dummy_sensor and safety_node are logically connected through the sensor_data topic.
The second one shows a slightly distinct configuration, where a different sensor is used.

1 <launch>
2 <node name="dummy_sensor" pkg="example" type="active"/>

3 <node name="safety_node" pkg="example" type="active"/>

4 <include file="$(find example)/launch/wheel_base.launch" />

5 </launch>

Listing 3.4: The launch file that can be used to launch the first configuration of the sample robotic
application.

1 <launch>
2 <node name="dummy_sensor2" pkg="example" type="active"/>

3 <node name="safety_node2" pkg="example" type="active"/>

4 <remap from="sensor_data" to="sensor_data_2"/>

5 <include file="$(find example)/launch/wheel_base.launch"/>

6 </launch>

Listing 3.5: The launch file that can be used to launch the second configuration of the sample
robotic application. The remap tag transparently re-route the name supplied to the
primitive. It allows to connect the alternative sensor without altering the safety_node
source code.

3.2. Quality Assurance 31

3.2 quality assurance

As the robotic software is being increasingly used on wide domains, namely in critical
scenarios with human interaction, the quality assurance of these systems is becoming a matter
of special interest. In such cases, there is a high required flexibility and the consequences of
robot malfunctions due to software errors may be unacceptable. Therefore, it’s imperative
the use of tools and software engineer techniques that promote the system’s quality. This
section will introduce some state-of-art tools and approaches focused on the analysis of
robotic software and variability issues. Although this chapter was dedicated to the concrete
exploration of ROS applications, with regard to the QA matter, there isn’t a clear borderline
detaching the ROS challenges from other common multi-configurable robotic software. Thus,
besides QA approaches taken under ROS systems, during this section, a more wide spectrum
of systems might be considered.

3.3 static analysis

Through the design and development process it is imperative to have tools that provide
simple test and verification procedures. More specifically, it is necessary to have ways to
observe a system state at a given time, during its execution. The rqt graph4 is one of the tools
in which the developers most rely on. It provides a visualization of the system computation
graph with run-time statistics. However, in order to perform analysis on critical and complex
environments, this kind of run-time analysis is not convenient as trustworthy. Thus, better
strategies to perform analysis at compile time are required. Although research and tools on
static analysis of ROS systems are scarce, there are few which are relevant within the context
of this dissertation.

Most of the works on QA of robotic systems are usually focused on the analysis of very nar-
row specific points. For instance, a proposed technique [24], backed by the PhrikyUnits [25],
was introduced as an automatic static analysis tool to detect dimensional inconsistencies in
ROS C++ code and its messages, relying on the prior annotation of the standard libraries.The
incorrect use of the standard data structures that represent physical quantities can’t be de-
tected by the compiler, this leads to possible system faults at execution time. Through the
use of this tool, a well-succeeded study on the frequency of dimensional inconsistencies
was performed in [26]. The tool was used to perform analysis upon 5.9M lines of source
code from sample repositories. Despite the positive results, this work was limited to the
characterization of the physical units usage, and to give an insight on how its manipulations
might promote software faults. Thereafter, this work has also been extended to support the
probabilistic inference of unitis from non-annotated libraries [13].

4 http://wiki.ros.org/rqt graph

3.4. Property Verification 32

Some approaches extract models from the code. In [27], was proposed a technique that
statically extracts C++ ROS code, creating a model of the message flow between components,
which is then used to highlight components that are affected by code changes. The work
presented in [34] analyzes the impact on a system when a specific publication rate is changed.
The impact of rates on overwrite buffers, that might cause overflow and message loss is
a major factor to have in consideration when analysing ROS architectures. The work has
described a methodology with great potential to reduce the size of the expected impact set
to half. The contribution value was on the capacity to reduce the needs to re-apply analysis
under applications that have suffer slightly changes.

Beside focus-oriented static analysis tools, has the ones presented above, the work per-
formed on broader analysis of ROS applications is almost nonexistent. The more relevant
contribution was initially presented in [30]. HAROS is a plugin-driven framework to per-
form an automatic static evaluation of the ROS code quality. Its main focus is to assist the
development process by employing a set of diverse analysis techniques, reporting to the
developer, quality metrics as violations to code standards. The considered code metrics vary
from the simple Number of Code Lines (LOC) to the method Cyclomatic Complexity (CC).
Since the framework is plugin-driven, further develops were made and included in on it. In
[32], with the aim to enhance static-time support, a metamodel to describe ROS application
architectures was proposed. In the same work a code query language is also provided. This
is used to detect simple architectural patterns. This work promotes the comprehension and
analysis of ROS applications, and encourages its use in more sophisticated techniques that
can be developed as HAROS plug-ins. One of such examples was its use as the basis of a
ROS property-based technique [31][33].

Although the HAROS framework, its plugins and language represent major contributions
to assess the improvement of the ROS software quality, there are room enough to explore and
develop new approaches as framework plug-ins. Thus, taking advantage, and going beyond
the work that already has been done, new approaches to increase the software quality might
be explored. Namely, a possible value approach might be the integration of formal methods
to interact with the framework data.

3.4 property verification

Towards properties verification, there has some work been done, namely some attempts to
verify safety properties of ROS applications through state-of-art model checkers. Into this
context, some approaches were taken, namely using SPIN [37] and UPPAAL [11]. However,
these are only exploratory approaches based on ad hoc codifications of robotic software into
the target model-checking language.

3.4. Property Verification 33

Outside the ROS orbit, there are some works on robotic property verification that deserve
to be mentioned. In [18] an end-to-end dependability case for the control software of a family
of surgical robots, was constructed. A safety-critical property was chosen and a case was
built through a pipeline based on lightweight formal analysis (Alloy), feature modelling and
testing. Even though the positive results, the work stills has presented as the major limitation
the requirement of verification expert team.

Into this context, another case study report was presented in [22], the novelty in this work
was the methodology approach based on a trade-off between ambitious context-insensitive
analysis and user-intervention analysis based on domain-knowledge providing.

Despite the positive results in some of these works, they’re not convenient or easy to apply
it in the majority of cases. The ROS software community as its appliance domain are growing,
and its proximity and knowledge with regards to formal methods is scarce. Thus, it seems
that the more convenient approach to the property verification and formal analysis of ROS
software is by its integration through automatic procedures.

4

V E R I F I C AT I O N O F R O S S Y S T E M - W I D E S A F E T Y P R O P E RT I E S

The robotics software are flooding the industry across every possible domain of action. The
possibility to increase productivity while decreasing costs is very attractive. Consequently,
the responsibility delivered to automatic systems grows. The closer proximity between
humans and robots, as well as the appearance of non-supervised robots, creates a vital
necessity to safety certification.

Nevertheless, mainly due to the heterogeneous nature and the wide domains of action,
large scale robotic systems are difficult to test and to analyse. Despite the attempts, the com-
plexity of the actual systems made the integration of classic QA and verification techniques
infeasible. Although there are some state-of-art frameworks and techniques to attest QA of
such systems, they may be inserted into one of the two main categories:

• The first category, contemplates the mandatory techniques on the industry, which
are based on software testing. Although, traditional testing techniques might be not
appropriated to guarantee safety in some environments, such as critical ones, there are
a few of more sophisticated ones emerging.

• The second category groups the more formal and less usable techniques. Here, the
common issue is the inherit cost of usability over quality assurance. The use of such
techniques requires high know-how, and therefore, are not accessible to the conven-
tional developer of ROS software. Thus, its usage and portability might be confined to
a very strict audience.

This work will try to fill in the gaps of each category by creating a bridge between less-
formal and more-formal approaches. It intends to bring a solution that, can be used by the
common developer, while resorting to formal techniques that may empower the state-of-art
methods, towards safety verification. For being one of the most influential middlewares for
robotic software, the analysis approach will be focused on ROS software.

ROS applications might be developed in multiple programming languages and be orga-
nized within heterogeneous architectures. When attesting the quality of modular systems
such these, it is common to split the analysis into two stages:

34

4.1. Model-Checking ROS Safety Properties 35

• The analysis and verification of individual nodes behaviour. From Unit testing, up
to verification procedures. Depending on the software construction, the validation of
the relations between input and output are usually possible to be confirmed through
standard techniques.

• The analysis and verification of the system behaviour. Here, end-to-end properties
are analysed assuming the correctness of the individual components. The main issue
when performing analysis at system level, is the massive cost of launching an entire
system. Which in these cases, are usually unsustainable. Therefore, the usual testing
techniques used to perform system analysis are unable to provide acceptable levels of
guarantees.

During this work it will be assumed the correct nodes behaviour in order to enable the
system-wide verification. By seeing individual nodes as black-boxes, and relying on its
loose behaviour specifications, a novelty technique using Electrum to automatically verify
system-wide safety properties for ROS applications will be presented during the following
sections.

4.1 model-checking ros safety properties

To perform formal verification of ROS applications in Electrum, it is necessary to arrange a
precise definition of its concrete structure and behaviour. Every application makes use of
distinct resources and has distinct behaviours. However, there is a set of logics and features
that represent the fundamentals of every application, since they are build over a common
ground.

Since, in Electrum there is no clear distinction between the model and its specification,
performing analysis might require high-levels of decision making. Besides that, due to the
language flexibility, the same model or specification can be achieved doing very distinctive
choices without compromising results. Therefore, when predicting a possible process au-
tomation, it is required to have a precise and consistent definition of a possible specification.

Being that the majority of ROS applications have complex structures, developed within
large scale environments, considering the hypothesis of practicing unbounded verification
seems unrealistic. Thus, this work intends to demonstrate evidence to the possibility of
automatically performing bounded-verification. The Electrum seems suitable to put this
into practice. It is flexible enough, supporting both architectural as behavioural properties
specification. Besides that, it’s supported by a back-end engine that performs bounded-
verification based on SAT solvers.

4.1. Model-Checking ROS Safety Properties 36

4.1.1 ROS Meta-Model

To analyse general ROS architectures, it’s necessary to establish the common ground of
each application starting by defining the fundamentals for the family of every possible ROS
product. The problem may be reduced to the specification of the middleware structure and
behavioural constraints. Mainly due to the nature of ROS applications, the first version of
this work will focus only on the analysis of topic-based architectures. The Listing 4.1 shows a
possible model specification of the middleware. In practice, this represents the meta-model
of every possible ROS application.

Thus, the ROS meta-model specification consists essentially on:

• A set of top-level abstract signatures: Node, Topic, Field (lines 3 - 8). The first two
signatures represent the abstract notion of a Node and Topic. The abstract label means
that, there is no instances of those objects without explicitly extending them. Basically,
it defines the general concept of a Source Code Entity in ROS. Their extensions will
define more precisely the concept of a Named Source Entity, while its instances will
represent the respective associated runtime object.

• A abstract Value signature (line 9). It depicts the abstract notion of Message data-type
value. These data-types may reduced to a set of different primitive typed field values.
Its extensions, the numeric and string (line 10) signatures are not abstract. Which
means that, the notion of value will be split between disjoint sets of numeric or string
primitive values. These are present at the meta-level since its existence is transverse to
the model definition.

• The Message signature. The only signature in this model that is not labeled as an
abstract or extended from it. This is because a message is a global entity, whose
definition is common to every possible application. A message is associated to a given
topic, and has a set of Fields, each one with a given value. The relations within the
signature declaration are well-defined by explicit declaration of their multiplicities and
relation facts.

• One explicit fact with multiple declarations. The first declaration states that, in the
initial state, the inbox and outbox variable relations should be empty. The remaining
declarations are used to characterize the message flow within the model instances.
These are very straightforward statements that constraint the system behaviour, namely
by defining the volatility bounders of the variable relations. In the third and fourth
declarations (line 25, 29) it is declared that every message in a given Node outbox should
be eventually sent. The last declaration (line 32) prohibit the spontaneous appearance
of messages in every Node inbox.

4.1. Model-Checking ROS Safety Properties 37

1 module rosmodel
2

3 abstract sig Node {
4 subscribes, advertises: set Topic,
5 var inbox, outbox : set Message
6 }

7

8 abstract sig Topic, Field {}
9

10 abstract sig Value {}
11

12 sig numeric, string extends Value {}
13

14 sig Message {
15 topic : one Topic,
16 value : Field → lone Value
17 }{

18 some value
19 }

20

21 fact Messages {
22 no (outbox + inbox)
23 all n : Node | always {
24 n.inbox.topic in n.subscribes
25 n.outbox.topic in n.advertises
26 }

27 all m : Message | always {
28 m in Node.outbox implies (all n : subscribes.(m.topic) |
29 eventually (m in n.inbox))
30 }

31 always {
32 all m : Node.outbox | eventually m not in Node.outbox
33 }

34 all m : Message | always{
35 m in Node.inbox implies (some n : advertises.(m.topic) |
36 before once (m in n.outbox))
37 }

38 }

Listing 4.1: Common structure and behaviour specification for every ROS application. The
top-level signatures depict the middleware resources. The fact describe the system
constraints, both at the structural, as behavioural level.

4.1. Model-Checking ROS Safety Properties 38

Notice that, this meta-model is already architecture oriented, being that every relation
within signatures define interface level concepts. Since the inbox and outbox relations are the
only ones labeled as variables, the inner focus associated with the inter-node monitoring of
message-flow, is directly captured.

4.1.2 Systems Architecture based on Topics

The model structure of each ROS application is divided into a structural and behavioural
part. The structure depicts the system architecture, and defines precisely which nodes and
topics are used, as well as the links between them. In practice, this will be reduced to the
concrete instantiation of the abstract elements declared presented during the last section.
Since the analysis will focus topic oriented applications, only that type of communications is
considered.

A ROS application consists on a group of Named Source Entities precisely arranged. The
Entities that are relevant to this analysis are the application Nodes and Topics. As well as the
links between them. Each application might have distinct configurations, each configuration
yields a distinct Electrum model. Through launch file inspection, the information regarding
which nodes and topics are relevant to defining the structure are easily detected.

Besides the Nodes and Topics List of an application, there are some features that are
required to provide the basis for a proper analysis. One of those is the messages data-types,
which are nothing more than a set of Fields. Each topic has a specific data-type. In this
structure, the relation between the topic and its data-type will be abstractly induced by an
implicit relation between the topic itself, and a concrete set of Fields. This will be introduced
in the structure through Electrum axioms.

The Figure 8 illustrates the relation between the meta-model, and each concrete model
regarding a concrete application architecture. By extending the interface provided trough
the meta-model, each relevant feature is defined as a concrete signature, or implicitly declared
through axioms. Besides the relation between Topics and Fields, these axioms will define the
static relations subscribes and advertises, spelling out the concrete links between the both
main structural signatures. Notice that, the figure only depicts structural concepts, leaving
out the representation of behavioural properties. This will be made clear in the further
sections.

Values Abstraction

The Value is a central piece of the analysis. Usually, the majority of safety properties intended
to be verified regarding run-time behaviours. In such cases, relations between message values
are the core part of the analysis. Safety system-wide properties in ROS are usually expressed
as temporal relations between input and output message values.

4.1. Model-Checking ROS Safety Properties 39

Figure 8: Representation of the main components within every model specification structure. The
figure is divided through an two dimensional vector. Respectively depicting the distinction
between the meta features from the middleware, and a concrete application specification.
The second division represents the distinction between which features are captured through
Electrum signatures and Electrum axioms. Solid connectors illustrate static or variable rela-
tions between top-level signatures, while dashed ones represent the hierarchical relations.

4.1. Model-Checking ROS Safety Properties 40

Considering that in ROS, every data-type is a more or less complex aggregate of primitive
types, they all can be aggregated into two main categories, string or numerical. Dealing
with string values represents no problem, its abstraction is made straightforward since
the relevant properties are confined to equality relations. However, representing abstract
numerical values while maintaining its useful properties is a non-trivial quest.

The bounded model-checking in Electrum, being SAT-based, is not suitable to deal with
numerical values. Although the language supports the use of integers, these are not expres-
sive enough to depict every possible value within the numerical types. Besides that, using
integers will cause major impacts in scopes, turning the verification infeasible.

By taking advantage of the signatures flexibility and its hierarchy, the discretization of
numerical values is made possible by interpreting them as intervals. The majority of system-
wide properties in robotic systems are interested in reasoning about real values. These
values are always discretized through the sensors. Thus, this approach follows the same
guide of principles, creating a symbioses between the nature of the system reasoning and the
respective specification. The approach introduces one main limitation, the absolute order
between numerical values is lost, as well as the capacity to produce arithmetic operations.
However, it enables to practice verification in slightly constrained scenarios, where inclusion
and equality are the only relevant relations to the properties specification.

Figure 9 shows the Value signature hierarchy. The Division of the figure in layers relate the
different levels of abstraction required to interpret concrete values. The First layer defines
the meta-model abstract Value declaration. The second one captures their extensions, which
represent disjoint sets, namely the string and numerical ones. The third and last layer is
where concrete values are captured. This occurs after a possible behaviour be specified. Since
before that, it’s impossible to unravel which values are relevant to the analysis.

In Electrum, a scope limits the number of atoms that are allowed to co-exist within the
same signature set. Thus, each concrete value will be inhabit for a set of atoms, that in some
cases, may be singletons. Mainly in numerical cases, the intervals are implicitly related with
each other, through full inclusion and full independence axioms. When nothing is said about
them, the minimum set of constraints are those implicitly stated by the hierarchy signature.
That is, different intervals which don’t maintain a full inclusion or full independence relation,
might have atoms that are free to navigate between them.

4.1.3 Systems Behaviour

The ROS meta-model provides a structural interface for specifying every ROS application
structure. However, nothing has been stated regard the specification of both, nodes be-
haviours and properties. These are a crucial part of the analysis since most safety properties
are temporal assertions about system-wide behaviours. In Electrum, due to the language

4.1. Model-Checking ROS Safety Properties 41

Figure 9: The three layers illustrate the distinct levels of abstraction on the value discretization. The
first one is an abstract layer, defines an interface through at the meta-model level. The
second is defined through extension, defining two disjoint sets of distinct value categories.
The third complements the second through including specific values into one of the two
categories.

4.1. Model-Checking ROS Safety Properties 42

flexibility, it is possible to design novel idioms as patterns to express abstract state transi-
tions. Since the main goal of this work was focus on achieving an automatic form of property
verification, there was a special need to design a new idiom based on generic specification
patterns. The Electrum temporal-idiom to express systems behaviours was conceived though
the following guide lines:

• The pseudo-formalization of the idiom should be driven by the Dwyer’s [8] specifica-
tion patterns. These patters were identified for the community as the the most typical.
As will be further explained, this will be a central piece on the systems behaviours
deduction.

• Being that there is an intention to automatize the process, a loss of information during
possible translations are not critical. However, the incorporation of additional infor-
mation might be problematic by affecting the soundness of the verification processes.
Thus, the idiom must be able to capture the essential information regarding the systems
behaviour.

• As there is no clear distinction between the model and the specification in Electrum,
both properties and node behaviours should be written through the same idiom. This
eases the specification process, since the behavioural specifications will be globally
made at an interface level. This will support decisions that will be made clear during
further sections.

The Dwyer’s patterns are a standard form of specification for finite-state verification.
These are a collection of patterns that commonly occur in the specification of concurrent and
reactive systems, as ROS applications. Although the idiom was not projected to embrace
every possible pattern, there are two groups of special relevancy that were contemplated.
The first address the specification of safety properties. These can be separated in two sub-
groups, the ones that can be viewed as pure safety properties, and the other ones based on
conditional events. The first is known as the Absence pattern, while the second is named
Precedence. It follows a subtle explanation based on a concrete example, which has been
previous presented during the Section 3:

• The Absence pattern is used to forbid undesirable events. One might state that, ”Every
message that goes through the sensor_data topic has data values between zero and
one-hundred”. Or the equivalent, through its negated form (”There are no messages
passing in the sensor_data topic, with a positive data value without being between zero
and one-hundred”).

• The Precedence pattern allows the occurrence of an event when other required event
has happen before. For instance, ”If a message with a data value equals to zero passes

4.1. Model-Checking ROS Safety Properties 43

through the topic safe_vel, it’s required that, previously, a message with data value
between zero and ten has passed through the sensor_data topic.”.

The second group of patterns regard the specification of liveness properties, and might be
seen as its safety-duals. Although the aim of this work is the verification of safety properties
only, these can be of useful hand when specifying individual nodes behaviours. Thus, the
Existence pattern is associated to an event that shall eventually happen, at least once. While
the second pattern is named Response, and is used to state that, after a trigger event happens,
a response event will eventually happen. Following the above illustration based on the
concrete example, it follows the exemplification of such patterns use:

• The Existence pattern is used to express inevitability. One might want to state that,
”Some message with a data value equals to zero or five, will eventually pass through
the safe_vel topic”.

• The Response pattern is used to express a conditional inevitability. For instance, a
property that states that, ”If a message with a data value of one passes through
the sensor_data topic, eventually, a message with a zero value will pass through the
safe_vel topic.

Notice that, a property that may make sense on a given state, might be completely vacuous
on another. Thus, the specification patterns consider the existence of temporal scopes, which
essentially define the interval for witch the inner property must hold. Considering that ROS
systems are inherited based on real-time events, this scope might be globally, delimited by
specific events, or marked by real-time intervals. In this work, only globally scopes will be
consider. Since the consideration of real-time intervals in abstract models goes way beyond
this work context.

Assuming this limitation, the patterns descriptions are obtained straightforward in Elec-
trum, by resorting to its temporal features. The specification of Absence and Existence
patterns are achieved by transcription of simple statements. While Precedence and Response
patterns, as conditional forms, are divided in two distinct types at the interface level. The first
one, relates, through predicates, multiple precedence/response values of events. While the
second, doesn’t need to explicitly relate them. In Electrum, this is captured by simply using
different quantifiers. Figure 10 illustrates how these patterns are interpreted on the Electrum
temporal idiom. Notice that, as said before, the considered properties will be always under
a global scope.

To obtain a better understanding on how these properties might be specified in Electrum,
the Listing 4.2 shows a summarized definition of the properties that were stated during the
Dwyer’s patterns illustration.

This specification already presents discretized values, this was achieved following the
procedure explained during the Section 4.1.2. The values inner-relations, as the relations

4.1. Model-Checking ROS Safety Properties 44

Figure 10: Electrum translations of the fourth specification patterns used by the Dwyer’s approach.
The Absence and Precendence patterns are used to specify safety properties. On the other
hand, the Existence and Response patterns focus on liveness specification.

4.1. Model-Checking ROS Safety Properties 45

1 module properties
2

3 -- Fields Declaration

4 one sig data_sensor, data_safe_vel extends Field {}
5 -- Facts

6
7

8 -- Value Discretization

9 sig num_0 in numeric {}
10 sig num_1 in numeric {}
11 sig num_5 in numeric {}
12 sig range_from_0_to_5 in numeric {}
13 sig range_from_0_to_10 in numeric {}
14 sig range_from_0_to_100 in numeric {}
15 -- Facts

16
17

18 fact nodes_behaviour{
19 -- Absence Pattern :

20 always{
21 no m: Node.outbox & topic.sensor_data |
22 data_sensor.(m.value) not in range_from_0_to_100
23 }

24

25 -- Existence Pattern :

26 eventually{
27 some m : Node.outbox & topic.safe_vel |
28 data_safe_vel.(m.value) in (num_0 + num_5)
29 }

30

31 -- Response Pattern:

32 always{
33 (some m0: Node.inbox & topic.sensor_data | data_sensor.(m0.value) = num_1)

34 implies eventually
35 (some m1: Node.outbox & topic.safe_vel |
36 data_safe_vel.(m1.value) = num_0)

37 }

38 -- Precedence Pattern:

39 always{
40 (some m1: Node.outbox & topic.safe_vel | data_safe_vel.(m1.value) = num_0)
41 implies before once
42 (some m0: Node.inbox & topic.sensor_data |
43 data_sensor.(m0.value) in range_from_0_to_10)
44 }

45 }

Listing 4.2: Property specifications following the Electrum temporal idiom. Each property
translates the respective definition that was presented in textual form during the
illustration of the distinct Dwyer’s patterns. The signatures declarations are used to
illustrate how the values and fields abstraction its using when describing behavioural
facts.

4.2. HAROS Integration 46

between fields, values and topics, were all hidden for the sake of readability. These will be
presented during further sections.

4.2 haros integration

The HAROS framework, which as already been briefly presented, is a genericc plug-in-
driven QA framework for ROS. It allows the evaluation of code and systems quality, mainly
through static analysis procedures. Aiming the automation of the verification process, an
integration with the HAROS eco-system provides both the required resources to the technique
appliance as well as a well-stablish infra-structure, providing all the facilities for the technique
integration and its user-interface.

Latest HAROS developed features allow the automatic extraction of the system structure
and the specialists behavioural specifications. The first is an embedded feature that pro-
vides a structural meta-model, while the second is a semi-integrated Property-based testing
approach and the respective specification language.

During this section, these features will be further explored, presenting both its value and
as utility, within this work context. Besides that, will be given a complete overview of
a new HAROS plug-in, designed to perform automatic verification of system-wide safety
properties.

4.2. HAROS Integration 47

Figure 11: The HAROS architectural meta-model, the features that are unsupported by the verification
technique are greyed out.

4.2.1 HAROS Architectural Meta-Model

The HAROS framework provides two main plug-in entry points for information relating ROS
applications under analysis. One of them is devoted to packages and source files analysis,
the other is for architectural information depicted through meta-models based on launch
configurations. These models are extracted and generated automatically through source
code analysis.

The verification technique proposed during this work will use these meta-models to cap-
ture the structural description of each application. By containing information regarding
the launched nodes, and which topics are subscribed and advertised at run-time, each ap-
plication meta-model provides the required data to automatically build its corresponding
structural specification in Electrum. Besides nodes and topics, there are other computation
graph elements, as services or parameters, that will not be supported by this technique first
approach. The architecture of the HAROS meta-model is illustrated in the Figure 11, where
the relevant elements to this approach were highlighted.

The direct correlation between the HAROS meta-model and ROS computation graph
entities its very clear. This was a design choice that was guided the implementation of
the verification approach, since it promotes the readability and result interpretation by a
conventional ROS user.

4.2. HAROS Integration 48

proper ty ····= scope : pa t te rn
scope ····= globally

| <|after activator [until terminator] |>
| <|time-bound after activator|>

pa t t e rn ····= some events | no events
| events causes <| [time-bound] |> events
| events requires <| [time-bound] |> events

events ····= mul t i -event (|| mul t i -event) ∗

mul t i -event ····= event | <|event-set|> | <|event-chain|>
event ····= name [pred ica te] [as i den t]
pred ica te ····= { c o nd i t i on (, c o nd i t i on) ∗ }
c o nd i t i o n ····= param-expr binop value -expr
param-expr ····= param | <|builtin|> (<|param|>)

value -expr ····= set | range | value
set ····= [value (, value) ∗]
range ····= number to number
value ····= number | s t r i n g | re f -expr
re f -expr ····= [$ iden t .] param | <|builtin|> ([$<|ident|> .] <|param|>)
binop ····= = | != | in | not in | <| < |> | <| <= |> | <| > |> | <| >= |>
param ····= f i e l d [. f i e l d]
f i e l d ····= i den t [[(n-zero | <|slice|>)]]

Figure 12: The HAROS behavioural language. The features that are unsupported by the verification
technique are greyed out..

4.2.2 HAROS Specification Language

The HAROS framework provides a specification language that allows to express systems
properties and its expected behaviours. From this language its possible to automatically
generate runtime monitors and tests for Property-based Testing (PBT) practice.

Property-based Testing is an automated testing technique that, given a property, randomly
generates test inputs, executes them, and verifies if the relation between the input and output
respects it. Despite the required degree of formalism in conventional PBT frameworks, the
specification in HAROS is made easier. This happens because there is a high-level of similarity
between its specification language and system related concepts, which are familiar to any
ROS developer. The core of the language is based on the Dwyer’s specification patterns, that
were already mentioned, during the Section 4.1.3.

This domain-specific language, whose syntax is shown in Figure 12, acts at a message-
passing level, treating nodes as black-boxes. The semantics is formalized in metric FOLTL
over ROS execution traces. Both the logic’s type as the specification patterns create a direct
match between the language and the Electrum temporal-idiom, developed during the course
of this work.

Notice that, the HAROS testing approach is system-oriented. When varying the test scope
from individual nodes to the whole system, the testing is done the same way. This happens

4.3. Modelling The Dummy Robot 49

because the properties are always focusing interface functionalities, dismissing all the inner
behaviours.

Despite the broader, and more efficient approach that was taken by the HAROS, when
compared with standard testing techniques, there is a lot of opportunity to enhance its use
through more sophisticated techniques. Namely by exploring new approaches to enhance the
quality assurance through model-checking. Although HAROS has presented a specification
language, this has been only used for testing. The physical limits that are imposed by the
usually large robotic systems, tend to require high costs of deployment. Being that, as the
system needs to be rebooted for each test-case, the cost of testing a test-suite with a reasonable
size may be unbearable. Therefore, the coverage provided by such techniques leads to poor
quality assurance regarding system-wide testing.

4.3 modelling the dummy robot

For illustrative purposes, let’s recover the first configuration of the Dummy example, which
was firstly introduced on the last chapter, and mentioned later on the last section when
specifying temporal properties. In that case, four distinct properties with a system-wide
flavour were written. Although the properties had a general purpose, that doesn’t need
to be always the case. In some concrete situations, narrow definitions referring individual
nodes can be stated. For making sense of this example, let’s assume that, each one of the
four properties are an expected behaviour of some concrete node. The Listing 4.3 shows a
possible definition of how these properties might be used in property-based testing through
the HAROS specification language.

The specification is interpreted within a YAML file, where each node functional-properties
are specified following the previous presented patterns. It follows with a description of the
system-wide properties that must hold for each configuration.

The first properties (lines 12,19,21), are focused on specific node instance types. This means
that, HAROS will monitor individual nodes for specific test-cases, which are generated
through the properties written within each node label. The remaining properties, regard
specific system configurations, being therefore, interpreted more widely as architectural test-
cases. At verification level, there is an implicit interpretation, which bases the assertion of
the system-wide behaviours when its assumed the correct operation of all individual nodes.
Basically, the configuration properties are expected to hold when the set of node properties
are considered axioms.

When merging all the possible information to be collected through the HAROS infras-
tructure, and the testing specifications, the elaboration of an Electrum model to perform
bounded-verification on the configuration property becomes a straightforward process. The
first step is to define the application structure, through the extension of the Electrum meta-

4.3. Modelling The Dummy Robot 50

1 project: dummy_project
2

3 packages:
4 - dummy_package

5 - wheel_base_package

6

7 nodes:
8 dummy_sensor_node:

9 rosname: dummy_sensor
10 hpl:
11 properties:
12 - globally: no /sensor_data {data not in 0 to 100}
13

14 safety_node:

15 rosname: safety_node
16 hpl:
17 properties:
18 - globally: some /safe_vel {data in [0,5]}
19 - globally: /safe_vel {data = 0} requires
20 /sensor_data {data in 0 to 10}
21 - globally: /sensor_data {data = 1} causes /safe_vel
22 {data = 0}

23

24 configurations:
25 first_configuration:
26 launch:

27 -dummy_package/first_configuration.launch
28 hpl:
29 properties:
30 - globally: /safe_vel {data not in 0} requires /sensor_data
31 {data not in 0 to 10}

Listing 4.3: A HAROS configuration file for property-based testing. Each set of properties
will generate a specific test-suite. The nodes have property fields, these are used
to generate test-cases to submit on concrete Node Instances. In the other hand,
configuration properties will generate broader test-suites, whose monitoring will
focus on an entire configuration. Each configuration is described through a concrete
launch file.

4.3. Modelling The Dummy Robot 51

1 module DummyRobot
2 open rosmodel
3

4 -- Topics Declaration

5 one sig sensor_data extends Topic{}
6 one sig safe_vel extends Topic{}
7

8 -- Nodes Declaration

9 one sig dummy_sensor extends Node{}{
10 subscribes = none
11 advertises = sensor_data

12 }

13 one sig safety_node extends Node{}{
14 subscribes = sensor_data

15 advertises = safe_vel

16 }

Listing 4.4: Parcial Electrum structural specification of the DummyRobot, following a structured
form of specification.

model interface. The HAROS meta-model can be used to extract all these information. The
Listing 4.4 presents the concrete specification of both Nodes as Topics for the Dummy Robot.

The second step is to define concrete values, concrete fields, and establish every required
implicit relation between these entities and the remaining model entities. Each message has
a concrete topic, which implicitly constraints which data-types are the valid ones. Since
the notion of data-type has been dismissed from the signature hierarchy, an implicit relation
associating each topic message with a valid set of fields must be written. These inter-signature
relations are not unique, since a field needs always to be associated with a value category
(string or numeric). Thus, both values, fields, and the respective required facts, are shown in
Listing 4.5.

Notice that, for some values a Singleton axiom was declared. This helps the semi-automatic
computation of the minimum scopes required to verify properties within the specification.
Since intervals with one single element doesn’t need to have more than one atom.

Finally, the model is completed through the specification of the node behavioural axioms,
and configuration assertions. The nodes axioms are conceived through translation of each
node property from the respective HAROS PBT specification. The assertion that is passi-
ble to be checked, regard the configuration property. The Listing 4.6 shows the Dummy
Robot model conclusion, considering only the verification of the unique system-wide safety
property.

A real HAROS specification file for the Dummy Robot should contain more axioms, which
should depict all the system behaviour. However, this specification was not obtained by an
automatic procedure, and was intended to be illustrative. Thus, for the sake of readability,
the set of translated properties was confined.

4.3. Modelling The Dummy Robot 52

1 -- Fields Declaration

2 one sig data_sensor, data_safe_vel extends Field {}
3 -- Facts

4 fact type_coherency{
5 ((topic.sensor_data).value).Value in data_sensor
6 ((topic.safe_vel).value).Value in data_safe_vel
7 }

8 fact field_types{
9 (data_sensor + data_safe_vel).(Message.value) in numeric

10 }

11

12 -- Value Discretization

13 sig num_0 in numeric {}
14 sig num_1 in numeric {}
15 sig num_5 in numeric {}
16 sig range_from_0_to_5 in numeric {}
17 sig range_from_0_to_10 in numeric {}
18 sig range_from_0_to_100 in numeric {}
19 -- Facts

20 fact Singleton{
21 lone num_0
22 lone num_1
23 lone num_5
24 }

25 fact Independence{
26 no num_0 & (num_1 + num_5)
27 no num_1 & (num_5)
28 }

29 fact Inclusion{
30 num_0 in range_from_0_to_5
31 num_1 in range_from_0_to_5
32 num_5 in range_from_0_to_5
33 range_from_0_to_5 in range_from_0_to_10
34 range_from_0_to_10 in range_from_0_to_100
35 }

Listing 4.5: The second part of the Dummy Robot model. The values used in the configuration
file are captured to the Electrum model. The axioms constraint the implicit relations
between values. The fields are also captured from the configuration file. Axioms
explicitly relating each topic with specific fields are stated. As well as, relating fields
values which one of its extensions.

4.3. Modelling The Dummy Robot 53

1 fact dummy_sensor_behaviour{
2 always{
3 no m: dummy_sensor.outbox & topic.sensor_data |
4 data_sensor.(m.value) not in range_from_0_to_100
5 }

6 }

7

8 fact safety_node_behaviour{
9 eventually{

10 some m : safety_node.outbox & topic.safe_vel |
11 data_safe_vel.(m.value) in (num_0 + num_5)
12 }

13 always{
14 (some m0: safety_node.inbox & topic.sensor_data |
15 data_sensor.(m0.value) = num_1)

16 implies eventually
17 (some m1: safety_node.outbox & topic.safe_vel |
18 data_safe_vel.(m1.value) = num_0)

19 }

20 always{
21 (some m1: safety_node.outbox & topic.safe_vel |
22 data_safe_vel.(m1.value) = num_0)

23 implies before once
24 (some m0: safety_node.inbox & topic.sensor_data |
25 data_sensor.(m0.value) in range_from_0_to_10)
26 }

27 }

28

29 check first_configuration_prop0 {
30 (some m1: Node.outbox & topic.safe_vel |
31 data_safe_vel.(m1.value) not in num_0)
32 implies before once
33 (some m0: Node.inbox & topic.sensor_data |
34 data_sensor.(m0.value) not in range_from_0_to_10)
35 } for 4 but exactly 3 Value, 3 Message, exactly 5 Time

Listing 4.6: Node behaviours and properties specification. Both based on the specifications
extracted from the configuration file presented in the Listing 4.3

4.3. Modelling The Dummy Robot 54

4.3.1 Model-Checking Plug-In

With the aim to develop a framework which applies formal techniques within less-formal
environments. The approach focuses on the use of Electrum to specify and verify ROS
system-wide safety properties. The technique is wrapped as a HAROS plug-in, using the
resources that are made available through the eco-system, such as the UI or the file analysis
features. The architectural HAROS meta-model is used as the main information entry-point.
The remaining used information regards the specification files and a plug-in configuration
file. Assuming the correct flow of information within the system, the plug-in implementation
as follow the fundamental set of principles:

• The complexity of the translation procedures must be completly hidden from the user.

• Its installation and use must requires low levels of configuration.

• The plug-in must be able to capture both, structural and behavioural specifications
automatically, through the HAROS infrastructure.

• The gap between the abstract and real models should be as little as possible. Thus, the
analysis should be centred on reflecting only issues from the real system, discarding
issues regarding the technique limitations.

• The plugin must produce readable results, based on concrete counter-examples. Which
should be displayed through the HAROS user-interface.

The temporal-idiom enables the automatic creation of Electrum specifications. The speci-
fications structure may be conceptually divided into four parts:

• Description of the ROS middleware.

• Description of a concrete application entities.

• Description of the system behaviour.

• Description of the verifiable assertions.

Each one of those parts represents a model refinement towards the final specification. The
first is used to establishing the common structure and behavioural constraints, which in
this case represents the middleware model. Follows the structure of a concrete application,
where the named resource entities, as nodes and behaviours, are specified and explicitly
linked. This mutable part of the specification may be automatically obtained through the
HAROS meta-model entry-point. The Value discretization, the Field enumeration, and all
its implicit constraints within the model, are obtained through the respective HAROS PBT
specification, closing the model structural instantiation. Finally, the specification is also used

4.3. Modelling The Dummy Robot 55

Figure 13: Conceptual parts of a ROS system specification in Electrum. The image shows the relation
between resources and the specification blocks. The structure is obtained through the
HAROS meta-model and the HAROS specification. The property scopes are introduced
through a plug-in configuration file.

to describe each individual node behaviour through Electrum axioms, as the properties that
must hold on each system configuration, as assertions. Multiple configurations of the same
robotic-system are consider to be different models, since the HAROS eco-system already
provides the necessary elements for abstracting this issue.

Figure 13 shows how this technique formalizes the launch configurations towards its
possible verification through the Electrum Analyzer.

The main issues when abstracting real-time are usually associated to the characterization
of concrete values. The approximation of Electrum specifications to the HAROS ones will
always maintain a gap due to real versus abstract interpretations. Due to this, not every
specification will be passible to be converted to this idiom. As said before, properties using
time-bounds and scopes further than the globally one, will be completely discharged.

Although the first version of the plugin it only supports a confined set of the ROS systems
characteristics, the approach might be easily extended to embodied new elements and fea-

4.3. Modelling The Dummy Robot 56

tures. Breaking down the constraints, the approach is applicable to systems and specifications
that respect the following requirements:

• The system must be topic-based. Although it is possible to analyze systems that contain
synchronous patterns of communication, the specified behaviour and properties must
be completely independent from those. This constraint is imposed at the top, by the
non-existence of a good HAROS support for these patterns.

• A HAROS specification is prepared to translation, if its completely described through
globally scoped specifications. Behavioural descriptions with other scope will not be
accepted. This happens due to real-time issues, which goes beyond this work context.

• The HAROS specification should only contain single event-chains. Multi-event chains
are discharged due to idiom and logic limitations.

The Figure 14 shows the main parts of the plug-in architecture. The user interacts with
the plug-in through the HAROS interface. Being that the Electrum specification considers
the node properties as axioms, the HAROS testing tool must be executed previously to the
verification towards higher guarantees. After that, the plug-in automatically extracts all
the required information to create an Electrum model for each configuration. During this
phase, an intermediate structure, whose architecture is depicted in Figure 15, is created.
The structure regards a specific configuration, creating and maintaining a link between the
information from the meta-model, the behaviour specification, and the Electrum model thats
generated from them. The model can be directly submitted to the Electrum Analyzer, where
all of its assertions are verified for a given scope. If a given property is satisfiable by the model-
checker, a counter-example depicting a time-trace is yield. The results are produced within
a textual form, referring only model abstract concepts, that cannot be directly interpreted
by the common user. Thus, by re-using the intermediate structure, the counter-examples
are translated to its concrete-form, and retrieved to the HAROS interface with a event-based
flavour, which might be very intuitive to the ROS developer.

After the creation of the intermediate structure, and before the Electrum model production,
a set of optimizations are made. Since the extracted model is expected to contain a big
chunk of innocuous information, due to the exportation of external ROS libraries, a possible
optimization caused by the removal of this extra-data is certain. Thus, topics that are not
ever used, or nodes whose functionally is useless at interface-level may be removed.

Every possible reduction in the number of the structure entities, causes a direct reduction
in the number of minimal scopes, without interfering with the soundness of the verification
process. During the experimental part of this work, it was verified a reduction of 50% in
the Node scope, and a reduction of 70% in the Topic scope. Notice that, the experience is not
representative, since was not largely reproduced. However, by empirical observation, seems
a good direct approach to static scope reduction.

4.3. Modelling The Dummy Robot 57

Figure 14: The Model-Checking plugin architecture main components. The plugin interfaces with
HAROS through the infrastructure support features. The application outsources the
model-checking techniques to the Electrum Analyzer. The results are retrieved through the
HAROS user-interface. Solid arrows depict the flow of the information up to the plug-in,
the dashed lines illustrates the results opposite flow.

4.3. Modelling The Dummy Robot 58

Figure 15: The configuration structure class diagram. Each class captures the information regard-
ing the respective named source entities. The information is merged from two distinct
highlighted sources, namely the HAROS meta-model and its properties specification.

4.3. Modelling The Dummy Robot 59

The fact that every verification realized in this work is bounded, requires the use of scopes
for each top-level signature. While Node, Topic and Field scopes are directly computed, Values
, Messages and Time are not. This happens because different scopes of these signatures directly
interfere with the range of behavioural possibilities. Despite being possible to compute an
ideal approximation for these bounds, this could limit the plug-in usability, since it disregards
the human intuitive capacity to perceive the system. An optimal approach is to have both,
an option to explicitly specify the verification scope, while computing an optimal scope by
default. The first version of this plug-in only contemplates the former. However, optimal
scope deductions based on the number of distinct values, and the maximum radios of the
computational graph, appears to be legit.

5

E VA L U AT I O N

This chapter presents an empirical evaluation on the use of the model-checking plug-in. The
technique expressiveness and performance will be evaluated. Although not every HAROS
PBT property is possible to be translated to the Electrum temporal idiom is expected that,
the supported sub-set be enough to assess the safety on real systems.

Aiming to attest the technique expressiveness, a real industrial case will be analysed. This
will be sufficient to unraveling both the capacity, as the viability of using this approach in
real-contexts. Besides that, the analysis will provide enough results to evaluate the plug-in
integration within the HAROS eco-system and its testing procedures.

Since the main challenges on bounded model-checking of real systems are usually condi-
tioned by the scope sizes, the verification will be conducted for distinct bounds. This aims
to provide a better comprehension of the approach limitations. Allowing a better partition
of issues, that might be directly related to the approach expressiveness, or are simple inherit
limitations of the model-checking techniques used.

Although the approach it should be able to support the verification of liveness properties,
this was not the focus of this work. Thus, both analysis vectors will be focused on the
verification of concrete system-wide safety-properties. All the evaluation will be executed
using a SAT4J backend, on a 2.4 GHZ Intel Core i5 with 8GB memory running Ubuntu (16.04).

5.1 romovi case study

The RoMoVi 1 project’s main objective is to develop robotic components in a modular and
extensible mobile platform, which will provide commercial solutions for motorization and
logistics of steep slope vineyards.

Developing robots for crop monitoring and harvesting is a complex challenge. The robot
perception, localization, and mapping, must be precise. This may be specially difficult
when operating on unstructured environments with low GPS signal as steep slop vineyards.
In [7] is presented a platform intended for the measurement of variability in this kind of

1 http://agrob.inesctec.pt/

60

5.1. ROMOVI Case Study 61

Figure 16: AgRob V16, the platform for the RoMoVi project.

environment. Among other innovative features, this robotic platform is equipped with an
advanced navigation system that allows its fully operation when GPS signal is not fully
available. Its development is being made in a modular way, being that, in a near future,
besides variability measurements tasks, it will be used to work with robotic manipulators
for pruning and harvesting operations.

The system aim is to be capable to act in unstructured environments while interacting with
humans, providing quality assurances enough to its commercialization. Thus, methods to
guarantee quality are absolutely required. The actual robot prototype (Figure 16) aims to
accomplish a complete automatic navigation through the vineyards. This was developed
incrementally, through the use of multiple configurations. There are a set of features and
challenges that made this system suitable to attest the quality of the QA approach presented
during this work:

• The AgRob platform is an industrial system, which may illustrate the challenges inherit
to real case systems. Through this system it is possible to attest the applicability of this
approach to real world robotics software.

5.1. ROMOVI Case Study 62

• The system was designed and developed by a wide-range of professionals, which
provide an unbiased sample of the typical ROS developer.

• The system is multi-configurable. Distinct configurations expect different properties to
hold.

• The system relies on several third-party ROS packages, which makes it prone to suffer
from launch configuration errors that may undermine safety properties.

• Being an autonomous system that will operate in a non-structural environments, non-
expected system behaviours may have major consequences. Thus, attesting the system
quality through less-conventional and more formal approaches, might provide higher
quality guarantees.

• The system has a rich structure and a complex behaviour, being suitable to attest if
the expressibility of the approach is enough to address the verification of relevant
properties.

5.1.1 Configurations

The AgRob system has multiple configurations. Each configuration is described through
a main launch file. Some launch files are hierarchically related, describing sets of distinct
packages that should be grouped together. Through the RoMoVi formal documentation,
four distinct configurations were identified. The analysis will focus only on the two main
configurations, being that, all the analysis efforts on those may be applied to the remaining
ones, expecting similar results.

Figure 17 shows a simplified AgRob architecture overview of both the main system config-
urations. Each configuration represents a different combination of features. The most basic
configuration is named startup, and its launch file describes the minimum required set of
resources to launch a robot, that is teleoperated through an external Joystick, while avoiding
obstacles automatically.

The second configuration is named map, and diverges from the startup one by including
localization and navigation packages. When on this configuration, the robot user can switch,
from teleoperation to a completly autonomous mode. The first configuration only detects
obstacles through laser sensors, while the second also considers localization information.

The core nodes of both are the SafetyController and the Multiplexer nodes, which are
responsible for ensuring the system safety. The SafetyController monitors all the data
coming from each sensor, as the execution mode, which is defined through the controller.
Besides that, it constantly monitors the user operations, avoiding unintentional or even forced
accidents. The robot current mode and status are always monitorized by this central piece,

5.1. ROMOVI Case Study 63

Figure 17: The AgRob V16 software architecture simplified. The components exclusive to the map
configuration are grey out. The remaining components are present in both main configu-
rations. Each conceptual division represents a given system functionality. In most cases,
distinct functionalities result in different package groups.

5.1. ROMOVI Case Study 64

which are constantly reporting feedback to the user GUI and safe velocity commands to the
Multiplexer component. The Multiplexer collects commands from the different sources and
multiplexes them following a pre-defined priority. The selected commands are then passed
to the HuskyInterface, which communicates with the hardware actuators, making the robot
base to move.

The map configuration differs from the startup by including a navigation stack, which is
built upon a specific path planning, trajectory decision and computation external packages.
These provides means to the system perform a proper form of simultaneous localization and
mapping (SLAM)[21]. Besides that, it also integrates a 3D visualization tool to supervision
and goal stipulation, enhancing the interaction possibilities with the user.

Notice that, in both configurations, as usual in most ROS applications, there is a big chunk
of communications that occur implicitly through the tf2 package. Although this package is
built through well-tested standard libraries, a system-wide analysis should take them into
account. However, there is no actual support for its analysis through the actual HAROS
version. Thus, taking in consideration that the package functions are confined to maintain a
coherency between robot coordinate frames, its analysis is not considered in during this first
approach.

5.1.2 Properties

In most cases, system-wide properties consist on the specification of temporal relations
between the system sensors and actuators message values, which are expected to hold
within a given temporal scope. Notice that, every property passible to be verified through
this approach needs to be globally scoped. Thus, the analysis will be confined to these
properties.

Through the formal documentation and interaction with the system developers, a sub-set
of system-wide properties that are expected to hold in both configurations were listed. These
insights on expected behaviours regarding the values in one of both system actuators, namely
the Husky Interface or the GUI. This happens because the message flow occurs from the
sensors to the actuators. The GUI received messages contain a value in the field data, which
is always associated with the actual Joystick operating mode. These are switched through
combinations of binary values on the button fields. Messages with button[0] = 1 active the
Joystickmanual mode, if the button[0] = 1 and button[1] = 1 is detected, the robot will
initiate a ”go straight” mode. Besides that, when in joystick mode, button[4] and button[5]
issue velocity commands. Taking this into consideration, interpreting the developer expected
behaviours, the following properties are expected to hold for both configurations:

2 http://wiki.ros.org/tf

5.1. ROMOVI Case Study 65

• Property 0: If the GUI receives a message with a data = 3, previously, a command
with button[0] = 0 and button[1] = 1, should have been sent through the joystick
controller.

• Property 1: If the GUI receives a message with data = 6, previously, a command with
a button[0] = 1 should have been sent through the joystick controller.

• Property 2: If the GUI receives a message with data = 0, previously, a command
with button[0] = 0 and button[1] = 0 should have been sent through the joystick
controller.

• Property 3: If the husky base interface receives a message with a linear.x = 0
and an angular.x , 0, previously, or the joystick controller has sent a message with
button[0] = 1, or a message with range smaller than 40cm (0 ≤ range[0] ≤ 4) has
passed through the scan topic.

For validation purposes, it is useful to introduce properties that are expected to be false.
Some properties are not expected to hold in both configurations. For instance, the following
property is expected to hold in the startup configuration, and expected to produce a counter-
example in the map one:

• Property 4: If the husky base interface receives a message with 1 ≤ linear.x ≤ 10,
previously, the joystick command should have sent a message with a button[0] = 1
or button[1] = 1.

This is not expected to happen in the map configuration due to its navigation features. In
this configuration it is possible to have a stipulated position goal, which the robot must reach
without further indications through the Joystick.

5.1.3 Specification

In a first phase, every intra-node functional property must be specified and ideally tested
through the HAROS PBT plug-in. Thereafter, each configuration property that is intended
to be checked must be specified through the same configuration file.

The specification process is made interactively, the node specifications should follow the
informal project documentation. When an adequate specification is achieved and every
node has been successfully tested, it follows the specification of each system-wide property.
Notice that, wrong node specifications can lead to false verification results. This detail
compels a greater commitment when specifying and testing individual nodes, which results
in higher-quality documentation and therefore, in high-levels of safety certifications. The
final specification results on a complete definition of the nodes intra-functional properties,

5.1. ROMOVI Case Study 66

Configuration Spec n Value, n Message, 10 Time
2 4 6 8 10 12 14

startup

Prop0 3 (5.0s) 3 (9.7s) 3 (17.0s) 3 (33.2s) 3 (48.0s) 3 (71.4s) 3 (90.0s)
Prop1 3 (5.2s) 3 (9.9s) 3 (18.8s) 3 (26.9s) 3 (43.2s) 3 (79.7s) 3 (98.5s)
Prop2 3 (6.9s) 3 (13.8s) 3 (28.7s) 3 (41.1s) 3 (58,1s) 3 (81.7s) 3 (95.3s)
Prop3 3 (5.6s) 3 (15.6s) 3 (36.0s) 3 (52.6s) 3 (55.1s) 3 (87.4s) 3 (98.3s)
Prop4 3 (5.8s) 7 (11.82s) 7 (26.1s) 7 (29.4s) 7 (46.1s) 7 (74.5s) 7 (95.4s)

map

Prop0 3 (5.1s) 3 (10.2s) 3 (17.7s) 3 (36.1s) 3 (60.2s) 3 (79.4s) 3 (98.9s)
Prop1 3 (6.4s) 3 (11.6s) 3 (21.8s) 3 (32.8s) 3 (44.8s) 3 (66.2s) 3 (96.4s)
Prop2 3 (5.2s) 3 (11.1s) 3 (21.4s) 3 (32.4s) 3 (51.0s) 3 (68.8s) 3 (111.7s)
Prop3 3 (5.2s) 7 (9.7s) 7 (16.4s) 7 (27.8s) 7 (38.9s) 7 (51.5s) 7 (84.4s)
Prop4 3 (4.3s) 7 (8.9s) 7 (18.8s) 7 (21.7s) 7 (33.6s) 7 (59.1s) 7 (95.3s)

Table 1: Results for the 4 desirable properties for the 2 configurations of AgRob V16, including execu-
tion times. The startup configuration uses a forced scope of 8 Nodes, 7 Topics and 8 Fields.
Regarding the map configuration, a scope of 11 Nodes, 12 Topics and 11 Fields was used.

compelling the generation of robust test-suites. During the employment of this technique,
it’s assumed that the nodes were properly tested and verified, and the subsequent intra-node
specifications were defined.

For illustrative purposes, the Listing 5.1 shows an excerpt of the description file containing
the inner-functional specification of the SafetyController node. The Listing 5.2 presents
a second excerpt of the same file. Here, the five previously system-wide properties to be
checked were translated to the HAROS specification language.

Notice that, the properties specification in HAROS change the focus from nodes to topics.
Although each property is written within a specific node or configuration label, this it’s only
used to define the scope and the axiomatic possibility of the property itself. The focus on
topics instead of nodes pops up as a requirement from the HAROS monitor dependency.
This difference on focus is easily addressed through simple documentation inspection.

5.1.4 Technique Evaluation

Every property was checked for the two main configurations with increasing scopes for
values and messages. Due to the system dimensions, the verification was bounded to the
analysis of infinite recursive paths with, at maximum, ten different states. After execut-
ing the plug-in, every specified property has been checked with multiple scopes, for each
configuration. The Table 1 shows the summarized results.
Property 3 was actually shown not to hold for the map configuration. Commands to

rotate in-place can happen, even when there is not an explicit indication by the joystick, or
an obstacle detection by the lasers. This happens due to bad-configuration issues, that may
create accumulated localization errors, which may cause wrong identifications of dangerous
situations. Figure 18 shows how the counter-example is displayed in the HAROS to the
user. The counter-example describes an execution trace, where the velocity command from

5.1. ROMOVI Case Study 67

1 project: agrob
2

3 nodes:
4 agrobv16_supervisor/agrobv16_supervisor_node:

5 rosname: agrobv16SUPERVISOR
6 hpl:
7 properties:
8 - ’globally: no /agrobv16/current_state {data[0] not in [0,3,6]}’
9 - ’globally: /agrobv16/current_state {data[0] = 6}

10 requires /joy_teleop/joy {button[0] = 1}’
11 - ’globally: /agrobv16/current_state {data[0] = 3}
12 requires /joy_teleop/joy {button[0] = 0, button[1] = 1}’
13 - ’globally: /agrobv16/current_state {data[0] = 0}
14 requires /joy_teleop/joy {button[0] = 0, button[1] = 0}’
15 - ’globally: no /supervisor/cmd_vel {linear.x not in 0 to 10}’
16 - ’globally: /supervisor/cmd_vel {linear.x in 1 to 10 }
17 requires /joy_teleop/joy {button[0] = 0, button[1] = 1} ||
18 /joy_teleop/joy {button[4] = 1} ||

19 /joy_teleop/joy {button[5] = 1}’

20 - ’globally: /supervisor/cmd_vel {linear.x in 0 to 10,
21 linear.x not in 3.8 to 5.8,
22 linear.x not in 4.2 to 6.2}
23 requires /joy_teleop/joy {button[0] = 0, button[1] = 1}’
24 - ’globally: /supervisor/cmd_vel {linear.x in 3.8 to 4.2}
25 requires /joy_teleop/joy {button[0] = 0, button[1] = 1} ||
26 /joy_teleop/joy {button[4] = 1, button[5] = 0}’

27 - ’globally: /supervisor/cmd_vel {linear.x in 5.8 to 6.2}
28 requires /joy_teleop/joy {button[0] = 0, button[1] = 1} ||
29 /joy_teleop/joy {button[4] = 0, button[5] = 1}’

30 - ’globally: no /supervisor/cmd_vel {angular.x not in -100 to 100}’
31 - ’globally: /supervisor/cmd_vel {angular.x not in -100 to 100}
32 requires /joy_teleop/joy {button[0] = 0, button[1] = 1} ||
33 /joy_teleop/joy {button[4] = 1, button[5] = 0} ||

34 /joy_teleop/joy {button[4] = 0, button[5] = 1}’

35 - ’globally: /supervisor/cmd_vel {angular.x in -8 to 12,
36 angular.x not in -12 to 8}
37 requires /joy_teleop/joy {button[0] = 0,
38 button[1] = 1} || /joy_teleop/joy {button[4] = 1,

39 button[5] = 0}’

40 - ’globally: /supervisor/cmd_vel {angular.x not in -8 to 12,
41 angular.x in -12 to 8}
42 requires /joy_teleop/joy {button[0] = 0, button[1] = 1} ||
43 /joy_teleop/joy {button[4] = 0, button[5] = 1}’

44 - ’globally: /agrobv16/max_velocity {linear.x = 0}
45 requires /scan {ranges[0] in 0 to 4}’

Listing 5.1: Excerpt of the configuration file used to write the property specifications. It contains
the functional inner-properties regarding the SafetyController node. These were
extracted through the RoMoVi formal documentation.

5.1. ROMOVI Case Study 68

1 configurations:
2 startup:

3 launch:

4 -agrobv16_supervisor/launch/startup.launch

5 hpl:
6 properties:
7 - ’globally: /agrobv16/current_state {data[0] = 3}
8 requires /joy_teleop/joy {button[0] = 0, button[1] = 1 }’
9 - ’globally: /agrobv16/current_state {data[0] = 6}

10 requires /joy_teleop/joy {button[0] = 1}’
11 - ’globally: /agrobv16/current_state {data[0] = 0}
12 requires /joy_teleop/joy {button[1] = 0, button[0] = 0}’
13 - ’globally: /husky_velocity_controller/cmd_vel {linear.x = 0,
14 angular.x != 0}

15 requires /scan {ranges[0] in 0 to 4} ||
16 /joy_teleop/joy {button[0] = 1}’

17 - ’globally: /husky_velocity_controller/cmd_vel
18 {linear.x in 1 to 10}
19 requires /joy_teleop/joy {button[0] = 1}
20 || /joy_teleop/joy {button[1] = 1}’

Listing 5.2: Excerpt of the configuration file used to write the property specifications. Each
specification is written on the field regard to the configuration under which the
properties must be verified.

the NavStack depicts a dangerous situation that was not flagged by the lasers. This counter-
example has required scopes of at least 4 values/messages to be detected. The result was
displayed under 1min for scopes up until 10 values/messages.
Property 4 has revealed a counter-example to both configurations, as expected. Figure

19 shows a screenshot of the HAROS interface. The image depicts the counter-example
produced when verifying the property in the startup configuration. From this report is
detected positive linear values on the Husky Interface, in such cases, where the emission
of the expected values by the joystick are not required. At architecture level, this issue
may be solved through the incorporation of a joystick filter, which disables the possibility
to the Safety Controller receiving some robot commands prior to the controller activation.
This counter-example was produced using at least 4 values/messages. Due to the smaller
dimension of the startup configuration, this result was displayed under 1min for scopes up
until 12 values/messages.

The times measured during the verification process shows empirical evidence of the tech-
nique practicability and utility when regarding safety-properties. All the properties were
properly checked with up to 14 value/messages at around 2min, which represents an accept-
able value if the technique is to be executed in continuous integration. Future work might
focus on the times improvement through simple modifications, as the use of a distinct default
model checker, or by resorting to the SMV verification techniques.

5.1. ROMOVI Case Study 69

Figure 18: A counter-example to the third property at the map configuration. The counter-example is
shown as a runtime issue based on concrete steps. Each step describes an action that can
be monitored through the HAROS.

Figure 19: A counter-example to the fourth property at the startup configuration. The counter-
example is shown as a runtime issue based on concrete steps. Each step describes an
action that can be monitored through the HAROS.

5.1. ROMOVI Case Study 70

As said before, the scope for Message, Value and Time must be carefully defined for each
ROS repository. Small scopes will perform verification in small universes, which may hide
possible safety issues. Being the approach intended to be practiced by the systems developer,
the application-specific knowledge should be enough to infer sensible scopes for the most
relevant traces. Another issue that was already mentioned, is the verification upon loose
behavioural specifications, which may lead to false positive counter-examples. Although
such cases were not identified during this study-case, they are expected to arise mostly when
dealing with desirable liveness properties. This can be easily addressed by simply creating
and executing a concrete test-case based on the produced counter-example.

6

C O N C L U S I O N S A N D F U T U R E W O R K

This work has presented a technique to verify ROS system-wide safety properties through
model-checking. It was based on the formalization of ROS launch configurations and loosely
specified behaviour of individual nodes. The technique was wrapped in a HAROS plug-in,
which extracts during continuous integration information regarding the systems structure
from the configurations, as well as behaviours, from the PBT specifications. The plug-in
automatically creates Electrum models upon which it performs bounded model-checking of
the specified properties. When such properties do not hold, a Electrum counter-example is
converted from its abstract form to a readable format within the ROS domain. These results
are retrieved as HAROS issues through its common interface.

During this work, a novel Electrum idiom with automation potential on safety properties
verification was proposed. In order to deal with scope issues, by resorting to interval analysis,
an attempt to describe systems values through higher levels of discretization was successfully
achieved. Furthermore, it has proved to be enough to describe and verify real systems safety
properties. Despite the technique was only focusing ROS applications, the underlying theory
and practice might be generalized for any modular architecture based on message-passing
communication patterns.

After its application in a real industrial case, whose both, complexity and dimension
are representative, the technique has proven to be sufficiently expressive to check certain
classes of safety properties. The performance results have shown empirical evidence of its
practicability under continuous integration environments. Besides that, the present work
has originated a group publication, which at the moment, has already been reviewed and
accepted by peers at an international venue [4].

Future work should focus in extending the support for richer property patterns, in particu-
lar, for scopes other than the global one. The complete integration of every HAROS language
feature, excepting the real-time ones, seems to be a suitable aim. Furthermore, techniques to
minimize the user intervention, as an automatic computation of optimal verification scopes
may be introduced. Lastly, techniques to automatically discard false positives may be imple-
mented, possibly by relying on run-time analysis to check the validity of the counter-example
traces.

71

72

With regard to the property verification and its audience usability, this dissertation achieved
its main goals, providing a reasonable technique for practicing automatic verification of
system-wide safety properties. This may be extended during future works to incorporate
the analysis of system-wide liveness properties.

Lastly, despite the positive evaluation results, additional inspection regarding the Electrum
idiom complexity might provide useful information towards possible time optimizations.

B I B L I O G R A P H Y

[1] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

[2] Dirk Beyer and Thomas Lemberger. Software verification: Testing vs. model checking.
In Haifa Verification Conference, pages 99–114. Springer, 2017.

[3] Patrick Blackburn, Johan FAK van Benthem, and Frank Wolter. Handbook of modal logic.
Elsevier, 2006.

[4] Renato Carvalho, Alcino Cunha, Nuno Macedo, and André Santos. Verification of
system-wide safety properties of ROS applications. In 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), page To Appear. IEEE, 2020.

[5] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri. NuSMV: a
new symbolic model checker. International Journal on Software Tools for Technology Transfer,
2(4):410–425, 2000.

[6] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model
checking using satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

[7] Filipe Neves Dos Santos, Heber Sobreira, Daniel Campos, Raul Morais, António Paulo
Moreira, and Olga Contente. Towards a reliable robot for steep slope vineyards moni-
toring. Journal of Intelligent & Robotic Systems, 83(3-4):429–444, 2016.

[8] Matthew B Dwyer, George S Avrunin, and James C Corbett. Property specification
patterns for finite-state verification. In Proceedings of the second workshop on Formal
methods in software practice, pages 7–15. ACM, 1998.

[9] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The
many faces of publish/subscribe. ACM computing surveys (CSUR), 35(2):114–131, 2003.

[10] Rohit Gheyi, Tiago Massoni, and Paulo Borba. Formally introducing Alloy idioms. In
Proceedings of the Brazilian Symposium on Formal Methods, pages 22–37, 2007.

[11] Raju Halder, José Proença, Nuno Macedo, and André Santos. Formal verification of ROS-
based robotic applications using timed-automata. In 2017 IEEE/ACM 5th International
FME Workshop on Formal Methods in Software Engineering (FormaliSE), pages 44–50. IEEE,
2017.

[12] Daniel Jackson. Software Abstractions: logic, language, and analysis. MIT press, 2012.

73

Bibliography 74

[13] Sayali Kate, John-Paul Ore, Xiangyu Zhang, Sebastian Elbaum, and Zhaogui Xu. Phys:
probabilistic physical unit assignment and inconsistency detection. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 563–573, 2018.

[14] Fred Krger and Stephan Merz. Temporal logic and state systems. Texts in Theoretical
Computer Science. An EATCS Series., 2008.

[15] Leslie Lamport, John Matthews, Mark Tuttle, and Yuan Yu. Specifying and verifying
systems with TLA+. In Proceedings of the 10th workshop on ACM SIGOPS European
workshop, pages 45–48, 2002.

[16] Nuno Macedo and Alcino Cunha. Alloy meets TLA+: An exploratory study. arXiv
preprint arXiv:1603.03599, 2016.

[17] Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha, and Denis Kuperberg.
Lightweight specification and analysis of dynamic systems with rich configurations.
In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 373–383. ACM, 2016.

[18] Niloofar Mansoor, Jonathan A Saddler, Bruno Silva, Hamid Bagheri, Myra B Cohen,
and Shane Farritor. Modeling and testing a family of surgical robots: an experience
report. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 785–790. ACM,
2018.

[19] Kenneth L McMillan. Symbolic model checking. In Symbolic Model Checking, pages
25–60. Springer, 1993.

[20] Kenneth L McMillan. The SMV system. In Symbolic Model Checking, pages 61–85.
Springer, 1993.

[21] J. Mendes, F. N. d. Santos, N. Ferraz, P. Couto, and R. Morais. Vine Trunk Detector for a
Reliable Robot Localization system. In 2016 International Conference on Autonomous Robot
Systems and Competitions (ICARSC), pages 1–6, May 2016. doi: 10.1109/ICARSC.2016.68.

[22] Joseph P Near, Aleksandar Milicevic, Eunsuk Kang, and Daniel Jackson. A lightweight
code analysis and its role in evaluation of a dependability case. In Proceedings of the 33rd
International Conference on Software Engineering, pages 31–40. ACM, 2011.

[23] Jason M O’Kane. A gentle introduction to ROS, 2014.

[24] John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. Lightweight detection of
physical unit inconsistencies without program annotations. In Proceedings of the 26th

Bibliography 75

ACM SIGSOFT International Symposium on Software Testing and Analysis, pages 341–351,
2017.

[25] John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. Phriky-units: a lightweight,
annotation-free physical unit inconsistency detection tool. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages 352–355. ACM,
2017.

[26] John-Paul Ore, Sebastian Elbaum, and Carrick Detweiler. Dimensional inconsistencies
in code and ROS messages: A study of 5.9 m lines of code. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 712–718. IEEE, 2017.

[27] Rahul Purandare, Javier Darsie, Sebastian Elbaum, and Matthew B Dwyer. Extracting
conditional component dependence for distributed robotic systems. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1533–1540. IEEE,
2012.

[28] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In ICRA
workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

[29] Morgan Quigley, Brian Gerkey, and William D Smart. Programming Robots with ROS: a
practical introduction to the robot operating system. O’Reilly Media, Inc., 2015.

[30] André Santos, Alcino Cunha, Nuno Macedo, and Cláudio Lourenço. A framework
for quality assessment of ROS repositories. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4491–4496. IEEE, 2016.

[31] André Santos, Alcino Cunha, and Nuno Macedo. Property-based testing for the robot
operating system. In Proceedings of the 9th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and Evaluation, pages 56–62, 2018.

[32] André Santos, Alcino Cunha, and Nuno Macedo. Static-time extraction and analysis
of the ROS computation graph. In 2019 Third IEEE International Conference on Robotic
Computing (IRC), pages 62–69. IEEE, 2019.

[33] André Santos, Alcino Cunha, and Nuno Macedo. Seabass: System and behaviour
abstraction with short specifications. Submitted.

[34] Nishant Sharma, Sebastian Elbaum, and Carrick Detweiler. Rate impact analysis in
robotic systems. In 2017 IEEE International Conference on Robotics and Automation (ICRA),
pages 2089–2096. IEEE, 2017.

Bibliography 76

[35] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles and
paradigms. Prentice-Hall, 2007.

[36] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
632–647. Springer, 2007.

[37] Matt Webster, Clare Dixon, Michael Fisher, Maha Salem, Joe Saunders, Kheng Lee
Koay, Kerstin Dautenhahn, and Joan Saez-Pons. Toward reliable autonomous robotic
assistants through formal verification: A case study. IEEE Transactions on Human-Machine
Systems, 46(2):186–196, 2015.

	1 Introduction
	2 Electrum Specification Framework
	2.1 Language
	2.1.1 Modeling Process

	2.2 Analysis
	2.2.1 Commands and Scopes
	2.2.2 Electrum Analyzer
	2.2.3 Model-Checking

	3 Software Development in ROS
	3.1 Architecture and Concepts
	3.1.1 Nodes and Nodelets
	3.1.2 Communication
	3.1.3 Launch Files

	3.2 Quality Assurance
	3.3 Static Analysis
	3.4 Property Verification

	4 Verification of ROS System-Wide Safety Properties
	4.1 Model-Checking ROS Safety Properties
	4.1.1 ROS Meta-Model
	4.1.2 Systems Architecture based on Topics
	4.1.3 Systems Behaviour

	4.2 HAROS Integration
	4.2.1 HAROS Architectural Meta-Model
	4.2.2 HAROS Specification Language

	4.3 Modelling The Dummy Robot
	4.3.1 Model-Checking Plug-In

	5 Evaluation
	5.1 ROMOVI Case Study
	5.1.1 Configurations
	5.1.2 Properties
	5.1.3 Specification
	5.1.4 Technique Evaluation

	6 Conclusions and Future Work

