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Abstract 

 

Development and Implementation of a Biomechanical Multibody Model for Human Motion 

Analysis 

The present Master’s dissertation is comprised in the field of Biomechanics of Human Motion and 

its main purpose is to develop and implement a two-dimensional computational multibody model on the 

MATLAB software, to analyze the dynamic behavior of the human body and its interaction with the 

surrounding environment.  

A multibody model of the right side of the human body is developed, with the objective of performing 

a dynamic analysis of the human gait, in which kinematic and kinetic data are prescribed, and all degrees-

of-freedom are guided. The developed model is described under the multibody systems formulation, using 

cartesian coordinates, and the trajectories of the bodies that guide the biomechanical model, as well as 

the external applied forces were obtained from experimental data acquisition.  

The contact modeling is, then, considered for the foot-ground interface, and two application 

examples are described and discussed. The first application example concerns a simulation of a simple 

leg motion, generated by the action of the gravitational force, and aims to validate the methodologies of 

contact geometry definition and contact detection. The second application example is presented for 

studying the foot-ground contact in human gait. This interaction is geometrically defined by circles 

positioned at specific locations on the foot plantar surface, and a plane, describing the ground. The 

contact is detected based on the relative interpenetration of the surfaces, and appropriate constitutive 

laws associated with the normal and tangential forces developed during the contact are applied. After a 

manual parameter adjustment method, an optimization process is implemented to obtain the most 

suitable values for the geometric and contact parameters of the proposed model. Finally, the results 

obtained from computational and experimental analysis are compared, with the aim of validating the 

proposed approach. The final foot-ground contact model presents good overall results for the vertical and 

tangential contact forces and for the center-of-pressure position. 

 

Keywords: Biomechanics; Human Gait; Multibody Systems Formulation; Dynamic Analysis; Foot-

Ground Contact Model  
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Resumo 

 

Desenvolvimento e Implementação de um Modelo Biomecânico Multicorpo para Análise do 

Movimento Humano  

A presente dissertação de Mestrado insere-se no domínio da Biomecânica do Movimento Humano 

e o seu principal objetivo é desenvolver e implementar um modelo computacional multicorpo 

bidimensional, em MATLAB, tendo em vista a análise do comportamento dinâmico do corpo humano e 

da sua interação com o ambiente envolvente.  

Com o objetivo de realizar uma análise dinâmica da marcha humana, na qual os dados 

cinemáticos e cinéticos são prescritos e todos os graus-de-liberdade são guiados, é desenvolvido um 

modelo multicorpo do lado direito do corpo humano. O modelo é descrito sob a formulação de sistemas 

multicorpo, utilizando coordenadas cartesianas. As trajetórias dos corpos que guiam o modelo, bem 

como as forças externas nele aplicadas foram obtidas através da aquisição de dados experimentais. 

Adicionalmente, a modelação do contacto é aplicada à interface pé-solo, sendo descritos e 

discutidos dois exemplos de aplicação. O primeiro exemplo de aplicação diz respeito a uma simulação 

de um movimento simples da perna, gerado pela ação da força gravítica, e tem como objetivo validar as 

metodologias de definição da geometria e de deteção de contacto. O segundo exemplo de aplicação é 

apresentado para estudar o contacto pé-solo na marcha humana. Esta interação é definida 

geometricamente por círculos posicionados em localizações especificas na superfície plantar do pé, e 

por um plano que descreve o solo. O contacto é detetado com base na pseudo-penetração das 

superfícies, e são aplicadas leis constitutivas associadas às forças normal e tangencial desenvolvidas no 

contacto. Após um ajuste manual dos parâmetros, é implementado um processo de otimização para 

obter os valores mais adequados dos parâmetros geométricos e de contacto do modelo proposto. Por 

fim, os resultados obtidos das análises computacional e experimental são comparados, com o objetivo 

de validar esta abordagem. O modelo de contacto pé-solo final apresenta bons resultados gerais para as 

forças de contacto vertical e tangencial, assim como para a posição do centro de pressão. 

 

Palavras-Chave: Biomecânica; Marcha Humana; Formulação de Sistemas Multicorpo; Análise 

Dinâmica; Modelo de Contacto Pé-Solo  
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 1 

 

In this first chapter a general overview of the topics covered in the present dissertation is provided. 

First, the motivation inherent to the development of this work is addressed, followed by a clarification of 

the scope and objectives to be achieved during its course. In the third section, a literature review of the 

state-of-the-art of the field of investigation is provided, and in the subsequent section, the structure of this 

dissertation, including a brief description of the content covered in each chapter, is provided. Finally, the 

contributions that this work intends to provide are also stated. 

 

 

1.1. Motivation 

Biomechanics is an area of investigation that can be understood as the application of mechanical 

concepts to biological systems. In particular, Biomechanics of the Human Motion provides conceptual 

and mathematical tools essential for understanding how the human body moves, focusing on the analysis 

of forces and moments applied on the musculoskeletal system and their effects on the movement of the 

anatomical structures. In this context, the multibody systems (MBS) dynamics aims to study the 

characteristics of the motion of biomechanical systems and how the application of external and internal 

forces affects and restricts such movement (Knudson, 2007; Meireles, 2007). 

According to Dunn et al. (2005), modeling is the process by which the principles of physics, 

chemistry, or biology are expressed in a mathematical formulation that characterizes the system or the 

phenomena under consideration, describing the behavior of the system and its interaction with its 

environment. The mathematical models are then solved by numerical methods through computational 

algorithms (Dunn et al., 2005). 

Recently, the interest in studying the dynamics of human motion through the use of computational 

models has been increasing, due to the possible use of this method for quantitative prediction, 

quantitative hypothesis testing and the estimation of various dynamic variables which are challenging to 

measure experimentally, such as forces and moments transmitted by the joints. The analysis of the 

human motion, through computational simulations, allows to appraise a variety of different scenarios on 

a valid representation of the human system, while providing a cost-effective and less time-consuming 

approach, when compared with experimental procedures. The study of the human motion using MBS 

Chapter 1 – Introduction 
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formulations has experienced several developments in the past decades, which led to their successful 

application in the fields of rehabilitation, clinical, sports or equipment design (Rodrigues da Silva et al., 

2021; Siegler et al., 1982). 

The human movement simulation through computational methods requires the implementation of 

mathematical models that accurately describe the behavior of the human body and its interaction with 

the surrounding environment. From this perspective and taking into consideration the advances in the 

field of Biomechanics of the Human Motion and its practical application, it becomes necessary to 

formulate new computational methodologies that comprise strategies for modeling the interaction 

between the foot and the ground, considering realistic representations of the foot and appropriate 

numerical descriptions of its interaction with the ground. In this work, a 2D biomechanical model of 

human body is developed with the objective of studying the dynamics of the human gait and the behavior 

of the foot-ground interface. 

 

 

1.2. Scope and Objectives 

The purpose of this dissertation is to develop and implement a biomechanical multibody model to 

analyze the dynamic behavior of the human body and its interaction with the surrounding environment.  

The first step will consist in the characterization of the biomechanical model, including its 

anatomical description, and determination of the geometrical and inertial aspects. The definition of the 

initial configuration of the system will also be taken as an important step in this phase. The model will be 

defined using the MBS formulation to study its motion in the sagittal plane. Therefore, the fundamental 

aspects associated with MBS dynamics must also be addressed, particularly the type of coordinates, 

constraints, and forces acting on the system.  

The contact modeling will be considered and critically analyzed for introduction on the 

biomechanical model. The foot-ground interaction will be modeled and implemented, highlighting three 

main tasks that must be fulfilled – the geometry definition, the contact detection, and the resolution of 

the contact problem, applying appropriate constitutive laws in the normal and tangential directions. The 

initial focus will be the study of the foot-ground contact in a simulation of a simple leg motion, with the 

intention of validating the methodologies of contact geometry definition and contact detection. Then, the 

foot-ground contact model will be implemented in a simulation of the human gait and the obtained ground 

reaction forces will be compared to experimental data, in order to validate the entire methodology of foot-

ground contact analysis. 
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The biomechanical model, the considered contact models and the dynamic analysis will be 

developed and implemented in a computational MATLAB code. 

The specific goals of this work can be defined in the following points: 

• To present a complete and updated literature review on the existing foot-ground contact 

modeling strategies for human motion analysis; 

• To develop a biomechanical multibody model of the right side of the human body in 

MATLAB for dynamic analysis; 

• To establish a computational foot-ground contact model; 

• To incorporate the developed foot-ground contact model in the biomechanical model; 

• To validate the proposed model. 

The obtained model may be useful to simulate the biomechanics of the human gait in 

non-pathologic situations and may represent an instrument that helps to understand and identify gait 

abnormalities.  

 

 

1.3. Literature Review 

Over the last few decades, the development of accurate mathematical models of the human body 

has been one of the greatest challenges in the field of biomechanics. The implementation of mathematical 

models that correctly describe the behavior of the human body and its interaction with the surrounding 

environment is of high importance to understand and analyze human motion (Abu-Faraj et al., 2015; 

Tavares da Silva, 2003). 

In the clinical field, the computer simulation of several human capabilities has revealed to be useful 

in pretreatment evaluation (Arnold & Delp, 2005), surgical decision (Delp et al., 1997), and postoperative 

assisting (Eschweiler et al., 2017; Li et al., 2018). It also represents an instrument to evaluate and 

improve the performance of elite athletes (Burgess et al., 2006; Raasch et al., 1997; Roemer, 2010) and 

enables the analysis and prevention of athletic injuries (Trasolini et al., 2022; Wan & Shan, 2016). The 

gait analysis also helps to understand more about orthopedic and neuromuscular disorders such as 

cerebral palsy, stroke and Parkinson disease (Arnold & Delp, 2005; Õunpuu et al., 1996; Winter, 1984). 

Additionally, other applications may include evaluation of prosthetic joint replacement (Andriacchi & 

Hurwitz, 1997; Pérez-González et al., 2008) and orthotic application (Brodke et al., 1989; Silva et al., 

2010). 
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In this field of investigation, the dynamic analysis of the human gait usually involves the acquisition 

and reconstruction of trajectories from markers placed at specific locations on the human body. Typically, 

the motion capture is done through synchronized cameras and then, it is required to digitalize the 

anatomical points and reconstruct the movement. For the external forces’ measurement, force plates 

synchronized with the cameras, are utilized. These devices provide the components of the ground reaction 

force (GRF) and the center-of-pressure (COP), i.e., the point in the platform, in which the resultant of the 

forces is applied (Abu-Faraj et al., 2015). 

 

 

1.3.1. Evolution of the Human Gait Analysis 

The primary studies of human gait remount from the 17th century and were based on simple visual 

observation. Giovanni Borelli (1608-1679), in his work De Motu Animalium, employed a geometric 

method to analyze complex movements, such as locomotion, running, and jumping. This 17th century 

scientist was recognized by one of the first descriptions of the distinct phases of the gait cycle and the 

action of muscles during walking. Therefore, Borelli is recognized as the “Father of Biomechanics” (Abu-

Faraj et al., 2015; Baker, 2007). 

In the first half of the 19th century, Wilhelm (1804–1891) and Eduard (1806–1871) Weber 

developed methods for the quantitative measurement of locomotion using observations of the stance and 

swing phases of the gait cycle. In 1836, these scientists registered the position of the trunk and lower 

limbs at fourteen different instants in the gait cycle and created illustrations of the body structure during 

locomotion. They also postulated the pendulum theory of gait, which suggested that the swinging limb 

acts as a pendulum attached to the hip and the swing phase of the gait is a purely passive movement, 

where the swing limb advanced just through gravitational force, not being required muscular activity. This 

hypothesis was invalidated by Guillaume Duchenne (1806-1875), who demonstrated that paralytic 

patients could not advance the swinging limb, due to the absence of thigh flexors (Abu-Faraj et al., 2015; 

Baker, 2007). 

Étienne Marey (1830-1904) transformed the study of locomotion from a mere qualified observation 

to a quantified scientific analysis. This scientist implemented the first Biomechanics laboratory, and 

invented numerous motion capture machines, including a force platform (Abu-Faraj et al., 2015). 

More recently, David Winter (1930-2012) refined experimental techniques for the gait analysis and 

presented fundamental concepts to the study of human locomotion, among which are automated motion 

capture and the powers produced by joint moments of force (Abu-Faraj et al., 2015).  
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1.3.2. Foot-Ground Contact Modeling Strategies  

As mentioned previously, the human gait analysis requires the experimental evaluation of the GRF 

in order to provide a complete and accurate description of the human performance. However, the 

measurement and data acquisition of the GRF are constrained in the number of human steps, since the 

experimental apparatus and platforms have limited lengths. With the purpose of overcoming this 

drawback, several formulations to mimic the human foot-ground interaction have been proposed in the 

literature, which provide numerical approaches to calculate the GRF without the need of any experimental 

measurement (Moreira et al., 2009; Van Hulle et al., 2020). 

The application of foot-ground contact modeling strategies for human motion analysis reveals 

usefulness in several fields, namely for studying the biomechanical response of human motion for both 

healthy and pathological cases, or in the presence of orthotic and prosthetic devices. Moreover, the 

modeling and implementation of computational strategies for the contact mechanics of the foot-ground 

interaction also plays an important role in humanoid robots (Gonçalves et al., 2022; Xie et al., 2022), 

walking machines (Coelho et al., 2021; Safartoobi et al., 2021; Taheri & Zhao, 2020), among other 

mobile MBS.  

Regardless of the high number of research works on the foot-ground contact interaction in the 

context of biomechanics of human motion, it is of paramount importance to have a comprehensive review 

on the available approaches to allow the comparison of their similarities and differences. This has been 

the main motivation for preparing a review article, entitled “A review on foot-ground contact modeling 

strategies for human motion analysis” (Saraiva et al., 2022), which evidences a detailed analysis, 

discussion and summary of the key features and main limitations of the computational strategies to mimic 

the foot and ground contact interaction in the human locomotion available in the literature.  

The search approach adopted in the review was carried out on the electronic databases PubMed, 

Web of Science and Scopus to identify publications focusing on foot-ground contact modeling strategies. 

As the consequence of a critical reading of those publications, some additional papers were identified 

and included in the review. A total of 30 papers were analyzed, in which different contact geometries were 

established with the goal of defining the foot and ground surfaces. Points, circles, ellipses, spheres, 

ellipsoids, rectangular contact elements and surfaces obtained from 3D scanning procedures were found 

to be the most common types of contact geometries considered. Figure 1.1 depicts the number of studies 

organized according to the contact geometry considered in their analyses. 
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Figure 1.1. Number of studies organized according to the contact geometry considered in the foot-ground interaction model. 

 

Regarding the resolution of the foot-ground interaction, the formulations based on contact force 

approaches (adopted by more than 75% of the studies) were preferred to the methods based on 

geometrical constraints. Furthermore, one of the main limitations reported in the analyzed papers dealt 

with the restriction of the motion to the sagittal plane. Overall, it was observed that a standard and general 

procedure to formulate the human foot-ground contact is still lacking, and, in this sense, future 

investigation should be conducted to report the parameters and the numerical aspects of the foot-ground 

model in a clear manner. To better understand the analysis and comparison of the studies included in 

the revision, the interested reader is referred to the published article (Saraiva et al., 2022).  

 

 

1.4. Structure of the Dissertation 

The present dissertation is structured in six main chapters, including this as a first chapter, in 

which the motivation, as well as the scope and objectives of this work are described. In addition, a 

literature review centered on the foot-ground contact modeling approaches is provided and the 

contributions of the work are stated.  

The following chapter introduces the characterization of the human lower limb, starting by covering 

some biomechanical aspects, with the aim of establishing the terminology associated with the human 

movement, focusing, in particular, on the movements of the lower limb in the sagittal plane. Furthermore, 

a brief description of that structure anatomy is presented, and the depiction of the normal gait cycle is 

addressed, focusing on its main parameters and determinants. 

The third chapter introduces the main fundamentals of the formulation for the dynamic analysis of 

multibody systems. Therefore, the concept of MBS, the explanation of the cartesian coordinates, the 
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formulation of the revolute joints and the guiding constraints, the establishment of the equations of 

motion, and how to advance the analysis in time are reviewed, as well as the Baumgarte Stabilization 

Method, for minimization of the integration errors. Essentially, the aim of this chapter is to provide the 

reader with a complete overview of the formulations implemented for dynamic analysis, which follow 

closely the work of Nikravesh (1988) and are the supporting structure for all the methodologies presented 

in the forthcoming chapters. 

Chapter four fully describes the two-dimensional biomechanical multibody model of the right side 

of the human body developed, namely the geometric description of the rigid bodies, the connection 

between bodies by ideal revolute joints, the guidings that prescribe the gait motion, and the introduction 

of the GRF. The constraint equations are also explicitly presented. The utilized biomechanical model was 

implemented in a computational program developed in MATLAB, and the processes involved are 

described in this chapter too. At this point, the main results arising from the performed dynamic analysis 

are presented and discussed. 

In Chapter five, the main aspects related to the modeling and simulation of contact problems, in 

the context of MBS, are presented, and two examples of application concerning the foot-ground 

interaction, are described in detail, analyzed, and discussed. The fundamental aspects of a generic 

problem of contact mechanics are approached, and the methodologies that deal with contact detection 

and contact resolution are introduced. Two application examples are shown, in which the foot-ground 

interaction is studied. First, a simple leg motion is simulated with the intention of validating the 

methodologies of contact geometry definition and contact detection. This simulation consists of a simple 

drop test in which the motion of the model is generated only by the action of the gravitational force. Lastly, 

in order to validate the entire methodology of foot-ground contact analysis, a second application example 

is presented, for the study of the interaction between the foot and the level ground during human gait. 

With the purpose of correctly determining the contact forces, an optimization process is implemented to 

obtain the most suitable values for the geometric and contact parameters of the proposed model, and 

the results obtained from computational and experimental analyses are compared using a multibody 

model of the right side of the human body, with the aim of validating the proposed approach. 

Finally, in the sixth Chapter, the final comments of this dissertation are stated and 

recommendations for future developments are given. 
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1.5. Contributions of the Work 

This dissertation provides contributions in the area of biomechanics of human motion, in particular 

with regard to the foot-ground contact interaction. It provides a complete and updated literature review 

on the existing foot-ground contact modeling strategies for human motion analysis, gathering the available 

approaches, to allow a comparison of their similarities and differences. This comprehensive review 

comprises a detailed analysis, discussion and summary of the key features and main limitations of the 

computational strategies to mimic the foot and ground contact interaction in the human locomotion 

available in the literature.  

Furthermore, a two-dimensional biomechanical multibody model of the right side of the human 

body was developed in MATLAB for dynamic analysis, and a computational foot-ground contact model 

was established. Hence, this dissertation also provides contributions in the area of biomechanical 

computer simulation, concerning the application of a biomechanical model in the study of the human gait 

and in the analysis of the interaction between the foot and the ground. The obtained model may be useful 

to simulate the biomechanics of the human gait for non-pathologic situations, in the sagittal plane, and 

may represent an instrument that helps to understand and identify gait abnormalities.  

 

Below, a list of the publications that comprise outputs from this investigation is presented: 

1. Saraiva, L., Rodrigues da Silva, M., Marques, F., Tavares da Silva, M., & Flores, P. (2022). A 

review on foot-ground contact modeling strategies for human motion analysis. Mechanism and 

Machine Theory, 177, 105046. https://doi.org/10.1016/j.mechmachtheory.2022.105046 

2. Saraiva, L., Rodrigues da Silva, M., Marques, F., Tavares da Silva, M., & Flores, P. (2022, 

December 5-6). A foot-ground contact model for human motion analysis [Abstract]. DSM2022 - 

2
a
 Conferência Nacional de Dinâmica de Sistemas Multicorpo, Guimarães, Portugal (accepted for 

oral presentation). 

3. Saraiva, L., Rodrigues da Silva, M., Marques, F., Tavares da Silva, M., & Flores, P. (2022, 

December 5-6). Current perspectives on the modeling of the foot-ground interaction for human 

motion analysis [Abstract]. DSM2022 - 2
a
 Conferência Nacional de Dinâmica de Sistemas 

Multicorpo, Guimarães, Portugal (accepted for presentation in poster format). 

 

  



 

 9 

 

In the present chapter, a characterization of the human lower limb is presented. The lower limb 

may be defined as the part of the human body that includes the thigh, the leg, and the foot, comprising 

three principal joints, namely the hip, the knee and the ankle. The structure of the lower limb is specialized 

for support of the body’s weight, locomotion, and maintenance of body stability (Standring, 2016). 

The chapter starts by covering some biomechanical aspects, with the objective of establishing the 

terminology associated with the human movement, focusing, in particular, on the movements of the lower 

limb in the sagittal plane. Moreover, the range of motion of lower limb joints is addressed. 

Furthermore, a brief description of that structure anatomy is presented, specifically with regard to 

bones, joints, and muscles. At this stage, it is important to emphasize the foot segment as a crucial 

structure in the biomechanical function of the human lower extremity. The foot is a complex multiarticular 

structure that supports the weight of the complete human body and is the only part of the body that is 

continuously acting on an external surface (Moreira, 2009). 

Then, the depiction of the normal gait cycle is addressed, focusing on its main parameters and 

determinants. The magnitude of movement, in terms of angular rotation, of the main lower limb joints for 

a normal gait cycle is also covered. 

Lastly, a summary of these aspects is presented. 

 

 

2.1. Biomechanical Considerations 

The human motion analysis and its description require the use of specialized terminology, to 

accurately and unequivocally describe different postures, movement types and position relations between 

the anatomical segments of the human body. Preceding the description of the biomechanics of the human 

lower extremity, the anatomical reference planes need to be presented (Figure 2.1). There are three 

established planes, perpendicular to each other. Each plane divides the human body into two halves of 

equal mass, and the point that specifies the intersection between these three planes is the center-of-mass 

(CM) of the body. These planes are extremely useful to describe large amplitude movements and to define 

specific terminology of the types of movements of the human body (Hall, 2012; Muscolino, 2017; Winter, 

2009). 

Chapter 2 – Characterization of the Human Lower Limb 



 

 10 

The sagittal plane is a vertical plane that divides the body into right and left parts. The frontal plane, 

also called coronal plane, is a vertical plane that divides the body into anterior and posterior parts. The 

transverse plane, or axial plane, is a horizontal plane cutting through the body at right angles to the 

sagittal and frontal planes, dividing the body in lower and upper halves. The vertical direction (superior–

inferior) is y, the direction of progression (anterior–posterior) is x, and the sideways direction (medial–

lateral) is denoted as z (Muscolino, 2017; Winter, 2009). 

 

 

Figure 2.1. Anatomical reference planes and spatial coordinate system {Adapted from (Winter, 2009)}. 

 

The description of the relative positioning of various points or structures of the human body is 

performed in relation to the anatomical reference position, with the objective to perform a clear and 

consistent characterization. The anatomical reference position is defined by the human body standing 
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erect and facing forward with the arms at the sides and the legs parallel to one another. The palms are 

facing forward, and the fingers and toes are extended (Hall, 2012; Muscolino, 2017).  

When the human body is arranged in the anatomical reference position, all body segments are 

assumed to be positioned at zero degrees, and the rotation of any segment is measured as the angle 

established between the body segment’s actual position and the anatomical reference one (Hall, 2012). 

The human lower limb motion is more commonly analyzed in the sagittal plane, since joints present 

in the human lower limb exhibit motion primarily in this plane (Oatis, 2009). The main movements 

occurring in the sagittal plane are designated as flexion and extension, which represent the movements 

that involve a rotation in this plane. Focusing on the lower limb, the hip flexion is the anterior movement 

of the thigh within the sagittal plane, while the extension is the posterior movement of this segment. From 

the knee joint and further distally, flexion of a body part moves posteriorly. Therefore, extension is the 

anterior movement of a segment. For the foot segment, other terms are used – dorsiflexion for the 

extension movement and plantarflexion for the flexion. Dorsiflexion occurs when the foot moves superiorly, 

in the direction of its dorsal surface, and plantarflexion is when it moves inferiorly, in the direction of its 

plantar surface. These movements are depicted in the Figure 2.2 (Muscolino, 2017).  

 

 

Figure 2.2. (a) Hip flexion; (b) Hip extension; (c) Knee flexion; (d) Knee extension; (e) Dorsiflexion of the foot; 
(f) Plantarflexion of the foot; (g) Flexion of the toes; (h) Extension of the toes {Adapted from (Muscolino, 2017)}. 

 

 

(a) (b) (c) (d)

(e) (f) (g) (h)
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These movements are restricted by the limits imposed by the joints. Joint range of motion refers 

to the extent of osteo-kinematic motion allowed by a joint, when performing a movement with or without 

assistance (Abu El Kasem et al., 2020). The measurement of the angles that establish the complete 

spectrum of joint motion is complex and varies according to the measurement techniques, the conditions 

under which the data are obtained, and the particular aspects of the subject, such as the age, sex, body 

geometry or the clothes and footwear being used (Panero & Zelnik, 1979; Tavares da Silva, 2003). In 

Table 2.1, the description and representation of the range of motion of the most relevant joints of the 

human lower limb are presented. 

 

Table 2.1. Range of motion of the human lower limb joints (Panero & Zelnik, 1979; Tavares da Silva, 2003) 

Joint name Motion name Joint range of motion 

Hip Flexion / extension 

 

Knee Flexion 

 

Ankle 
Dorsiflexion / 

plantarflexion  

 

Metatarsophalangeal 

joint 
Flexion / extension 

 

 

 

45º

102º

0º

0º

125º

35º20º

0º

35º20º

0º
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2.2. Basic Anatomy  

The musculoskeletal system is responsible for the body movement, shape, stability, and support 

and consists of the specialized connective tissues of the articulated bony skeleton and the skeletal 

muscles that act across the articulations. The combined action of the muscles, with bones and 

articulations, allows the normal locomotion of the human body (Standring, 2016). 

The human skeleton not only has the function of supporting the body, but it also provides 

attachment points for the muscles that move it and constitutes a protective structure for internal tissues 

and organs (Betts et al., 2017).  

The lower limb contains 30 bones, namely the femur, patella, tibia, fibula, tarsal bones, metatarsal 

bones, and phalanges, as seen in Figure 2.3. The femur is the main bone present in the thigh, the patella 

articulates with the distal end of the femur, the tibia is the larger bone located on the medial side of the 

leg, and the fibula is the thin bone present on the lateral side of the leg. The bones of the foot are divided 

into three groups – tarsal bones, metatarsal bones, and phalanges (Betts et al., 2017).  

The tarsal bones are located on the posterior portion of the foot and comprise a group of seven 

bones, the talus, calcaneus, cuboid, navicular and three cuneiform bones, named the first, second, and 

third cuneiforms. The metatarsal bones are five elongated bones, numbered I to V from the medial to 

lateral position. The toes contain 14 small bones, the phalanges. The great toe has two phalanges – 

proximal and distal – and the other four toes have three phalanges each — proximal, middle, and distal 

(Oatis, 2009; Tortora & Derrickson, 2010). 

The foot can also be described by three functional units, the hindfoot, midfoot, and forefoot. The 

hindfoot, also called rearfoot, consists of the talus and calcaneus, and the remaining tarsal bones 

compose the midfoot. The forefoot comprises the metatarsal bones and the phalanges (Neumann, 2010; 

Oatis, 2009). 
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Figure 2.3. (a) Anterior view of the bones of the lower limb; (b) Superior view of the bones of the foot {Adapted from (Tortora 
& Derrickson, 2010)}.  

 

Although the bones can be considered perfectly rigid, they are articulated by joints that give the 

human body a huge flexibility. Joints are formed where two or more bones come together, and their main 

functions are, on the one hand, to allow or inhibit relative movement in a given direction and, on the other 

hand, to transmit forces between the bones through the muscles (Betts et al., 2017). 

The major joints of the lower limb are the hip, the knee and the ankle. The hip joint is a synovial 

ball-and-socket joint, where the head of the femur (ball) articulates with the acetabulum present in the 

pelvic girdle (socket), as seen in Figure 2.4. This type of articulation allows motion in the three planes, 

which makes the femur capable of moving in both anterior-posterior and medial-lateral directions and of 

rotating around its long axis (Betts et al., 2017; Standring, 2016).  

 

(a)

Thigh

Leg

Foot

Femur

Patella

Tibia

Fibula

Tarsal bones

Metatarsal bones

Phalanges

Tarsal
bones

Metatarsal
bones

Phalanges

Calcaneus

Cuboid

Talus

V
IV

III
II

I

Navicular

Third 
cuneiform

Second 
cuneiform

First 
cuneiform

(b)

Proximal

Middle

Distal



 

 15 

 

Figure 2.4. (a) Anterior view of the hip joint; (b) Detail of the hip joint {Adapted from (Tortora & Derrickson, 2010)}. 

 

The knee joint is located between the femur, tibia and fibula and is, actually, a structure composed 

of three joints, the patellofemoral, the tibiofemoral and the superior tibiofibular joints (Figure 2.5). The 

patellofemoral joint is located between the articular side of the patella and the distal femur. During the 

normal walking process, as the knee flexes and extends, a gliding motion occurs between the articular 

surfaces of the patella and the femur. The tibiofemoral joint consists of the articulations between the 

condyles of the tibia, that are small and nearly flat, and the femoral condyles, which are convex and have 

a large articular surface area, allowing extensive knee motion in the sagittal plane. The superior tibiofibular 

joint is a plane synovial joint and allows just minor gliding movements (Betts et al., 2017; Neumann, 

2010; Standring, 2016). 

 

 

Figure 2.5. Three-joint structure of the knee. (a) Anterior view; (b) Lateral view {Adapted from (Neumann, 2010; Tortora & 
Derrickson, 2010)}. 
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The human foot comprises a total of 31 joints. The ankle (talocrural) joint is a hinge joint established 

between the talus and the distal ends of the tibia and fibula. This joint allows only dorsiflexion and 

plantarflexion of the foot. The articulations located between the tarsal bones are plane synovial joints, and 

all the small movements that occur at these joints contribute to the inversion and eversion foot motions, 

in the frontal plane. The most significant of these articulations is the subtalar joint, situated between the 

talus and calcaneus bones. Among the other joints of the foot, can be highlighted the metatarsophalangeal 

(MTP) articulations, which are ovoid or ellipsoid joints between the metatarsal heads and the proximal 

phalangeal bases. Collectively, all foot joints make possible the complex movements required for the 

normal daily activities, such as stabilization in standing, shock absorption and propulsion in gait (Betts et 

al., 2017; Neumann, 2010; Standring, 2016). In Figure 2.6, the joints present in the foot are depicted. 

 

 

Figure 2.6. Joints of the foot {Adapted from (Betts et al., 2017)}. 

 

The lower limb comprises many muscles that act on more than one joint, which usually causes 

the joints to move collectively rather than in isolation. The muscles of the lower limb are important in the 

maintenance of equilibrium during locomotion and in stance. Furthermore, they have the function of 

contracting and producing body movements (Standring, 2016; Tortora & Derrickson, 2010). 
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To be able to generate these movements, the configuration of the muscles and the way they act 

around the joints are very important. The main muscles that are responsible for the flexion and extension 

movements of the main joints of the lower limb in the sagittal plane are illustrated in Figure 2.7 to Figure 

2.10. 

The muscles that act across a joint may be classified in primary or secondary muscles, based on 

their actions. The primary muscles are the ones that effectively produce the movement the body is 

performing, while the secondary muscles have the function of assisting the primary muscles to achieve 

the produced motion and ensure stability and efficiency for the primary muscles (Neumann, 2010). The 

primary hip flexors (Figure 2.7 (a)) are the psoas major, iliacus, sartorius, tensor fasciae latae, rectus 

femoris, adductor longus, and pectineus. Secondary hip flexors are the adductor brevis, gracilis, and 

anterior fibers of the gluteus medius and of the gluteus minimus. The primary hip extensors (Figure 

2.7 (b)) are the gluteus maximus, the long head of the biceps femoris, the semitendinosus, the 

semimembranosus, and the posterior fibers of the adductor magnus. The anterior fibers of the adductor 

magnus and the posterior fibers of the gluteus medius and of the gluteus minimus are secondary 

extensors (Muscolino, 2017; Neumann, 2010). 

 

 
Figure 2.7. (a) Anterior view of the hip joint flexors; (b) Posterior view of the hip joint extensors (the adductor brevis and 

gluteus minimus are not represented) {Adapted from (Muscolino, 2017)}. 
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The muscles that are responsible for knee flexion (Figure 2.8 (a)) are the semitendinosus, 

semimembranosus, biceps femoris, sartorius, gracilis, popliteus, gastrocnemius, and plantaris. The 

rectus femoris, vastus lateralis, vastus medialis, vastus intermedius, tensor fasciae latae and gluteus 

maximus are knee extensors (Figure 2.8 (b)) (Muscolino, 2017; Neumann, 2010). 

 

 
Figure 2.8. (a) Posterior view of the knee joint flexors; (b) Anterior view of the knee joint extensors (the vastus intermedius is 

not represented) {Adapted from (Muscolino, 2017)}. 

 

The ankle joint dorsiflexors (Figure 2.9 (a)) are the tibialis anterior, extensor digitorum longus, 

fibularis tertius and extensor hallucis longus. Gastrocnemius, soleus, plantaris, tibialis posterior, flexor 

digitorum longus, flexor hallucis longus, fibularis longus and fibularis brevis are responsible for 

plantarflexion movements (Figure 2.9 (b)) (Muscolino, 2017). 
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Figure 2.9. (a) Anterior view of the ankle joint dorsiflexors; (b) Posterior view of the ankle joint plantarflexors {Adapted from 
(Muscolino, 2017)}. 

 

In the foot, the muscles that are responsible for the metatarsophalangeal joint flexion in the great 

toe (Figure 2.10 (a)) are the flexor hallucis longus, flexor hallucis brevis, adductor hallucis and abductor 

hallucis. For the remaining four toes (Figure 2.10 (b)), the MTP flexor muscles are the flexor digitorum 

longus, flexor digitorum brevis, quadratus plantae, flexor digiti minimi pedis, abductor digiti minimi pedis, 

lumbricals pedis, plantar interossei and dorsal interossei pedis. Concerning the great toe extensors 

(Figure 2.10 (c)), there are the extensor hallucis longus and extensor hallucis brevis, and for the toes two 

through five (Figure 2.10 (d)), the extensor digitorum longus, extensor digitorum brevis, dorsal interossei 

pedis, lumbricals pedis and plantar interossei are the muscles responsible for the MTP extension 

(Muscolino, 2017). 
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Figure 2.10. (a) Plantar view of the flexors of the big toe; (b) Plantar view of the flexors of toes two through five; (c) Dorsal 
view of the extensors of the big toe; (d) Dorsal view of the extensors of toes two through five {Adapted from (Muscolino, 

2017)}. 

 

The muscles represent one of the main sources of internal forces that influence the biomechanics 

of movement. Ligaments, tendons, articular capsules, and bone components help to resist, transmit and 

absorb these internal forces (Meireles, 2007). 

It is important to emphasize the foot segment, which plays an important role in the biomechanical 

function of the lower extremity, providing support and balance during standing, and stabilizing the body 

during walking. Furthermore, it supports the weight of the complete human body (Moreira, 2009). The 

muscles present in the ankle and the foot have the function of controlling the actions of the underlying 

joints, and provide the stability and shock absorption necessary in gait (Neumann, 2010). 
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2.3. Gait Characterization 

The normal gait is a periodic and rhythmic process that promotes a progressive translation of all 

body, and is characterized by alternated movements of propulsion and retropropulsion, produced by 

coordinated rotational movements of body segments. These movements guarantee both motion and 

support to the body, since at least one foot is always in contact with the ground. As the movement occurs, 

the support of the body is provided by one limb, while the other limb advances itself to a new support 

site. Then the limbs reverse their roles. For body weight transferring from one limb to the other, both feet 

are in contact with the ground. These events are repeated by each limb until the person's destination is 

reached. The gait cycle is considered as a single sequence of these functions by one limb, corresponding 

to the period between two identical events in the walking process, i.e., from the initial contact of one foot, 

to the following initial contact of the same foot (Neumann, 2010; Perry, 1992). 

The cycle of the human locomotion is divided into two periods for each foot, the stance and swing 

phases. The stance phase comprises about 58 to 61% of the gait cycle and represents the time when the 

foot is in contact with the ground. The swing period corresponds to the remaining 39 to 42% of the gait 

cycle and constitutes the time when the foot is no longer in contact with the ground. The period in which 

both feet are in contact with the ground is called double-limb support and occurs at the beginning and 

the end of the stance phase, representing nearly 16 to 22% of the gait cycle. If the locomotion velocity 

increases, double-limb support time decreases, which makes the running activity a movement without 

double-limb support (Lakany, 2008; Meireles, 2007). 

Considering the initial contact of the right foot with the ground, as the starting and completing 

event, the gait cycle can be described as the following sequence of events: initial contact, loading 

response, midstance, terminal stance, preswing, initial swing, midswing and terminal swing. The first five 

phases correspond to the stance period, and the swing period is constituted by the remaining three ones 

(Perry, 1992). These phases are briefly described below and are illustrated in Figure 2.11. 
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Figure 2.11. Phases of the gait cycle. 

 

Stance Phase 

1. Initial Contact corresponds to the instant in which the right foot touches the ground. Typically, this 

initial contact is made by the heel, and it is called heel contact. 

2. Loading Response takes place immediately after the initial contact and comprises 10% of the gait 

cycle. During this phase, the right foot comes fully in contact with the floor, and the body weight is 

totally transferred onto the right limb. When the foot becomes planar, the term foot flat is applied 

for that instant of time. 

3. Midstance refers to the beginning of single support and occurs from 10 to 30% of the gait cycle. 

This phase begins when the left foot leaves the ground and perdures as the time at which the left 

foot (swing–period foot) passes the right foot (stance–period foot).  

4. Terminal Stance occurs between 30 and 50% of the gait cycle. It starts when the heel of the right 

foot lifts the ground (heel off) and ends when the left foot contacts the ground, supporting the body 

weight.  

5. Preswing begins when the left foot contacts the ground and finishes when the toe of the right limb 

makes the terminal contact (toe off). 

 

Swing Phase 

1. Initial Swing occurs from 60 to 75% of the gait cycle. This phase begins when the right foot leaves 

the ground and perdures until the maximum knee flexion occurs. 

2. Midswing begins subsequently to maximum knee flexion and ends when the right tibia is in a 

vertical position. This phase takes place from 75 to 85% and corresponds to the midstance phase 

of the left foot, being the time at which the two feet are side by side. 
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3. Terminal Swing is the ending phase of the gait cycle, and it corresponds to the deceleration phase. 

The tibia of the right limb passes beyond perpendicular, and the knee fully extends in preparation 

for heel contact. At this point, a new gait cycle would begin (Perry, 1992). 

 

For all the lower limbs joints, the magnitude of their movement is proportional to the walking speed. 

At a typical walking speed, when heel contact occurs, the hip is flexed about 30 degrees (Figure 2.12 

(a)). With the progression of the body, this joint extends, until the maximum hip extension of about 10 

degrees is achieved before toe off. Then, the hip starts to flex during preswing phase, reaching about 0 

degrees of flexion by toe off (60% of gait cycle). This joint keeps flexing during the swing phase, achieving 

the maximum flexion (slightly above 30 degrees) right before heel contact (Neumann, 2010).  

For the knee (Figure 2.12 (b)), the kinematic pattern is a little more complex than for the hip. At 

initial contact, the knee is flexed approximately 5 degrees, and, during the initial 15% of the gait cycle, it 

flexes continuously an additional 10 to 15 degrees. Then, this joint starts to extend, getting almost fully 

extended until about heel off (between 30% to 40% of the gait cycle). At this stage, the knee starts flexing, 

achieving around 35 degrees of flexion by the moment of toe off (60% of gait cycle). The knee flexion 

reaches its maximum of approximately 60 degrees in the beginning of midswing (75% of gait cycle). In 

the mid and terminal swing phases, the knee extends a little below full extension before starting to flex 

slightly in preparation for heel contact (Neumann, 2010). 

At the ankle (Figure 2.12 (c)), heel contact occurs with a slight plantarflexion, between 0 and 5 

degrees. Then, during the stance phase, up to 10 degrees of ankle dorsiflexion occurs (from 8% to 45% 

of the gait cycle). Shortly after heel off, the ankle begins to plantarflex, reaching a maximum of 20 degrees 

of plantarflexion just after toe off. In the swing phase, the ankle is again dorsiflexed to a neutral position 

(Neumann, 2010). 
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Figure 2.12. Sagittal plane angular rotation of the lower limb joints during a gait cycle. (a) Hip motion; (b) Knee motion; 
(c) Ankle motion {Adapted from (Neumann, 2010)}. 

 

Overall, for normal walking, approximately 30 degrees of flexion and 10 degrees of extension from 

the anatomic reference position are needed at the hip; the knee flexes between 2 and 60 degrees; and 

for the ankle it is required approximately 13 degrees of dorsiflexion and 20 degrees of plantarflexion 

(Neumann, 2010). 
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reference planes, the anatomical directional terms, and the designation of the movements. Furthermore, 

the main bones, joints and muscles that allow the normal locomotion of the human body were illustrated. 

The muscles were organized by functional mover groups of each articulation, specifically for flexion and 

extension movements. In addition, the normal human gait was described, concerning its main phases, 

with the aim to understand its sequence of events, and distinguish them in the simulation of the stride 

period. 
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Equation Chapter 3 Section 1 

In this chapter, the main fundamentals of the formulation for the dynamic analysis of multibody 

systems are presented. The focus of the dynamic analysis of MBS is to understand the relationship 

between the motion of the system's constituent components and its underlying causes, such as externally 

applied forces and moments (Meireles, 2007; Moreira, 2009). 

With the purpose of defining the position of each body of a MBS in a 2D context, the multibody 

formulation is introduced using cartesian coordinates. Furthermore, the formulation of the revolute joints 

and the guiding constraints is addressed.  

It is also summarized how the equations of motion of a MBS can be established, and how to 

advance the analysis in time, and obtain a solution to the equations of motion. Moreover, as this 

methodology is susceptible to integration errors, the Baumgarte stabilization method is proposed as a 

technique to avoid or minimize this phenomenon. 

Essentially, the aim of this chapter is to provide the reader with a complete overview of the 

formulations implemented for dynamic analysis, which follow closely the work of Nikravesh (1988), and 

are the foundation for all the methodologies presented in the forthcoming chapters. 

Finally, the chapter ends with a summary and discussion of the topics covered. 

 

 

3.1. Multibody Systems Overview 

A multibody system can be defined as an assembly of bodies in which some or all of them can 

move relative to one another. The bodies may be rigid or flexible and are interconnected to each other by 

kinematic joints that constrain their relative motion, allowing certain degrees-of-freedom (DOF) and 

constraining others. The bodies are acted upon by forces that can have different sources and different 

levels of complexity. Under this general concept of MBS, driving and guiding elements for given points of 

the system components may also be considered, in order to provide prescribed trajectories to the bodies. 

Figure 3.1 depicts a generic representation of a MBS with its most significant components: bodies, joints 

and forces elements (Meireles, 2007; Nikravesh, 1988). 

 

Chapter 3 – Multibody Systems Methodologies 
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Figure 3.1. Generic representation of a multibody system (Machado et al., 2012). 

 

A body is considered to be rigid when its deformations are assumed to be considerably reduced as 

they do not affect the global motion of the body, and the distances among its particles do not change 

during the motion of the global body. The motion of a free rigid body in the two-dimensional space can 

be fully described by three generalized coordinates associated with the three DOF. On the other hand, a 

body is said to be flexible, when it has some deformation capacity, so it has three rigid DOF plus the 

number of generalized coordinates needed to describe the deformations. Although rigid bodies are a 

representation of reality – because bodies are not totally rigid in nature –, in extensive conventional 

applications, the bodies have significant stiffness and, consequently, their flexibility can be disregarded, 

considering the bodies to be perfectly rigid (Machado et al., 2012; Nikravesh, 2019). 

Multibody systems can differ from very simple to highly complex. Its formulation methodologies, in 

a generic approach, include two steps: (i) the development of mathematical models of the systems and 

(ii) the implementation of computational procedures to perform the simulation, analysis and optimization 

of the global motion produced (Machado et al., 2012). 

In order to specify the configuration of a two-dimensional mechanical system, it is necessary to 

define the coordinates that specify the position of each body. There are different types of coordinates and 

formalisms that lead to suitable descriptions of multibody systems. In a general perspective, the types of 

coordinates can be divided into independent and dependent ones. In the first set, the used variables are 

associated with the DOF of the system. Conversely, the dependent coordinates are further separated in 

three types: cartesian (or absolute), relative and natural coordinates. The cartesian coordinates are the 

chosen type to describe the system configuration in this work and will be explained in the present section. 

The relative coordinates define the position and orientation of a body with respect to a preceding body in 
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a MBS and can be associated with linear or angular displacements. The natural, also designated as fully 

cartesian coordinates, involve the employment of only two cartesian coordinates and do not include 

angular variables (Flores & Lankarani, 2012; Nikravesh, 1988). 

The application of cartesian coordinates has the benefit that the formulation of the equations of 

motion is straightforward and the constraint equations necessary to describe the system restrictions are 

usually simple to obtain. Additionally, this approach presents low degree of nonlinearity of the resulting 

equations and a good computational efficiency. With cartesian coordinates, the configurations of the 

systems are univocally defined. However, the major drawback associated with this type of coordinates 

formulation is the large number of variables and constraint equations involved (Flores & Lankarani, 2012). 

To analyze the movement of a body, it is first necessary to define a nonmoving reference frame, 

named a global or an inertial frame – denoted as xy –, and a moving frame for each moving body, i, in 

the system, called a local or a body-fixed frame – denoted as 
i i  (Nikravesh, 2019). 

In the cartesian coordinates, the vector of generalized coordinates defines the position of each 

body, and it is usually composed of the location of the CM and the orientation of the body in the system. 

Therefore, in a 2D problem, a rigid body can be defined by three variables: two coordinates describing 

the body local system axis position (defined by the global coordinates  
T

   i i
x y=r ) and one angle (

i ) 

describing the body orientation with respect to a global coordinate system. The angle that the -axis 

makes with the x-axis must be measured with respect to the x-axis in the counterclockwise direction. 

(Nikravesh, 1988, 2019). Regarding this information, the vector of coordinates 
iq  that characterizes the 

position of the body i in the planar context is 

  
T

         i i
x y =q  (3.1) 

If a MBS is constituted by bn  rigid bodies, then the number of coordinates needed to characterize 

the system configuration is n = 3 × bn  Thus, the vector of generalized coordinates of this MBS system 

can be written as 

  
T

T T T T

1 2 3          
bn= q q q q q  (3.2) 

However, the n generalized coordinates of the system are not independent, since there are constraint 

equations relating them. The number of independent coordinates is called the number of 

degrees-of-freedom, and represents the minimum number of coordinates required to fully describe the 

configuration of a system (Flores & Lankarani, 2012; Nikravesh, 1988). 
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Let s be a vector defined on a body i, as shown in Figure 3.2. Although this vector rotates and 

translates with the body movements, its length is constant. The projection of this vector onto the local 

frame of body i results in two components, namely 
i

s
 and 

i
s

, while the projection of vector s in the 

reference frame results in the components 
xs  and 

ys . The local and the global components of the vector 

s can be related as 

 
cos sin

sin cos

i

i

x i i

y i i

ss

s s





 

 

 −     
=    

      

 (3.3) 

and in a compact form by the following equation 

 'i i=s A s   (3.4) 

where s denotes the vector expressed in terms of global coordinates, 'is  is the vector expressed in the 

local coordinate system and 
iA  represents the planar transformation matrix for body i , which defines 

the orientation of body-fixed frame, 
i i , with respect to the global coordinate system, xy, being given by 

(Flores & Lankarani, 2012; Nikravesh, 2019) 

 
cos sin

sin cos

i i

i

i i

 

 

− 
=  

 
A  (3.5) 

 

 

Figure 3.2. Components of a vector attached to a body in global and local systems of coordinates. 
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the body local frame, as depicted in the Figure 3.3. It should be noted that, in further references, P

is  

signifies the position vector in global coordinates and 'Pis  refers to the local components of point 
iP  

 ( )T

'  P P P

i i i =s  (Nikravesh, 1988, 2019). 

 

 

Figure 3.3. Locating point 
i

P  relative to the body-fixed and global coordinate systems. 

 

The local and global coordinates of point iP  can be related by the following equation 

 'P P P

i i i i i i= + = +r r s r A s   (3.6) 

where iA  is the transformation matrix given by Eq. (3.5). 

In the expanded form, Eq. (3.6) can be expressed as (Nikravesh, 1988, 2019) 

 
cos sin

sin cos

P P
i i ii i

P P
i i ii i

xx

yy
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  

−      
= +      

      
 (3.7) 

or, alternatively, 

 cos sinP P P

i i i i i ix x    = + −  (3.8) 

 sin cosP P P

i i i i i iy y    = + +  (3.9) 

The velocity components of point iP  can be obtained by differentiating Eqs. (3.8) and (3.9) with 

respect to time, yielding 

 ( )sin cosP P P

i i i i i i ix x     = − +  (3.10) 

 ( cos sin )P P P

i i i i i i iy y     = + −  (3.11) 

After a second differentiation of Eqs. (3.8) and (3.9) with respect to time, the acceleration equations 

are obtained as (Nikravesh, 2019) 
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 ( ) 2sin cos ( cos sin )P P P P P

i i i i i i i i i i i ix x          = − + − −  (3.12) 

 ( ) 2( cos sin ) sin cosP P P P P

i i i i i i i i i i i iy y          = + − − +  (3.13) 

 

 

3.2. Constraints Formulation 

A kinematic pair imposes restrictions on the relative motion between the bodies it comprises and, 

therefore, it reduces the number of DOF of the system. The kinematic relationships between the defined 

coordinates of a system are called constraint equations. The configuration of the MBS is described by n 

cartesian coordinates, then a set of m algebraic kinematic independent holonomic constraints1, Ф, can 

be written in a compact form as 

 ( ), 0t =Φ q  (3.14) 

where q is the vector of generalized coordinates and t is the time variable (Nikravesh, 1988, 2019). 

The evaluation of the velocities and accelerations of the system elements is performed using the 

velocity and acceleration constraint equations. Differentiating Eq. (3.14) with respect to time, yields the 

velocity constraint equations, 

   t= − =qΦ q Φ υ  (3.15) 

where /=  qΦ Φ q  is the Jacobian matrix of the constraint equations, q  is the vector of generalized 

velocities, and / t= − υ Φ  is the right-hand side of velocity equations. It should be noticed that only 

rheonomic constraints2, associated with driving or guiding equations, contribute with non-zero entries to 

the vector υ. 

After a second differentiation of the Eq. (3.14) with respect to time, the acceleration constraint 

equations are obtained as 

 ( )    2 t tt= − − − =q q qq
Φ q Φ q q Φ q Φ γ  (3.16) 

where q  is acceleration vector and γ is the right-hand side vector of the acceleration constraint equations, 

that is, the vector of quadratic velocity terms, which are exclusively function of velocity, position and time. 

In the case of scleronomic constraints3, the terms tΦ  in Eq. (3.15) and tqΦ  and ttΦ  in Eq. (3.16) 

vanish (Flores et al., 2008). 

 
1 Holonomic constraints are algebraic equations that are expressed as function of the coordinates and, possibly, time (Nikravesh, 1988). 
2 Rheonomic constraints are holonomic constraints, in which the time appears explicitly (Flores et al., 2008). 
3 Scleronomic constraints are holonomic constraints that are not explicitly dependent on time (Flores et al., 2008). 
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3.2.1. Revolute Joint 

A revolute joint constrains the relative translation between two bodies, allowing only the relative 

rotation. A schematic representation of this type of kinematic joint, connecting two bodies, i and j, is 

shown in Figure 3.4, where the center of the joint is denoted by the point P. This point can be considered 

to be two coincident points, each one belonging to a different body: 
iP  on body i and 

jP  on body j. Such 

situation can be expressed as 

 P P

i i j j+ − − =r s r s 0   (3.17) 

which establishes the constraint equations for a revolute joint, and is equivalent to 

 ( )r,2
' 'P P

i i i j j j + − − =Φ r A s r A s 0     (3.18) 

In a more explicit and expanded form, the two constraint equations for a revolute joint can be 

expressed by 

 ( )r,1st
cos sin cos sin 0P P P P

i i i i i j j j j jx x        + − − − + =Φ  (3.19) 

 ( )r,2nd
sin cos sin os 0cP P P P

i i i i i j j j j jy y        + + − − − =Φ  (3.20) 

Therefore, in a 2D context, if two bodies are connected by a revolute joint, the number of DOF of 

the system is reduced by two (Nikravesh, 1988). 

 

 

Figure 3.4. Revolute joint connecting bodies i and j (Flores & Lankarani, 2012). 

 

The partial derivative of Eqs. (3.19) and (3.20) with respect to generalized coordinates, q, i.e., 
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bodies i and j. Hence, the Jacobian matrix is given by 

x

y

(j)
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 (3.21) 

generating the corresponding values of the Jacobian terms as follows 

 ( )r,2 1 0 sin cos 1 0 sin cos

0 1 cos sin 0 1 cos sin

P P P P

i i i i j j j j

P P P P

i i i j j j j

       

       

 − − +
=  

− − − + 

−


qΦ  (3.22) 

Since revolute joints consist in scleronomic constraints, i.e., the revolute joint constraints do not 

depend explicitly on time, the right-hand side vector of the velocity constraint equations is given by 

 ( )r,2

t= − =υ Φ 0  (3.23) 

In consequence, the right-hand side of the acceleration constraint equations is represented as 

 ( ) ( )r,2
 = − q q

γ Φ q q  (3.24) 

which can be expanded as (Nikravesh, 1988) 
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( ) ( )
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2 2
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2 2
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         
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 

γ  (3.25) 

 

 

3.2.2. Guiding Constraints 

The guiding constraints are a type of rheonomic constraints which impose the trajectories of 

determined points on the bodies, namely the CM, as it is represented in Figure 3.5. For a free body (i) in 

two-dimensional space, the guiding constraint equations can be written as 

 ( )

( )
( )
( )

g,3

x

i i

y

i i

i i

x t t

y t t

t t

 −
 

 − = 
 − 

Φ 0  (3.26) 

where ( )k

it t , with k = {x,y,θ}, represents the trajectory described by the CM of body i (Meireles, 2007). 
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Figure 3.5. Representation of a trajectory described by the CM of a free body. 

 

The contribution of the guiding constraint equations to the Jacobian matrix of the constraints can 

be evaluated as 

 ( )
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which can be expressed as 

 ( )g ˆ=qΦ I  (3.28) 

where Î  is a permuted non-square identity matrix, in which the 1s are present in the columns associated 

with the independent variables (Flores & Lankarani, 2016; Nikravesh, 1988). 

The right-hand side of the velocity and acceleration constraints can be evaluated as follows (Flores 

& Lankarani, 2016) 

 ( )
( ) ( ) ( )
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t t t
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γ  (3.30) 

 

 

3.3. Description of the Equations of Motion 

In order to examine the dynamic response of a constrained MBS, it is first necessary to formulate 

the equations of motion that govern its behavior. According to Nikravesh’s formulation, the equations of 

motion for constrained MBS of rigid bodies are described as (Nikravesh, 1988) 

x

y

(i)

ti
k(t)
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 ( )
= +

c
Mq g g  (3.31) 

where M is the global system mass matrix, which is a constant diagonal matrix, containing the mass and 

moments of inertia of all bodies, q  is the acceleration vector, g is the generalized force vector that 

contains all external forces and moments applied on the system – such as those associated with 

gravitational field and contact events –, and ( )c
g  is the vector of constraint reaction forces, which can be 

expressed in terms of the Jacobian matrix of the constraint equations (
qΦ ) and the Lagrange multipliers 

vector (λ) as 

 ( ) T  = −
c

qg Φ λ  (3.32) 

The λ vector contains m unknown Lagrange multipliers related to the m algebraic kinematic 

independent holonomic constraints. The Lagrange multipliers are physically associated with the reaction 

forces and moments produced between the bodies interconnected by kinematic joints (Flores et al., 2008; 

Nikravesh, 1988). Thus, from the substitution of Eq. (3.32) in Eq. (3.31) yields 

 T  + =qMq Φ λ g  (3.33) 

It should be noticed that Eq. (3.33) represents a system of n second-order ordinary differential 

equations with n + m unknowns, corresponding to the generalized acceleration vector, q , and to the 

vector of the Lagrange multipliers, λ. In dynamic analysis, in order to obtain a unique solution, it is 

necessary to consider not only the differential equations of motion, but also the constraint equations. 

Thus, Eq. (3.16) can be appended to Eq. (3.33) and re-written in matrix form as 

 
T     

=     
      

q

q

M Φ q g

Φ 0 λ γ
 (3.34) 

which can be solved for q  and λ using any numerical algorithm for linear equations. In mathematical 

terms, the simulation of a constrained MBS requires the solution of a set of n differential equations 

coupled with a set of m algebraic equations, producing a system of n + m differential and algebraic 

equations (DAE), with n + m unknowns. The equations of motion for MBS are derived from the Newton-

Euler formulation in combination with the augmentation method. The Newton-Euler equations represent 

the translational and rotational motions of bodies, while the augmentation method denotes the process 

where the algebraic kinematic constraint equations are adjoined to the differential equations of motion, 

so that the number of unknowns for which the system is being solved is in agreement with the number 

of system equations. As a consequence, the equations of motion of MBS are formed as a set of differential 

algebraic equations. The numerical solution of the system of DAE is not straightforward and the most 
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frequently used numerical integration algorithms are useful in solving ordinary differential equations 

(ODE). In this context, one of the most applied methods to solve this problem consists in the conversion 

of the DAE system into a set of ODE (Flores et al., 2008; Flores & Lankarani, 2012; Nikravesh, 1988).  

 

 

3.4. Resolution of the Equations of Motion 

In order to advance the analysis in time, the equations of motion need to be solved and the state 

variables integrated. In each integration time step, the accelerations vector, q , and the velocities vector, 

q , are integrated, with the objective to obtain, respectively, the system velocities and positions for the 

next time step. This process is repeated until the final analysis time is reached. As the dynamic analysis 

of MBS is an initial value problem, it should be noticed that it is required a set of initial conditions, – 

positions and velocities –, to initiate the dynamic simulation (Flores et al., 2008; Nikravesh, 1988). 

A numerical solution to the equations of motion may be obtained by applying, for instance, the 

direct integration method (DIM), which is a standard numerical integration algorithm, that solves 

first-order differential equations that take the form 

 ( ),f t=y y  (3.35) 

Therefore, if there are n second-order differential equations of motion, they are converted into 2n 

first-order differential equations, by defining the y and y  vectors, – which contains, respectively, the 

system positions and velocities and the system velocities and accelerations –, as follows (Flores et al., 

2008; Nikravesh, 1988), 

 
 

=  
 

q
y

q
    and    

 
=  

 

q
y

q
 (3.36) 

The process of numeric integration at instant of time t can be represented by the following diagram, 

 ( ) ( )    Δintegrationt t t⎯⎯⎯⎯→ +y y  (3.37) 

which means that velocities and accelerations, at instant t, yield positions and velocities, at next time 

step, t + Δt, after the integration process (Nikravesh, 1988). 

The algorithm for dynamic analysis of MBS based on the DIM of the equations of motion is 

explained in the flowchart presented in Figure 3.6.  

 



 

 37 

 

Figure 3.6. Flowchart of computational procedure for dynamic analysis of multibody systems based on the direct integration 
method {Adapted from (Flores et al., 2008)}. 

 

To initiate the dynamic analysis, at 0t t= , the initial conditions of the positions, 0q , and of the 

velocities, 0q , are required for initiating the integration process. These values must satisfy the constraint 

equations defined in Eqs. (3.14) and (3.15). The DIM can be resumed by the following steps: 

1. Start at instant 0t  with the given set of initial conditions for positions, 0q , and for velocities, 0q . 

2. Assemble the global mass matrix, M, evaluate the Jacobian matrix, qΦ , build the constraint 

equations, Ф, calculate the right-hand side vector of the accelerations, γ, and determine the vector 

of generalized forces, g. 

3. Solve the linear system of the equations of motion – Eq. (3.34) – for a constrained MBS in order 

to obtain, at instant t the accelerations, q , and the Lagrange multipliers, λ. 

4. Assemble the vector ty , which contains the generalized velocities, q , and accelerations, q , for 

the instant t. 

5. Integrate the q  and q  vectors for time step t + Δt and obtain the new positions and velocities. 

START

Read input data
Evaluate

System mass matrix, 

Jacobian matrix, 

Position Constraints, 

Vector

Generalized forces, 

Solve linear equations

of motion for and

Form the auxiliary

vector

Integrate the

auxiliary vector
is ?

STOP

Yes

No



 

 38 

6. Increment time. If the current time is smaller than the final time, go to step 2 and continue with 

the procedure for a new time step, until the final time of analysis is reached. Otherwise stop the 

dynamic analysis. 

 

The most used numerical integration methods, employed to solve the initial-value problem, are the 

Runge–Kutta methods. The DIM of the equations of motion is susceptible to integration errors because 

the position and velocity constraints equations – Eqs. (3.14) and (3.15) respectively – are only satisfied 

at the initial instant of time, 0t , as they do not explicitly appear in the system of the equations of motion 

– Eq. (3.34). In fact, only the second derivatives of the constraint equations will be satisfied at every 

integration step. In the initial few time steps, the constraint violations are usually small and negligible. 

However, as the time is incremented, the error in computed values for kinematic parameters is 

accumulated, due to the finite precision of the numerical methodologies, and constraint violations 

increase, being more evident with stiff systems4. Consequently, unacceptable results are generated, which 

requires the implementation of a constraint stabilization technique to avoid or minimize this phenomenon, 

especially for more prolonged simulations (Flores et al., 2008, 2011). 

Several methods to avoid or minimize this phenomenon have been suggested and tested, and the 

most commonly applied among them is the Baumgarte stabilization method (BSM), due to its simplicity 

and easiness for computational implementation (Baumgarte, 1972). The BSM is used to keep the errors 

associated with constraint violations under control and its principle is to damp out the acceleration 

constraint violations by feeding back the position and velocity of constraint violations, as it is represented 

in Figure 3.7.  

 

 
4 A system is considered to be stiff if it contains rapidly and slowly varying components, and the natural frequencies of the system are widely spread. The 
stiffness can be produced by the physical characteristics of the multibody system, such as components with large differences in their masses, stiffness and/or 
damping. It should be noticed that, in order to capture the fast components of the response and keep the numerical error within the limits, a smaller time 
step would be required to obtain an accurate solution, which may be prohibitive or unrealistic in terms of computer resources (Flores et al., 2008; Nikravesh, 
1988). 
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Figure 3.7. Open-loop (without the application of BSM) and closed-loop (with the application of BSM) control systems. 

 

This method allows the existence of a slight violation of constraints before the manifestation of the 

corrective action, in order to force the violation to vanish. The objective of the BSM is to replace the 

differential Eq. (3.16) by the following expression, 

 22 + + =Φ Φ Φ 0  (3.38) 

that is a differential equation for a closed-loop system in terms of kinematic constraint equations, in which 

the terms 2Φ  and 2 Φ  are the feedback control terms that achieve stability for the differential 

equation. 

As Figure 3.7 shows, in open-loop systems, Ф and Φ  do not converge to zero if any perturbation 

occurs and, consequently, the system is unstable. Thus, applying the BSM, the equations of motion for a 

system subjected to holonomic constraints are stated in the following form (Flores et al., 2011) 
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The selection of the feedback parameters,  and β, depends on several factors, namely, the 

integrator used and the model of the MBS. This ambiguity in choosing the feedback parameters is the 

major drawback of Baumgarte’s method, which usually involves a trial-and-error procedure, since there 

is no reliable method for selecting the coefficients  and β. The improper choice of these coefficients can 

lead to unacceptable results in the multibody system dynamics. In general, if  and β are chosen as 

positive constants, the stability of the general solution of Eq. (3.39) is guaranteed. Furthermore, when 

the value of  is equal to the value of β, critical damping is achieved, which usually stabilizes the system 

response quickly. Baumgarte (1972) indicated that the values of the feedback parameters of  = β = 5 

INPUT OUTPUT


Open-loop system (unstable)

INPUT OUTPUT
 

Closed-loop system (stable)

+
-

+
-



 

 40 

are a good choice for a MBS made of rigid bodies. However, the parameters  and β should be, in 

general, equal to one another and typical values of the stabilization parameters range from 1 to 20 (Flores 

et al., 2008). 

 

 

3.5. Summary 

In this chapter, the main fundamentals of the formulation for the dynamic analysis of multibody 

systems were presented and discussed. The multibody formulation was introduced and detailed for the 

type of coordinates adopted – cartesian coordinates – in order to define the position of each body of a 

MBS in the two-dimensional space. Additionally, the major aspects related to the formulation of the 

revolute joints and the guiding constraints, for a 2D context, were also reviewed. The formulation follows 

the work of Nikravesh (1988) and is the supporting structure for all the methodologies and dynamic 

analysis presented in the forthcoming chapters.  

It was also summarized how the equations of motion of a MBS can be established, and how to 

advance the analysis in time, integrating the state variables, to obtain a numerical solution to the 

equations of motion. In this context, the computational procedure for dynamic simulation, based on the 

DIM, was considered. For starting the integration process, it is required a set of initial conditions, for 

positions and velocities, which must satisfy the positions and velocities constraint equations. From those 

initial values, the equations of motion are solved for the system accelerations and for Lagrange multipliers. 

Then, by integration of the velocity and acceleration vectors, the positions and velocities at the next time 

step are obtained. This procedure is repeated until the final time is reached. This integration process can 

be performed using, for instance, a Runge–Kutta method. Additionally, it was stated that this methodology 

is susceptible to integration errors, and the BSM may be applied with the intent of keeping the constraints 

violation under control.  
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Equation Chapter 4 Section 1 

The dynamic analysis of the human gait typically requires three distinct types of input data: 

(i) anthropometric information concerning the anatomical segments dimensions and masses; 

(ii) kinematic information, regarding trajectories of specific anatomical points of the biomechanical model, 

used to describe its motion in a unique way; (iii) and kinetic information describing all the external applied 

forces to the biomechanical model and their respective points of application (Meireles, 2007; Tavares da 

Silva, 2003). 

In this chapter, a description of the developed multibody model, based on the MBS formulation 

discussed in the previous chapter, is presented. The geometric characteristics of the rigid bodies, the 

connection between them by ideal revolute joints, the guidings that prescribe the trajectories of the 

segments, and the introduction of the external forces are described. The constraint equations are also 

established. The established biomechanical model was implemented in a computational program 

developed in MATLAB, and the processes involved are described in this chapter. 

The bodies’ trajectories data were obtained experimentally and, therefore, are prone to errors and 

uncertainties. In this context, the most common sources of errors that affect the kinematic input data and 

problems associated with them are also aborded. The required set of initial conditions to initiate the 

dynamic analysis is prescribed and the consistency of these initial conditions are analyzed in order to be 

consistent with the kinematic structure of the biomechanical model. 

Moreover, three interpolation methods available in MATLAB are compared and discussed for 

application in the discrete data of the bodies’ trajectories and the GRF components.  

Furthermore, a solution to the equations of motion is obtained by applying a numerical integration 

algorithm, namely the MATLAB ‘ode45’ solver, and the main characteristics of it are also examined in 

this chapter. It is also presented a study on the influence of the values of the Baumgarte stabilization 

parameters on the violation of constraints.  

Finally, the computer animation of the biomechanical model developed in MATLAB, for visualization 

of the human gait, is described, and at the end, a summary of the topics covered in the present chapter 

is provided. 

 

 

Chapter 4 – Dynamic Analysis of the Human Gait 
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4.1. Biomechanical Multibody Model Description 

This section intends to briefly describe the biomechanical model of the human body – the ½ HAT-

leg model, represented in the Figure 4.1 – used in dynamic analysis of the human gait in the sagittal 

plane.  

 

 

Figure 4.1. ½ HAT-leg model representation. 

 

The model is composed of four rigid bodies, corresponding to the main segments of the right side 

of the human body – ½ HAT5, thigh, leg and foot. In Figure 4.1, the right leg is represented in solid line, 

while the left leg, which will not be considered, is in dashed line. The model has 12 coordinates (n = 12) 

since it has four movable bodies with three DOF each. These bodies, their anatomical description and 

the relevant anthropometric information are summarized in Table 4.1. The segments’ length, mass, CM 

location and moment of inertia are representative of a person with 56.70 kg of total body mass, and were 

obtained from the work of Meireles (2007), which is based on Winter (2005). The bodies are connected 

by three ideal revolute joints and, consequently, six constraints are added to the system, since each joint 

removes two DOF from the system. Hence, the ½ HAT-leg multibody system has six DOF, that correspond 

to three rotations about the revolute joints – one DOF for hip flexion-extension motion, one DOF for knee 

flexion-extension and one DOF for ankle dorsiflexion-plantarflexion –, plus two translations and one 

 
5 HAT is the acronym for head-arms-trunk. 
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rotation of the system. These six DOF are associated with the guiding constraints, according to an initially 

prescribed kinematics. (Winter, 2005) 

 

Table 4.1. Anthropometric data for the segments of the ½ HAT-leg model (Meireles, 2007; Winter, 2009) 

Body Anatomical description 
Length 

[m] 

CM Proximal 

Location6 

[m] 

Mass 

[kg] 

Moment of 

Inertia 

[kg.m2] 

1 
½ right HAT 

(greater trochanter/mid rib) 
0.2575 -0.03557 19.2213 1.03923 

2 
right thigh 

(greater trochanter/femoral condyles) 
0.3141 0.1360 5.67000 0.05836 

3 
right leg 

(femoral condyles/medial malleolus) 
0.4081 0.1840 2.63655 0.04005 

4 
right foot 

(lateral malleolus/head metatarsal II) 
0.1221 0.0610 0.82215 0.00273 

 

The global system mass matrix, M, which is a constant diagonal matrix, containing the mass and 

moments of inertia of all bodies, can be defined, for the considered model, as follows 

  1 1 1 2 2 2 3 3 3 4 4 4 diag  m m I m m I m m I m m I=M   (4.1) 

In order to perform a dynamic analysis of a MBS, the cartesian coordinates of the CM of each body 

are grouped in column vector q, the generalized coordinates vector, which defines, in a unique way, the 

configuration of the system at any instant of time. For the ½ HAT-leg model this vector is organized as 

follows 

  
T

1 1 1 2 2 2 3 3 3 4 4 4  x y x y x y x y   =q  (4.2) 

Each rigid body i has a local reference frame attached to it, with its origin located at the CM of the 

body. The i  is aligned with the segment, while the i  is perpendicular to the segment’s extension, as 

depicted in Figure 4.2. Figure 4.2 also shows the representation of the orientation of each segment with 

respect to the global reference frame. 

 

 
6 The CM proximal location refers to the distance from the segment’s CM to the proximal end of that segment (Winter, 2009). 
7 The CM of the ½ right HAT is located 0.0355 m above its proximal end, which leads to a negative value of CM proximal location (Meireles, 2007). 
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Figure 4.2. (a) Representation of the local reference frames on the ½ HAT-leg model; (b) Representation of the orientation of 
each segment with respect to the global coordinate system. 

 

This model was developed within a MATLAB computer code, using the multibody formulation with 

cartesian coordinates, described in the previous chapter. This numeric simulator was the computational 

framework that supports all the analyses performed in this work. 

 

 

4.2. Kinematic Constraints Formulation 

The constraints imposed by revolute joints are geometric constraints that can be described as two 

coincident points, each one belonging to a different body. The center of the joint, which constrains two 

bodies, i and j, is denoted by the point P – where the points iP  and 
jP  are coincident. The local 

coordinates of the point P on bodies i and j are those used by Meireles (2007) and are represented in 

Table 4.2. 
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Table 4.2. Body numbers i and j and local coordinates of the point P (Flores, 2010) 

Joint (P) Body i Body j  mP

i   mP

i   mj

P   mP

j  

Hip 1 2 -0.294065 0.000000 0.136005 0.000000 

Knee 2 3 -0.178095 0.000000 0.176707 0.000000 

Ankle 3 4 -0.231393 0.000000 0.061050 0.000000 

 

The constraint equations of the revolute joints follow the formulation of Nikravesh (1988) and can 

be formulated for the ½ HAT-leg model as follows. 

For the revolute joint that links body 1 to body 2: 

 1 1 1 1 1 1 2 2 2 2 2cos sin cos sin 0P P P Px x         + − − − + =  (4.3) 

 2 1 1 1 1 1 2 2 2 2 2sin cos sin cos 0P P P Py y         + + − − − =  (4.4) 

For the revolute joint that links body 2 to body 3: 

 3 2 2 2 2 2 3 3 3 3 3cos sin cos sin 0P P P Px x         + − − − + =  (4.5) 

 4 2 2 2 2 2 3 3 3 3 3sin cos sin cos 0P P P Py y         + + − − − =  (4.6) 

For the revolute joint that links body 3 to body 4: 

 5 3 3 3 3 3 4 4 4 4 4cos sin cos sin 0P P P Px x         + − − − + =  (4.7) 

 6 3 3 3 3 3 4 4 4 4 4sin cos sin cos 0P P P Py y         + + − − − =  (4.8) 

In addition to these geometric constraints, the kinematic constraints associated with the guidings 

can also be considered. The guiding constraints are associated with the known trajectories of the bodies’ 

CM, which can be obtained by experimental data acquisition.  

For the ½ HAT-leg model, the guided coordinates are those associated with the translation 

movement of body 1 ( 1x  and 1y ), and the rotation of all bodies ( 1 , 2 , 3 , 4 ), which were obtained 

experimentally (Flores, 2010; Meireles, 2007). A text file containing the discrete data of the variation of 

these coordinates over time is used as input. Table 4.3 shows part of these data, where the cartesian 

coordinates’ variation with time is presented. 
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Table 4.3. Guiding constraints input (Flores, 2010) 

Time [s]  1
  mx   1

  my   1
  rad   2

  rad   3
  rad   4

  rad  

0.0000 0.4726600 1.0799700 1.4852700 1.4433900 0.694640 1.49400 

0.0290 0.5123842 1.0821876 1.5044679 1.5463198 0.645770 1.40499 

0.0580 0.5506321 1.0884829 1.5152255 1.6637434 0.652280 1.43580 

… … … … … … … 

0.8990 1.7436797 1.0833713 1.3890785 1.2806636 0.941990 2.01053 

0.9280 1.7911596 1.0795297 1.4136488 1.3078647 0.844440 1.79696 

0.9570 1.8355846 1.0776201 1.4475594 1.3618779 0.753260 1.58027 

 

Since the data collected experimentally of the trajectories of the bodies’ CM are discrete, typically, 

the coordinates are interpolated along time. In this work, this procedure was executed by employing 

akima splines interpolation8.  

Therefore, the guiding constraint equations for the ½ HAT-leg model can be written as 

 ( )7 1 1 0xx t t  − =  (4.9) 

 ( )8 1 1 0yy t t  − =  (4.10) 

 ( )9 1 1 0t t  − =  (4.11) 

 ( )10 2 2 0t t  − =  (4.12) 

 ( )11 3 3 0t t  − =  (4.13) 

 ( )12 4 4 0t t  − =  (4.14) 

where ( )k

it t , with k = {x,y,θ}, represents the trajectory described by the CM of body i. 

 

 

4.3. Initial Conditions and Kinematic Consistency 

In order to initiate the dynamic analysis, at 0t t= , it has to be provided the initial conditions of the 

positions, 0q , and of the velocities, 0q , for every rigid body in the system. The set of initial conditions 

was the applied one in the work of Meireles (2007) and is showed in Table 4.4. 

 

 
8 Akima splines interpolation refers to modified Akima piecewise cubic Hermite interpolation (MATLAB function named ‘makima’). Further information about 
this and other interpolation methods can be found in section 4.5.1, “Polynomial Interpolation of the Experimental Data”. 
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Table 4.4. Initial conditions of the positions and of the velocities for every rigid body in the system (Flores, 2010) 

Body (i)  0
  m

i
x   0

  m
i

y   0
  rad

i
   0

m/s
i

x   0
m/s

i
y   0

rad/s
i

  

1 0.47266 1.07997 1.48527 1.38137 0.05727 0.73275 

2 0.43026 0.65208 1.44339 2.05470 -0.01989 3.39980 

3 0.27187 0.36231 0.69464 2.42049 0.18498 -2.07573 

4 0.08941 0.15333 1.49400 1.87062 0.57264 -3.98255 

 

The initial conditions values must satisfy the position and velocity constraint equations, defined in 

Eqs. (3.14) and (3.15), in order to be consistent with the kinematic structure of the biomechanical model. 

The kinematic data were obtained through an experimental process that involves the acquisition 

and reconstruction of the three-dimensional human motion. As illustrated in Figure 4.3, the acquisition 

process of the kinematic input data leads to errors in the evaluation of the distances between anatomical 

points. Marker movement in relation to the underlying bone is caused by skin displacement and 

deformation which, together with the fact that anatomical joints are not perfect mechanical joints, 

originate kinematic inconsistency. Thus, this motion produces a violation of the kinematic constraints of 

the biomechanical model and is regarded as one of the most critical sources of error in dynamic analysis 

(Meireles, 2007; Tavares da Silva & Ambrósio, 2002). 

 

 

Figure 4.3. Non-constant distances between anatomical points from frame-to-frame, during the digitalization process 

( )
2 1k k k

L L L
− −

   {Adapted from (Tavares da Silva, 2003)}. 

 

To obtain a kinematically consistent input data, it is necessary to calculate a new set of cartesian 

coordinates of the anatomical points to ensure that the kinematic constraints are satisfied and that the 

distances between anatomical points remain constant throughout the analysis. In this context, it is usual 

to perform a previous kinematic analysis of the system positions, which Meireles (2007) had already done 

in his work, and which leads to a well-defined set of initial positions. This procedure goes, firstly, through 

using the initially non-consistent data to calculate average lengths of the rigid bodies between the 

frame frame frame
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anatomical points, which are used to define the dimensions of the rigid bodies of the biomechanical 

model. In a second step, the filtered displacement data are used to calculate the intersegmental angles, 

and the position analysis is performed using these angles. Consequently, the previous kinematic analysis 

(illustrated in Figure 4.4) produces a new set of positions for the anatomical points, which are consistent 

with the kinematic structure of the biomechanical model (Alonso et al., 2007; Meireles, 2007; Tavares 

da Silva, 2003). 

 

 

Figure 4.4. Representation of the previous kinematic analysis of the system positions {Adapted from (Meireles, 2007)}. 

 

Once the consistent positions are established, the initial velocities of the consistent points can be 

obtained using direct spline differentiation. The trajectories defined by the guiding constraints were 

interpolated with akima splines9 and then, the right-hand side vector of the velocity equations, υ, was 

obtained by differentiation. Then, the yielding linear equation can be solved by any numerical algorithm. 

Consequently, the constraint violations at the initial time were imposed to be zero, by respecting the 

formulation 0 0=Φ , that can be rewritten as, 

 00   =qΦ q υ  (4.15) 

This approach assumes that the differentiation of kinematic consistent positions leads to kinematic 

consistent velocities. Thus, the new initial velocities of the bodies are registered on Table 4.5. 

 

Table 4.5. Initial velocities of the bodies after the correction 

Body (i)  0 m/six   0 m/siy   0 rad/si  

1 1.39435745077261 0.00462284482757772 0.768965404860839 

2 2.06032120913890 -0.0711425036655352 3.26653678206197 

3 2.38407732408711 0.158938491420052 -2.23922425553936 

4 1.79589883494986 0.576755883456152 -4.21409035268033 

 

 
9 Akima splines interpolation refers to modified Akima piecewise cubic Hermite interpolation (MATLAB function named ‘makima’). Further information about 
this and other interpolation methods can be found in section 4.5.1, “Polynomial Interpolation of the Experimental Data”. 

Previous 
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Furthermore, in biomechanical analyses, the motion capture system used for the data acquisition 

process introduces high-frequency low-amplitude noise in the acquired displacement data. This noise is 

inherent to the signal acquisition and the digitalization process and may also occur due to the vibrational 

motion of markers placed on the skin. When the raw displacement signals are differentiated, in order to 

obtain velocities and accelerations, this noise is amplified, which could originate significant errors in 

dynamic analysis. To avoid this phenomenon, it is necessary to filter the displacement signal prior to 

differentiation, to obtain noiseless velocities and accelerations. This process was already considered in 

the work of Meireles (2007) and, in this context, a low-pass Butterworth 2nd order filter with zero-phase 

lag was used, which has a frequency response curve that does not affect signals with a frequency lower 

than a selected cut-off frequency, but attenuates signals with frequencies higher than the cut-off 

frequency, as illustrated in Figure 4.5 (Alonso et al., 2007; Meireles, 2007). 

 

 

Figure 4.5. Filtering procedure using the Butterworth 2nd order, low pass filter: (a) the raw signal; (b) the frequency response 
curve of the filter; (c) the filtered signal {Adapted from (Tavares da Silva, 2003)}. 

 

The selection of the cut-off frequency is not a simple process, since the use of a very high frequency, 

may lead to a significant part of the noise remaining with the filtered signal, and the application of a too 

low cut-off frequency, may attenuate too much the signal and, consequently, lose important information. 

The cut-off frequency typically ranges from 2 to 6 Hz, depending on cadence of the motion and the 

position of the anatomical landmarks. Faster movements need higher cut-off frequencies than slow 

movements. To estimate the amount of noise in a signal and then identify the suitable cut-off frequency, 

a procedure designated Residual Analysis is commonly used (Meireles, 2007; Tavares da Silva, 2003). 

Further information about this procedure can be found in Tavares da Silva (2003) and in Winter (2009). 

 

 

4.4. External Applied Forces 

The forces that are present in a biomechanical system can come from internal or external sources. 

Internal forces come from muscle activity, ligaments, or from friction in the muscle and joints. Conversely, 

external forces come from external loads, from active or passive sources (e.g., wind resistance), or from 
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the ground. In human gait, the main external forces acting in the body are the GRF, the inertia, and the 

gravitational force (Meireles, 2007). 

At this point, only the force associated with gravitational field and the GRF will be considered. The 

gravitational force is present in all bodies, while the reaction external force, generated by the interaction 

between the foot and the ground during the stance period, acts only on the right foot segment (body 4). 

The force value and its point of application (P) vary with time. In the plane of progression, reaction forces 

are considered positive to the right and upward directions. The discrete data of the magnitude of the 

longitudinal (
xf ) and vertical ( yf ) components of the GRF over time, as well as the variation of the global 

coordinates of its point of application ( ( )4 4 4,  P P Pr x y= ), are given as an input by a text file. Table 4.6 

shows part of these data, which was also used by Meireles (2007). 

 

Table 4.6. Ground reaction force input (Flores, 2010) 

Time [s]    Nxf     Nyf   4   mPx   4    mPy  

0.0000 0.0000 0.0000 0.0000 0.0000 

0.0290 0.0000 0.0000 0.0000 0.0000 

… … … … … 

0.4060 -4.2000 87.1000 1.2440 0.0000 

0.4350 -74.0000 192.6000 1.2910 0.0000 

… … … … … 

0.8990 115.6000 530.3000 1.4630 0.0000 

0.9280 105.2000 377.3000 1.4700 0.0000 

0.9570 65.7000 190.1000 1.4780 0.0000 

 

According to the variation of the GRF and its point of application shown in Table 4.6, it is possible 

to represent the sequence of movements and the force evolution over the stride period and relate it to 

the gait cycle phases, as represented in the Figure 4.6. 
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Figure 4.6. Representation of the gait cycle with the evolution of the GRF components over the stride period. 

 

These input data represent a time period of 0.9570 s, which is related to a complete gait cycle of 

normal cadence. The first time period, [0.0, 0.4060] s corresponds to the swing period, where the GRF 

is null, and the second, [0.4060, 0.9570] s corresponds to the stance period. 

The components of the applied GRF and the associated moment ( grn ) are transferred to the CM 

of the foot, as depicted in Figure 4.7. 

 

 

Figure 4.7. (a) Components of GRF and its point of application; (b) The transferred forces and moments to the foot’s CM. 

 

Thus, for the ½ HAT-leg model, the generalized force vector, g, which contains all external forces 

and moments applied on the system (GRF and gravitational force) can be defined as, 
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The measurement of the GRF is commonly performed using force platforms, which return typically 

discrete data that needs to be interpolated along time. In this work, this procedure was executed by 

employing akima splines interpolation10. 

 

 

4.5. Results and Discussion 

In this section, the main outcomes of the application of the ½ HAT-leg model to the simulation of 

human gait within a MATLAB code are analyzed and commented. The interpolation of the discrete data 

of the bodies’ trajectories and the GRF components is compared using three interpolation methods. The 

choice of the ODE solver in MATLAB and its main characteristics are also analyzed. Furthermore, a study 

on the influence of the values of the Baumgarte stabilization parameters on the violation of constraints is 

also presented. Lastly, the computer animation of the biomechanical model developed in MATLAB, for 

visualization of the human gait, is described. 

 

 

 

 

 

 

 
10 Akima splines interpolation refers to modified Akima piecewise cubic Hermite interpolation (MATLAB function named ‘makima’). Further information about 
this and other interpolation methods can be found in section 4.5.1, “Polynomial Interpolation of the Experimental Data”. 
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4.5.1. Polynomial Interpolation of the Experimental Data 

Since the trajectory of the bodies’ CM is obtained experimentally and, thus, represented by discrete 

data, in general, the coordinates need to be interpolated along time, in order to generate the mathematical 

expressions that represent the guiding constraint equations. In addition, the GRF data are obtained using 

force platforms and, also needs to be interpolated. 

The interpolation process intends to estimate the values that lie between known data points and 

involves the construction of a function that matches the given data values. The type of interpolation 

method to use is conditioned by the characteristics of the data being fit, the required smoothness of the 

curve, speed considerations, among other factors. The main interpolation methods that can be employed 

in the MATLAB software are the cubic spline interpolation (‘spline’), the piecewise cubic Hermite 

interpolation (‘pchip’) and the modified Akima piecewise cubic Hermite interpolation (‘makima’). 

Each interpolation method differs on how the slopes of the interpolant are computed, leading to 

different behaviors, when the underlying data have flat areas or accentuated undulations. A comparison 

between these interpolation methods, concerning the MATLAB outputs, is presented in what follows. 

The curves obtained from the interpolation of the guiding data, which exhibit the variation of the 

constrained coordinates with time, are presented in Figure 4.8. The zones with accentuated curvature 

were zoomed in, in two of the acquired graphs. 

 



 

 54 

 
Figure 4.8. Interpolating curves of guiding data. The zone of accentuated curvature was zoomed in, in two of the graphs. The 
curves represent the trajectory described by the CM of the body 1 – (a) x-coordinate and (b) y-coordinate – and the variation 

of the orientation of the four bodies with time – (c) body 1, (d) body 2, (e) body 3, and (f) body 4. 

(a) (b)

(c) (d)

(e) (f)
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It is possible to visualize that in the curved zones, the ‘pchip’ method reduces the undulation, 

making those regions flatter. 

Moreover, the data from the GRF file was also interpolated, and the resultant curves are presented 

in the Figure 4.9. A zoom was made in the regions where an abrupt variation of the variable under analysis 

was noticed. 

 

 
Figure 4.9. Interpolating curves of GRF data. The regions where an abrupt variation of the variable under analysis is noticed 

were zoomed in. (a) Longitudinal GRF evolution; (b) Vertical GRF evolution; (c) Evolution of x-coordinate of the point of 

application of the GRF; (d) Evolution of y-coordinate of the point of application of the GRF. 

 

In these graphs, when the data have sudden changes, the ‘spline’ interpolation method creates 

overshoots in the interpolating curve. These oscillations coincide with the instance of the foot-ground 

contact transition, i.e., when the components of GRF, 
xf  and yf , are no longer zero. 

In summary, regarding the graphs’ outcomes, when the underlying data have oscillations, ‘spline’ 

and ‘makima’ describe the movement between points better than ‘pchip’, which is aggressively flattened 

near local extrema. Furthermore, ‘pchip’ and ‘makima’ have similar capacity to avoid overshoots and can 

accurately connect the flat regions. Therefore, according to the results present in Figure 4.8 and Figure 

4.9, it can be concluded that ‘makima’ produces better results than ‘spline’ and ‘pchip’. Compared with 

(a) (b)

(c) (d)
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the ‘spline’ algorithm, the ‘makima’ method produces less undulations and is better suited to deal with 

quick changes in data. In comparison with ‘pchip’, the ‘makima’ algorithm does not flatten as 

considerably and is, therefore, still able to deal with oscillatory data. With the ‘makima’ method, the 

curves are smoother between points, and the regions of abrupt variation remain stable. 

Additionally, the performance of these three interpolation methods can be evaluated through the 

simulation time. The mean of the simulation time for each interpolation method was calculated from the 

execution of six simulations for each. This information is resumed in Table 4.7. 

 

Table 4.7. Simulation time for each interpolation method 

 ‘spline’ ‘pchip’ ‘makima’  

Simulation time (mean) 1.1172 s 3.0339 s 2.1693 s 

 

As reported in Table 4.7, the ‘spline’ method is less expensive in terms of computational time. 

Conversely, ‘pchip’ is the interpolation method that requires more time to be executed. 

To conclude, as ‘makima’ reveals better results in terms of the outputs of the graphs, and the 

simulation time is not too high when this is the chosen method for interpolating the guiding and the GRF 

data, this can be considered the greatest interpolation method between the three presented. 

 

 

4.5.2. Integration Algorithm for the Resolution of the Equations of Motion 

In each integration time step, the accelerations vector, q , and the velocities vector, q , are 

integrated, in order to obtain, respectively, the system velocities and positions for the next time step. This 

process is repeated until the final analysis time is reached. 

A frequently used integration algorithm is the Runge-Kutta, which is an explicit algorithm that can 

be considered as a revised form of Taylor algorithms. As an explicit algorithm, Runge-Kutta method 

evaluates ( )1 1i iy y t+ +  as a function of it  and ( )i iy y t  in one step (Nikravesh, 2019). 

The choice of the size of the integration time step may be ambiguous, since a too large step size 

may cause erroneous results, and a step size too small may generate accurate results, however, increases 

the computational time. The size of the time step should be adjusted based on the natural frequencies of 

a system, which can be understood as the changing rate of the model’s variables – for higher frequencies, 

i.e., for quickly changing events, the step size must be smaller, while for more stable variables (smaller 

frequencies), a bigger step size may be considered. A variable time step integrator, such as ‘ode45’ in 
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MATLAB, is highly recommended to avoid the difficulties associated with the selection of a proper one. 

The ‘ode45’ will automatically adjust the time step size during the course of a simulation based on the 

predicted highest frequency of the system (Nikravesh, 2019). 

In fact, in the simulation of human gait, there are events that may require a smaller step size to be 

accurately characterized – such as when the contact between the foot and the ground initiates and, 

consequently, the model variables change rapidly –, and there are other circumstances in which a bigger 

step size is desirable – for example in the swing phase of the gait cycle, when the variables are more 

stable. If a constant step size was used, two situations could occur: on the one hand, if the step size was 

too big, the simulation would be faster, however, there would be a loss in accuracy; on the other hand, if 

a too little step size was applied, the simulation would be very long and highly computationally consuming. 

Therefore, the use of a variable time step solver is advantageous, in the sense that it adjusts the applied 

time step, according to the events that occur during the simulation of the biomechanical model. 

The ‘ode45’ is a versatile solver for ordinary differential equations and it is the first MATLAB solver 

that should be tested for most problems. However, for stiff problems or when it is required high accuracy, 

there are other ODE solvers that may be better suited to the problem (MathWorks, 2022a; Shampine & 

Reichelt, 1997). 

The ‘ode45’ solver is based on a Runge-Kutta integrator of 4th order with 5 stages. Solving initial 

value problems involves a step-by-step process (iterative process), which uses the initial condition, 
0y , 

as well as a period of time (time span) over which the answer is to be obtained, ( )0 , ft t . At the first time 

step, the initial condition provides the necessary information that allows the integration to proceed. At 

each time step, it , the solver applies a particular algorithm to the results of previous step, and the solution 

( )iy t  is approximated by a number iy . Since no numerical algorithm is capable of finding ( )iy t  exactly, 

the quantity ( )i i iy t y = −  is defined to represent the total error at it t= . The total error consists of 

two components: a truncation error, which depends on the nature of the numerical algorithm used in 

computing iy , and a roundoff error, due to the finite word length in a computer. At the end of the 

simulation, the ODE solver returns a vector of time steps 0 1 2[ , , , , ]ft t t t t=  , as well as the 

corresponding solution at each step 0 1 2[ , , , , ]fy y y y y=   (Dunn et al., 2005; MathWorks, 2022a; 

Nikravesh, 2019). 
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4.5.3. Baumgarte Stabilization Method 

The numerical solutions of the equations of motion of constrained multibody systems often become 

unstable, and the constraint equations are violated due to the integration truncation errors that are added 

to the solutions over time. To overcome this numerical difficulty, the Baumgarte method is the most 

commonly applied technique. However, the choice of the feedback parameters usually involves a trial-

and-error procedure. 

With the objective of selecting the most appropriate parameters for this simulation, the influence 

of the values of the Baumgarte parameters in the violation of constraints will be analyzed.  

Prior to studying the influence of the value of the feedback parameters on the constraints violation, 

it is convenient to analyze the global results of the dynamic simulation of one coordinate with and without 

considering the Baumgarte constraint stabilization method. Figure 4.10 shows the angle of the foot 

segment (body 4), when the equations of motion are solved with and without constraints violation 

stabilization. 

 

 

Figure 4.10. Error of the angle of the body 4 obtained with ( = 5; β = 5) and without constraints violation stabilization. 

 

From this outcome, it is possible to visualize that the angle of the body 4 has a small divergence, 

reaching an unwanted position, when there is no control on the violation of the constraints. 

The effect of the values of the Baumgarte parameters was studied from the error of the position 

constraint equations and the error of the velocity constraint equations. The graphs presented in the Figure 

4.11 show the variation of the position constraints with time for different values of  and β. In Figure 
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4.12, it is presented the graphs associated with the variation of the velocity constraints along time, for 

various values of the feedback parameters. 

In the cases that the parameters  and β are equal to each other, the critical damping is reached, 

and after a transient phase, the first and second derivatives reach almost zero, stabilizing the system 

response. The violation that still exists is negligible and, consequently, the constraint equations, and not 

only their second derivatives – the acceleration constraint equations –, are satisfied at any given time. 

When the feedback parameters are different from each other, the stabilization of the response of the 

system takes more time, and there are oscillations around the zero value. For equal and high values of 

 and β, the violations are eliminated more quickly, because the applied penalization is higher. However, 

if the values of  and β were too high with respect to the size of the time step, the simulation might 

become unstable. Then, the established value for these parameters for this simulation is 20, due to its 

general good damping behavior and stabilization speed. 
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.11. Influence of the values of the Baumgarte parameters on the error of the position constraint equations. The graphs (a) to (f) show the variation of the position constraints 
associated with the revolute joints with time; The graphs (g) to (l) show the variation of the position constraints associated with the guidings with time. 
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 4.12. Influence of the values of the Baumgarte parameters on the error of the velocity constraint equations. The graphs (a) to (f) show the variation of the velocity constraints 
associated with the revolute joints with time; The graphs (g) to (l) show the variation of the velocity constraints associated with the guidings with time. 
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4.5.4. Motion Visualization 

In order to complement the dynamic analysis of the ½ HAT-leg multibody model, an animation of 

the prescribed movement was performed in MATLAB. It represents the normal human stride period, 

initiating with the swing phase of the gait cycle. In Figure 4.13, it is presented the initial position of the 

½ HAT-leg model. 

 

 

Figure 4.13. Initial position of the ½ HAT-leg model in the MATLAB simulation. 

 

The model constructed for performing the animation is composed by four bodies that form the 

right leg and HAT under analysis. These bodies were depicted by basic elements – the ½ HAT, the thigh 

and the leg were represented as straight lines, while the foot was represented as a triangle. The CM of 

each body was depicted as a point of the same color of the respective body. It should be noticed that, 

only for viewing purposes, the proximal end of the ½ HAT segment (body 1) was considered to be 

coincident with its CM. Furthermore, the revolute joints and the number of each anatomical segment 

were also represented. 

On the stride animation, it is possible to visualize the intersegmental motion of the ½ HAT-leg 

multibody model, the intensity of the prescribed GRF components, acting on the foot (body 4), and the 

trajectory of the CM of body 1, showing that guiding.  
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Due to the impossibility of showing the animation on paper format, an image was created with a 

few consecutive frames of it, taken with intervals of 0.1595 s, in order to give the perception of the gait 

motion and to distinguish the different phases within the stride period. This image is presented in Figure 

4.14. 

 

 

Figure 4.14. The gait cycle representation performed with the ½ HAT-leg model in MATLAB. 

 

 

4.6. Summary 

In this chapter, a description of the developed multibody model was presented, namely the 

geometric characteristics of the rigid bodies, the connection between them by ideal revolute joints, the 

guidings that prescribe the motion of the bodies, and the introduction of the external forces, which in this 

case are the gravitational force, acting in all bodies, and the GRF, acting on body 4. The constraint 

equations were established and explicitly presented. All topics addressed in this chapter were 

implemented in a computational program developed in MATLAB. 

The numerical aspects of the biomechanical model were also approached. The required set of 

initial conditions to initiate the dynamic analysis was prescribed and the consistency of these initial 
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conditions were also analyzed in order to be coherent with the kinematic structure of the biomechanical 

model. 

Since the body’s trajectory of CM and the GRF components are obtained experimentally, these 

discrete data were interpolated along time. In this context, three different interpolation methods were 

presented and compared in terms of the graphs’ outcomes and the necessary simulation time.  

Furthermore, a numerical solution to the equations of motion may be obtained by applying a 

numerical integration algorithm, as it is a dynamic problem and, therefore, it progresses with time. In the 

MATLAB simulation, the used integration algorithm was the ‘ode45’ and the main aspects about it were 

covered in this chapter. 

A study on the influence of the values of the Baumgarte stabilization parameters on the violation 

of constraints was also presented. It was concluded that the values of  and β should be equal to one 

another, to achieve critical damping, in order to stabilize the system response quickly. In general, for 

higher values of these parameters, the violations will be eliminated more quickly, because the applied 

penalization is higher.  

Finally, the animation of the ½ HAT-leg model developed in MATLAB was described and discussed. 
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Chapter 5 – Modeling of Foot-Ground Interaction 

Equation Chapter 5 Section 1 

Over the last decades, there has been a growing interest in the research on contact-impact 

modeling and analysis in multibody dynamics (Flores, 2022). Nevertheless, it remains a difficult task to 

accurately model the contact mechanics when the geometric and material properties are of complex 

natures, such as in the case of the human foot-ground interaction. 

In this chapter, the main aspects related to the modeling and simulation of contact problems under 

the framework of MBS are presented, and two application examples, in the context of the foot-ground 

interaction analysis, are described in detail and discussed. First, the fundamental aspects of the classical 

problem of contact mechanics are generically approached, and the methodologies that deal with contact 

detection and contact resolution are introduced. 

It is known that the foot is the major interacting part of the human system with the surrounding 

environment and, therefore, contact models that describe the human foot-ground interaction are of 

extreme importance in biomechanical dynamic simulations (Brown & McPhee, 2018). Thus, to accurately 

replicate the human motion during the analysis of biomechanical multibody systems, the simulations 

must consider realistic representations of the foot and appropriate numerical descriptions of its interaction 

with the ground (Barbosa, 2017; Güler et al., 1998; Máca & Valášek, 2011; Millard et al., 2009; Millard 

& Kecskeméthy, 2015; Moreira et al., 2009).  

In this sense, two application examples are shown in which the foot-ground interaction is studied. 

First, a simple leg motion is simulated with the intention of validating the methodologies of contact 

geometry definition and contact detection. This simulation consists of a simple drop test in which the 

motion of the model is generated by the action of the gravitational force.  

Once the methodologies of contact geometry definition, contact detection and the application of 

the contact forces through constitutive laws, have been validated, the foundations for the transition to a 

more complex model are established, in order to validate the entire methodology of foot-ground contact 

analysis. Therefore, the second application example is presented, in which a multibody model of the right 

side of human body is used to simulate the human gait. With the purpose of correctly determining the 

contact forces, an optimization process is implemented to obtain the most suitable values for the 

geometric and contact parameters of the proposed model, and the results obtained from computational 

and experimental analyses are compared, with the aim of validating the proposed approach. 
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5.1. Generalities on Contact Problems 

Contact-impact events are complex phenomena as the modeling process is strongly dependent on 

several factors, such as the geometry of the contacting surfaces, the local physical properties, and the 

numerical description of the interaction between the contacting bodies. In a simple way, the contact-

impact event occurs when two or more bodies that are initially separated, collide (Flores, 2022; Flores & 

Lankarani, 2016; Moreira et al., 2009). 

A contact problem in multibody dynamics involves the consideration of three main steps, namely: 

(i) the definition of the geometric properties of the contacting surfaces, (ii) the development of a contact 

detection methodology, (iii) the evaluation of the contact forces resulting from the collision (Flores, 2022; 

Flores & Lankarani, 2016; Moreira et al., 2009). The contact detection is an important task in the contact 

modeling process, and it is related to the verification of whether the surfaces are in contact, as the relative 

penetration of the bodies is allowed. The complexity of the contacting surfaces, the number of potential 

contact zones, and the contact kinematics influence the accuracy and efficiency of the contact detection 

procedure. This is one of the most time-consuming tasks, independently of the solver employed to 

simulate the physics of the contact process (Flores, 2022; Flores & Lankarani, 2016). As a general 

classification, the available methods to model the interaction between two colliding bodies can be divided 

into “contact force” based approaches – also referred as continuous or regularized methods –, and 

techniques based on “geometrical constraints” – considered non-smooth or piecewise formulations. The 

first method assumes that the bodies are locally deformable and the transition from non-contact to contact 

situations is established by a continuous function, yielding in simple and efficient solutions. Conversely, 

the second method considers truly rigid contacting bodies and establishes the interaction between the 

bodies, using kinematic unilateral constraints, to compute contact impulses or forces to prevent 

interpenetration from occurring (Febrer-Nafría et al., 2018; Flores, 2022; Flores & Lankarani, 2016). 

Contact-impact events have a significant influence on the dynamic response of multibody systems, 

due to vibration, load propagation, deformations at the contact zone, energy dissipation, among other 

features that can limit the system operation (Flores, 2022; Skrinjar et al., 2018). In particular, the 

dynamic simulation of human motion is conditioned by the foot-ground contact forces, in the measure 

that the response of muscles, ligaments and articular reaction forces and moments is affected by them 

(Shourijeh & McPhee, 2015). 

In this work, regularized contact force models are utilized, for which the local deformations and the 

contact forces are considered as continuous events and introduced into the equations of motion of the 

multibody systems as external generalized forces. 
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5.2. Contact Detection Methodology 

A critical task in the contact modeling process in multibody dynamics is to verify whether the 

potential contact points are in contact or not. For this purpose, the relative penetration between the bodies 

that are potentially in contact is defined by the minimum distance between the contacting surfaces. Figure 

5.1 illustrates three different scenarios between two generic contacting bodies, i and j, where the relative 

penetration11, , assumes three distinct values, which allows the identification of situations of contact or 

non-contact – positive values of  represent a non-contact situation, while negative values denote a 

contact condition; the change in sign of  indicates a transition from non-contact to contact, or vice-versa 

(Flores, 2022). 

 

 

Figure 5.1. (a) Non-contact situation;  > 0; (b) Instant of the beginning or ending of contact;  = 0; (c) Contact situation, 

 < 0. 

 

The generalized contact kinematics between two planar rigid bodies is described below. Figure 5.2 

depicts two generic bodies, i and j, in the situation of non-contact that are moving with absolute velocities 

ir  and jr , respectively. The potential contact points present on each body are represented by iP  and 

jP  (Flores, 2022; Machado et al., 2012).  

 

 
11 Also named relative indentation, deformation or pseudo-penetration(Flores, 2022; Flores & Lankarani, 2016). 
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Figure 5.2. Representation of the contact between two generic bodies. 

 

The vector that connects the two potential contact points, 
iP  and jP , is a distance function that 

can be written as 

 P P

j i= −d r r  (5.1) 

where P

ir and P

jr  are the global positions of the points iP  and jP , described in global coordinates with 

respect to the inertial reference frame 

  ( )'    ,  P P P

k k k k k k k i j= + = + =r r s r A s   (5.2) 

in which 
ir  and jr  represent the global position vectors of bodies i and j, while 'Pis  and 'Pjs are the local 

components of the contact points with respect to local coordinate systems, and iA  and jA  denote the 

rotational transformation matrices (Flores, 2022; Machado et al., 2012). 

A normal vector to the plane of collision can be determined as 

 
d

=
d

n  (5.3) 

in which the magnitude of the vector d is given by 

 Td = = d d  (5.4) 

The tangential vector t can be obtained by a rotation of the vector n in the counter-clockwise direction by 

90 degrees. Moreover, in  and jn  can be understood as the normal vectors belonging to the bodies i 

and j, respectively, and it  and jt  are the tangential vectors of the bodies i and j, respectively (Flores, 

2022). 

The contact points must be recognized as those that correspond to maximum relative penetration, 

which is measured along the normal direction. Therefore, to find the potential contact points iP  and jP  
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of the two colliding bodies, a set of conditions need to be satisfied: (i) the points 
iP  and 

jP  must belong 

to the contacting surfaces of the bodies i and j, respectively, (ii) the distance between the points 
iP  and  

jP , given by Eq. (5.1), must correspond to the minimum distance, (iii) the vector d and the normal vector 

in  have to be collinear, (iv) the normal vectors 
in  and jn  must also be collinear. The conditions (iii) 

and (iv) can be defined as two cross products as 

 
i =d n 0  (5.5) 

 i j =n n 0  (5.6) 

The search for the contact points must be performed at each time step of the resolution of the equations 

of motion of the MBS under analysis. Subsequently, the value of relative deformation can be evaluated 

using Eq. (5.4) (Flores, 2022; Machado et al., 2012). 

The velocities of the contact points expressed with respect to the global reference frame are 

obtained by differentiating Eq. (5.2) with respect to time, yielding 

  ( )'     ,P P

k k k k k i j= + =r r A s   (5.7) 

The scalar normal, nv , and tangential, tv , contact velocities are obtained by projecting the relative 

velocity of the contact points, P

ir  and P

jr , onto the normal and tangential directions of the contacting 

surfaces, and are given by  

 ( )
T

n

P P

j iv = = −r r n  (5.8) 

 ( )
T

t

P P

j iv = −r r t  (5.9) 

The normal relative contact velocity between the contact points – penetration velocity – establishes 

whether the colliding bodies are approaching or separating. Positive values of nv  denote that the bodies 

are approaching, which corresponds to the compression phase, while negative values of 
nv  indicate that 

the bodies are separating, which corresponds to the restitution phase. On the other hand, the tangential 

relative contact velocity defines whether the contacting bodies are sliding or sticking, which are important 

aspects in the friction analysis in multibody dynamics (Flores, 2022; Machado et al., 2012). 

The computational efficiency and accuracy of contact detection process strongly depends on the 

complexity of the colliding surfaces, the number of potential contacting points, and the kinematics of the 

bodies. It should be noticed that the contact detection phase requires, generally, a great computational 

effort due to the iterative nature of the numerical procedure utilized (Flores, 2022). 
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5.3. Contact Resolution Approach 

In the framework of multibody systems, the resolution of a contact problem involves two main steps 

– the contact forces evaluation and the introduction of those forces into the equations of motion as 

external generalized forces (in vector g). The components of contact forces that act at the contact points, 

and the associated moments, are transferred to the CM of the colliding bodies, as shown in Figure 5.3 

(Flores, 2022). 

 

 

Figure 5.3. (a) Components of contact forces and respective points of application; (b) The transferred forces and moments 
to the bodies’ CM. 

 

When regularized contact force models are utilized, the contact forces are evaluated using 

appropriate constitutive laws, for which the local deformations and the forces are considered as 

continuous events. The processes of storage and dissipation of energy during the contact period are 

usually modeled using spring and damper elements. For most of the typical applications in the context of 

MBS, the normal and tangential components of contact force are calculated from adaptations to Hertz’s 

contact theory (Hertz, 1881) and to Coulomb’s law (Coulomb, 1785), respectively (Flores, 2022; Flores 

& Lankarani, 2016). 

Regarding the evaluation of normal contact forces, Hooke’s law is the simplest and oldest contact 

model, and it is characterized by a linear spring element, which represents the contacting surfaces 

elasticity. This linear contact model can be expressed as 

 nf k=  (5.10) 

where k is the spring stiffness associated with the geometric and material characteristics of the contacting 

bodies, and  represents the relative penetration between the colliding surfaces. A major disadvantage of 
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this approach is that it does not take into account the energy dissipated during the contact event (Flores, 

2022; Flores & Lankarani, 2016). 

Additionally, one of the most popular contact force models is the one proposed by Hertz (Hertz, 

1881), which considers a nonlinear relation between force and pseudo-penetration, as 

 n

nf k=  (5.11) 

where n is the nonlinear exponent factor, which is determined based on the material and geometrical 

properties of the local region of the bodies in contact, and is typically equal to 3/2. Similarly to Hooke’s 

law, the nonlinear Hertz contact force model does not allow prediction of the energy dissipated during the 

contact process (Flores, 2022; Flores & Lankarani, 2016; Hertz, 1881; Rodrigues da Silva et al., 2022; 

Skrinjar et al., 2018). 

One of the first contact force model that accounts for the energy dissipation during contact events 

is the Kelvin-Voigt model, which is modeled as a linear spring and a linear damper arranged in parallel, 

and can be expressed as 

 nf k D = +  (5.12) 

where the parameter D represents the damping coefficient and   is the normal component of the relative 

contact velocity. The first parcel on the right-hand side is the elastic force component, and the second 

parcel refers to the dissipative force term. This contact model has some limitations, namely the fact that 

it does not represent the nonlinearity of the whole contact process; the presence of contact forces when 

the penetration is null, due to the damping term; and the production of negative forces at the end of 

contact, which is not appropriate from a physical point of view, since the colliding bodies cannot attract 

each other (Flores, 2022; Flores & Lankarani, 2016; Skrinjar et al., 2018). 

In addition, with the intention of overcoming the limitation of not representing the energy loss during 

the contact process, associated with pure elastic contact force models, other models were developed as 

an extension to the Hertz contact law to comprise energy dissipation in the form of internal damping 

(Flores, 2022; Flores & Lankarani, 2016). 

The contact model proposed by Hunt and Crossley (Hunt & Crossley, 1975) is based on Hertz’s 

approach, including a nonlinear spring, with the addition of a nonlinear viscoelastic element (damper), 

arranged in parallel. It can be written as 

 r
n ( )

3(1 )
1

2

n c
f k




 −

 −
= + 

 
 (5.13) 
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where the first term represents the nonlinear elastic Hertz’s law and the second term is the dissipative 

parcel, in which 
rc  is the coefficient of restitution and ( ) −  represents the normal contact velocity at the 

initial instant of impact (Flores, 2022; Flores & Lankarani, 2016; Hertz, 1881; Rodrigues da Silva et al., 

2022; Skrinjar et al., 2018). 

Additionally, the nonlinear Lankarani and Nikravesh contact force model (Lankarani & Nikravesh, 

1990) is one of the most popular approaches to model contact events under the context of multibody 

dynamics. It is an adaptation of the Hertzian contact theory (Hertz, 1881) and it is based on the damping 

approach by Hunt and Crossley (Hunt & Crossley, 1975), accounting for the kinetic energy lost due to 

the internal damping (Flores, 2022; Flores & Lankarani, 2016; Rodrigues da Silva et al., 2022; Skrinjar 

et al., 2018). It can be written as 

 
2

r
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4

n c
f k




 −

 −
= + 

 
 (5.14) 

More recently, Ambrósio and Pombo (2018) proposed a new contact model for evaluating the 

normal contact force, which can be expressed as 
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 (5.15) 

in which 

 0,n

0,n2

v
R

v

 +
=  (5.16) 

where 0,nv  is the penetration velocity tolerance. This constitutive law is based on the Hertz contact model 

(Hertz, 1881), in which the energy dissipation is considered. In this viscoelastic contact model, the 

coefficient of restitution is employed to distinguish between the contact force during the compression and 

restitution phases, and a tolerance velocity is included to smooth the contact force discontinuity in the 

transition between both phases. Therefore, when   is greater than, or equal to 0,nv , it is considered that 

the bodies are approaching, which corresponds to the compression phase. On the other hand, if   is 

less than, or equal to 0,nv− , it indicates that the bodies are separating, corresponding to the restitution 

phase. When   takes place between 0,nv−  and 0,nv , a transition function is employed, in which the R 

factor equals 0 when   approaches 0,nv− , and is equal to 1 when   gets closer to 0,nv  (Ambrósio & 

Pombo, 2018; Marques et al., 2020). 
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A contact-impact event encompasses not only the generation of normal contact forces, but also the 

production of tangential forces, called friction forces, which act in the opposite direction of the local 

relative velocity. The most commonly applied tangential force model is the Coulomb friction law (Coulomb, 

1785), which can be expressed as 

 
t n tsgn( )f f v=  (5.17) 

with 

 t

t

t

1 if 0
sgn( )

1 if 0

v
v

v

− 
= 


 (5.18) 

where μ expresses the Coulomb coefficient of friction, 
nf  denotes the normal contact force, and 

tv  is 

the tangential relative velocity. In the recent decades, this model has been subjected to modifications and 

improvements, in order to avoid the discontinuity present at null relative tangential velocity and to obtain 

a continuous friction force (Brown, 2017; Flores, 2022; Flores et al., 2006). 

Recently, a smoothed Coulomb friction law was implemented in the work of Miller et al. (2012), 

for evaluating the tangential contact force. It can be written as 

 t
t n

0

tanh
v

f f
v


 

= −  
 

 (5.19) 

in which 
0v  is a tolerance velocity to smooth friction transition (Miller et al., 2012). 

Moreover, in this work, a different constitutive law is proposed for the tangential contact force 

evaluation, which includes a smoothed Coulomb friction law (Coulomb, 1785), utilized in the work of 

Miller et al. (2012), and the addition of a viscous friction component (Moreira, 2009). Hence, the global 

friction force can be evaluated as 

 t
t c n d t

0,t

tanh
v

f f v
v

 
 

= − −  
 

 (5.20) 

where c  represent the Coulomb friction coefficient, d  expresses the viscous friction coefficient and 

0,tv  is a tolerance velocity to smooth friction transition. The viscous friction component is considered to 

take into account the presence of a lubricated surface, and is characterized by a linear increase in friction 

with respect to velocity (Brown, 2017; Moreira, 2009). 
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5.4. Application Example 1: Leg Drop Motion 

In this section, a simple leg motion is simulated with the intention of validating the methodologies 

of contact geometry definition and contact detection. The simulation consists of a simple drop test in 

which the gravitational force is the only external force applied to the model (Moreira, 2009).  

 

 

Biomechanical Model Description 

For this purpose, the biomechanical model represented in Figure 5.4 – the leg-foot model – is 

used. This model was developed within a MATLAB computer code, using the multibody formulation with 

cartesian coordinates, described in Chapter 3.  

 

 

Figure 5.4. Leg-foot model representation. 

 

A brief description of the leg-foot model is provided as follows: the model is composed of three rigid 

bodies – leg, main foot part and toes, from the right side of the human body – and the generalized 

coordinates vector, q, is defined by nine coordinates (n = 9) since the model has three movable bodies 

with three DOF each. These bodies, their anatomical description and their masses and moments of inertia 

are summarized in Table 5.1. The data are representative of a male of 1.70 m and 70 kg, and were 

obtained from the work of Moreira (2009). The bodies are connected by three revolute joints and, 

consequently, six constraints are added to the system, since each joint removes two DOF from the system. 

Furthermore, for simplification, the metatarsophalangeal joints are considered to be fixed, adding one 

constraint to the system and, consequently, removing one DOF. Therefore, the leg-foot MBS has a total 

of two DOF, that correspond to two rotations about revolute joints – one DOF for knee flexion-extension 

and one DOF for ankle dorsiflexion-plantarflexion. 
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Table 5.1. Mass and moment of inertia of each segment of the leg-foot model (Moreira, 2009) 

Body Anatomical description Mass [kg] Moment of Inertia [kg.m2] 

1 right leg 4.760 8.230×10-6 

2 right main foot part 1.330 2.250×10-6 

3 right toes 0.350 0.471×10-6 

 

Each rigid body i has a local reference frame attached to it, with its origin located at the CM of the 

body. The 
i  is aligned with the segment, while the 

i  is perpendicular to the segment’s extension, as 

depicted in Figure 5.5. 

 

 

Figure 5.5. Representation of the local reference frames on the leg-foot model in the initial position. 

 

The local coordinates of each revolute joint (denoted by the point P) on the constrained bodies i 

and j are defined in Table 5.2. 

 

Table 5.2. Body numbers i and j and local coordinates of each revolute joint (point P) 

Joint (P) Body i Body j  mP

i   mP

i   mj

P   mP

j  

Knee 0 1 0 0 0.176707 0 

Ankle 1 2 -0.231393 0 0.041378 0 

MTP joints 2 3 -0.114014 0 0.027200 0 

 

The constraints equations of the revolute joints follow the formulation of Nikravesh (1988) and can 

be formulated for the leg-foot model as follows. 
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For the knee joint: 

 1 1 1 1 1 1cos sin 0P Px     + − =  (5.21) 

 2 1 1 1 1 1

0

1sin cos 0P P yy     − + + =  (5.22) 

For the ankle joint: 

 3 1 1 1 1 1 2 2 2 2 2cos sin cos sin 0P P P Px x         + − − − + =  (5.23) 

 1 1 1 1 1 2 2 2 2 24 sin cos sin cos 0P P P Py y         + + − − − =  (5.24) 

For the metatarsophalangeal joints: 

 2 2 2 2 2 3 3 3 3 35 cos sin cos sin 0P P P Px x         + − − − + =  (5.25) 

 6 2 2 2 2 2 3 3 3 3 3sin cos sin cos 0P P P Py y         + + − − − =  (5.26) 

In addition to these geometric constraints, it is defined another one for the fixed MTP joints: 

 27

0 0

3 2 3( ) 0    − − − =  (5.27) 

The simulation starts with the leg in a horizontal position with zero velocity. The set of initial 

conditions for the positions, 0q , and for the velocities, 0q , for every rigid body in the system is shown in 

Table 5.3. The initial arrangement of the segments of the biomechanical model is depicted in Figure 5.5 

 

Table 5.3. Initial conditions of the positions and of the velocities for every rigid body in the system 

Body (i)  0
  m

i
x   0

  m
i

y   0
  rad

i
   0

m / six   0
m/siy   0

rad / si  

1 0.176707 0.4847 π 0 0 0 

2 0.4285 0.5207 4.19694 0 0 0 

3 0.4847 0.6471 
3π

2
 0 0 0 

 

When using geometrically ideal joints, the admissible range of motion prescribed for the human 

articulations – described in Section 2.1 – can be easily violated since no additional constraints are 

introduced for preventing those joints from achieving physically unacceptable positions. A joint resistance 

moment is introduced in the leg-foot model to prevent the occurrence of unfeasible positions of the ankle 

joint and to simulate the muscle passive behavior, introducing some energy dissipation at the joint level. 

The joint resistance moment is modeled using a viscous torsional damper – dissipative term, (d)m , – and 

a nonlinear torsional spring – motion-limiting or penalty term, (p)m , – positioned at the ankle joint, which 

is depicted in Figure 5.6, and can be described as 

 (r) (d) (p)m m m= +  (5.28) 



 

 77 

 

 

Figure 5.6. Joint resistance moment modeled using a system of nonlinear spring and damper. 

 

The dissipative term is responsible for simulating the passive action of muscles, allowing some 

energy dissipation at the ankle joint. Its action intends to resist the motion of the joint and can be 

calculated as 

 (d)m j= −  (5.29) 

where   is the relative angular velocity vector between the bodies 1 and 2, and j is the damping 

coefficient (Tavares da Silva, 2003; Tavares da Silva et al., 1997). 

The motion-limiting term defines a moment that has a nonlinear behavior, which is null during 

normal joint rotation, and increases rapidly from zero to a maximum value, whenever an unacceptable 

ankle position is detected (Tavares da Silva, 2003; Tavares da Silva et al., 1997). This behavior is 

illustrated in the Figure 5.7. 

 

 

Figure 5.7. Nonlinear behavior of the joint motion-limiting moment. 
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In order to define the area of feasible motion, wherein the foot can move without displacement of 

the leg, it is defined a local frame centered in the ankle joint and rigidly attached to the leg. This frame is 

defined using the unit vectors 
iv  and 

2iv . Furthermore, a unit vector jv  positioned in the ankle joint 

and rigidly attached to the main foot part is also established. This vector defined on the foot moves in 

relation to the frame present in the leg, and consequently, it is possible to calculate the angle of rotation 

between the two (Figure 5.8). In the neutral position, the angle (β) will be zero, i.e., jv  and 
iv  will be 

coincident.  

 

 

Figure 5.8. (a) Representation of the leg’s frame (
i

v
2i

v ) and the foot’s vector (
j

v ); (b) Vectors configuration in neutral 

position of the ankle; (c) Vectors configuration in plantarflexion of the ankle; (d) Vectors configuration in dorsiflexion of the 
ankle. 

 

If the registered angle (β) exceeds the ankle range of motion, i.e., the maximum allowable angle of 

that joint ( min  for plantarflexion and max  for dorsiflexion), then an unacceptable position is occurring, 

and a motion-limiting moment is applied (Tavares da Silva, 2003; Tavares da Silva et al., 1997). This 

penalty moment can be formulated as follows 
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Table 5.4 displays the ankle joint resistance data adopted in this work. The joint range of motion 

is obtained from Table 2.1 (Tavares da Silva, 2003; Tavares da Silva et al., 1997). 

 

Table 5.4. Joint resistance data (Tavares da Silva, 2003; Tavares da Silva et al., 1997) 

Joint  min º    max º    º   p  [N.m]m  j [N.m.s] 

Ankle -35.0 20.0 11.5 226.0 0.1 

 

The simulation consists of a simple drop test originated only by the gravitational force applied to 

the model. When contact between the foot and the level ground is detected, the contact forces generated 

using a continuous force model are also applied to the main foot part (Moreira, 2009). 

As a result of the application of these forces, for the leg-foot model, the generalized force vector, 

g, which contains all external forces and moments applied on the system (gravitational force, -mg, joint 

resistance moment, (r)m , ground reaction force, 
nf  and 

tf , and ground reaction moment, grn ) can be 

defined as 
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Foot-Ground Contact Model 

In this study, for this example of application, the geometric description of the foot is made, in a 

first and simpler approach, by two points of contact (Figure 5.9 (a)), followed by the definition of two 

circles in a second and more realistic approach (Figure 5.9 (b)). 

 

 

Figure 5.9. Representation of the contact geometry adopted in (a) the first approach (two points); and in (b) the second 
approach (two circles). 

 

The two contact points are positioned at the heel and at the MTP joints of the foot, as seen in 

Figure 5.9 (a). The local coordinates of each contact point (denoted by 
1P  and 

2P ) on the main foot part, 

body 2, as well as the contact parameters – namely the nonlinear exponent factor, n, the contact stiffness, 

k, the coefficient of restitution, 
rc , the friction coefficient, μ, and the tolerance velocity, 

0v , – are defined 

in Table 5.5. 

 

Table 5.5. Contact parameters and local coordinates of contact points (
1

P and 
2

P ) on the main foot part (body 2) 

 Heel ( 1P ) MTP joints ( 2P ) 

 2 mP  0.050953 -0.114014 

 2 mP  0.093458 0.0 

n [-] 3/2 3/2 

k [N/m3/2] 40000 40000 

rc  [-] 0.7 0.7 

μ [-] 0.8 0.8 

0  [m/s]v  0.01 0.01 

 

x

y
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2

3
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The interaction between the foot and the ground is performed by evaluating, at each time step, the 

potential contacts between the defined points and the ground, as the relative penetration of the bodies is 

allowed. As the contact is defined simply by contact points, and the ground is considered to be flat and 

leveled, the pseudo-penetration, , for each contact point, can be understood as the opposite of the 

y-global coordinate of that point (denoted by the generic point P), i.e., 

 Py = −  (5.32) 

If a negative value of Py is registered, then  has a positive value, and it can be assumed that there is 

contact between the foot and the ground.  

The constitutive laws associated with the normal and tangential forces developed during the contact 

are a function of the geometrical and material properties of the foot and the ground, the inter-penetration 

between the foot and the ground and the relative contact velocities in both normal and tangential 

directions (Flores & Lankarani, 2016). 

Regarding the normal contact force evaluation, the nonlinear Lankarani and Nikravesh contact 

model (Lankarani & Nikravesh, 1990), presented on Eq. (5.14), was used. The evaluation of tangential 

contact force is performed with a smoothed Coulomb friction law (Coulomb, 1785), implemented in the 

work of Miller et al. (2012), which is expressed in Eq. (5.19). 

The number of points, their locations, the contact parameters, and the continuous force models to 

be used can be adjusted by the user. It should be noticed that the definition of these properties must take 

into consideration the anatomy and the biomechanics of the foot, i.e., the contact geometry must be 

defined according to the most relevant foot areas for human locomotion.  

Regarding the geometry of the foot, the second approach involved the definition of two circles 

positioned at the heel and MTP joints of the right foot, as seen in Figure 5.9 (b). The local coordinates of 

the circles’ centers (denoted by 1C  and 2C ) on the main foot part, body 2, their radius, r, as well as the 

contact parameters – namely the nonlinear exponent factor, n, the contact stiffness, k, the coefficient of 

restitution, rc , the Coulomb friction coefficient, c , the viscous friction coefficient, d , and the tolerance 

velocities, 
0v , – are defined in Table 5.6. 
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Table 5.6. Contact and geometric parameters of contact circles 

 Heel (
1C ) MTP joints (

2C ) 

 2 mC  0.058346 -0.114014 

 2 mC  0.080407 0.0 

r [m] 0.030 0.015 

n [-] 3/2 3/2 

k [N/m3/2] 40000 40000 

rc  [-] 0.2 0.2 

c  [-] 0.8 0.8 

 d N.s/m  3 3 

0,n  [m/s]v  0.01 0.01 

0,t  [m/s]v  0.01 0.01 

 

As the contact is defined by contact circles, and the ground is considered to be flat and leveled, 

the relative penetration of the circles into the plane of ground, , for each contact circle, can be 

understood as the difference between the radius of the circle and the y-global coordinate of that circle 

center (denoted by the generic point C), i.e., 

 Cr y = −  (5.33) 

If a positive value of  is registered, then it can be assumed that there is contact between the foot and 

the ground.  

In this approach, the normal contact force is evaluated using the contact model proposed by 

Ambrósio and Pombo (2018), described in Eq. (5.15). For the tangential contact force evaluation, the 

implemented constitutive law includes a smoothed Coulomb friction law (Coulomb, 1785), utilized in the 

work of Miller et al. (2012), and the addition of a viscous friction component (Moreira, 2009). This 

constitutive law is presented in Eq. (5.20).  
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Simulation Results and Discussion 

Figure 5.10 shows the normal and tangential GRF curves for each circle separately and the total 

registered for the main foot segment. These graphs reveal a peak at about 0.3 s, which is when the foot 

first touches the ground, registering the maximum magnitude for both normal and tangential components 

of GRF. 

 

 

Figure 5.10. (a) Normal GRF for the circle located at the heel; (b) Normal GRF for the circle located at the MTP joints; 
(c) Total normal GRF registered for the foot; (d) Tangential GRF for the circle located at the heel; (e) Tangential GRF for the 

circle located at the MTP joints; (f) Total tangential GRF registered for the foot. 

 

As no similar study of the GRF was found in the literature, it is not possible to compare the 

magnitude and shape of the curves and validate the results. However, from the graphs of the Figure 5.10, 

the methodologies of contact geometry definition, contact detection and the application of the contact 

forces through constitutive laws, are verified, and the foundations were established for the transition to a 

more complex model, in order to validate the entire methodology of foot-ground contact analysis. 

As a complement to the dynamic analysis performed with the foot-leg multibody model, an 

animation of the executed motion was implemented in MATLAB. It represents a simple leg movement, 

initiated with the leg in the horizontal position, which is dropped by the action of the gravitational force. 

In Figure 5.11, it is presented the initial position of the leg-foot model in the MATLAB environment. 

 

(a) (b) (c)

(d) (e) (f)
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Figure 5.11. Initial position of the leg-foot model in the MATLAB simulation. 

 

The model that was built for performing the animation is composed of three bodies that form the 

right leg under analysis. These bodies were depicted by basic elements – the leg and the toes were 

represented as straight lines, while the main foot part was represented as a triangle. The CM of each 

body was depicted as a point of the same color of the respective body. Furthermore, the revolute joints 

and the number of each anatomical segment were also represented. 

On the MATLAB animation, it is possible to visualize the intersegmental motion of the leg-foot 

multibody model, and the contact circles that define the contact between the foot and the ground (which 

is represented as a horizontal straight line). 

Due to the impossibility of showing the animation on paper format, an image was created with a 

few consecutive frames of it, taken with intervals of 0.1196 s, in order to give the perception of the motion 

under analysis and to observe the foot-ground contact. This image is presented in the Figure 5.12. 
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Figure 5.12. The simple leg motion representation performed with the leg-foot model in MATLAB. 

 

 

5.5. Application Example 2: Human Gait Analysis 

This section presents a study of the interaction between the foot and the level ground during human 

gait. For this application example, the ½ HAT-leg multibody model is used, and the behavior of the system 

is achieved based on a dynamic analysis, employing experimental data to establish the required 

prescribed kinematic guide elements. Additionally, the contact interaction between the foot and the 

ground is modeled applying continuous approaches for the normal and tangential contact forces, and the 

contact detection method is based on simple geometries, namely circles and a plane.  

 

 

Biomechanical Model Description 

For this purpose, the biomechanical model presented in Section 4.1 – the ½ HAT-leg model – is 

used, with some modifications regarding the geometry of the foot. Instead of being represented by a 

single segment, the foot is now constituted by two parts – the main foot part and the toes –, similar to 

what happened in Section 5.4. The actual biomechanical model, with its segments arranged in the initial 

position, is represented in Figure 5.13, where the local frames of each rigid body are visible. 
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Figure 5.13. ½ HAT-leg model representation in the initial position, and depiction of the local reference frames. 

 

The model is composed of five rigid bodies – ½ HAT, thigh, leg, main foot part and toes, from the 

right side of the human body – and the generalized coordinates vector, q, is defined by 15 coordinates 

(n = 15). The bodies are connected by four revolute joints and, consequently, eight constraints are added 

to the system, since each joint removes two DOF from the system. Additionally, for simplification, the 

MTP joints are considered to be fixed, adding one constraint to the system and, consequently, removing 

one DOF. Thus, this ½ HAT-leg multibody system has a total of six DOF, which correspond to three 

rotations about revolute joints – one DOF for hip flexion-extension motion, one DOF for knee 

flexion-extension and one DOF for ankle dorsiflexion-plantarflexion –, plus two translations and one 

rotation of the system.  

This model, as well as the others used throughout this dissertation, was developed within a 

MATLAB computer code, using the multibody formulation with cartesian coordinates, which is described 

in Chapter 3.  

 

 

Foot-Ground Contact Model 

In this application example, the contact between the foot and the ground is geometrically defined 

by circles, defining the foot plantar surface, and a plane, representing the ground. As the contact is 

defined by contact circles, and the ground is considered to be flat and leveled, the interpenetration, , for 

4 4

1

1

2

2

3 3

4

1

2

3

x

y
5

5

5



 

 87 

each contact circle, can be understood as the difference between the radius of the circle and the y-global 

coordinate of that circle center, as demonstrated in Eq. (5.33). The contact is detected if a positive value 

of  is verified. In what concerns the considered continuous contact models, for the normal contact force, 

the model proposed by Ambrósio and Pombo (2018) is employed, which is described in Eq. (5.15), and 

the tangential force is evaluated through the model of Eq. (5.20). 

In a first approach, different scenarios were tested, varying the number of circles, as well as their 

location and radius, through manual adjustment of these parameters. Several attempts were made, trying 

to approximate the simulated GRF curves to the experimental ones – presented in Figure 4.9.  

The contact parameters – namely the nonlinear exponent factor, n, the contact stiffness, k, the 

coefficient of restitution, 
rc , the Coulomb friction coefficient, 

c , the viscous friction coefficient, 
d , and 

the tolerance velocities, 
0v , – are defined in Table 5.7, and were not subject to any variation for the 

present approach. 

 

Table 5.7. Contact parameters for the considered contact circles 

n [-] k [N/m3/2] rc  [-] 
c  [-]  d N.s/m  

0,n  [m/s]v  
0,t  [m/s]v  

3/2 40000 0.2 0.5 3 0.01 0.01 

 

The number of circles was varied between two and nine, and the best acquired results for each 

considered number of circles are demonstrated in Table 5.8. In this table, the arrangement of the defined 

circles is depicted too. The results are shown in the form of graphs regarding the normal contact force, 

the tangential contact force, and the position of the COP. In these graphs, the results from simulations 

are compared with the ones obtained through the experimental analysis. It should be noticed that the 

shaded regions presented in the graphs of normal and tangential forces indicate a deviation from the 

experimental data of ± 20%12 of the maximum value registered from the experimental analysis, and the 

shaded region presented in the COP position graph represent a bound of ± 5 cm13 in relation to the 

experimental data. 

 

 
12 This value was defined based on the one used by some found studies (Esposito & Miller, 2018; Lopes et al., 2016; Miller et al., 2012; Miller & Hamill, 
2015; Neptune et al., 2000), in which the shaded area was defined by ± 2 standard deviations around the mean of the experimental data. According to 
Esposito and Miller (2018), a 10% distribution width is a reasonable estimate of the variance between human subjects, and hence, a ± 2 × 10% deviation 

was used to define the shaded region (Dorschky et al., 2019; Esposito & Miller, 2018). 
13 In the case of the COP position, an area defined by ± 5 cm around the experimental data was defined, because in this situation, the definition of a percentage 
has no meaning in terms of physics, as it depends on the location of the origin of the global reference frame. 
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Table 5.8. Number of circles, their arrangement, and the obtained results 

Number 

of circles 
Circles arrangement GRF and COP position comparison 

2 

 

 

3 

 

 

4 

 

 

5 
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Table 5.8. (Continued) 

Number 

of circles 
Circles arrangement GRF and COP position comparison 

6 

 
 

7 

 

 

8 

 
 

9 
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For any number of circles, the results obtained from the simulations are very different from the 

experimental ones. The adopted methodology was based on a trial-and-error approach, which is 

characterized by performing repeatedly, varied attempts until reaching the best solution. However, this 

approach is uncertain since parameter adjustment becomes complex. In this sense, with the purpose of 

correctly determining the contact forces, an optimization process was implemented to obtain the most 

suitable values for the geometric and contact parameters of the proposed model. 

 

 

Optimization Problem 

The optimization methods aim to find a solution that minimizes a prescribed objective function, 

subjected to a certain number of restrictions. An optimization algorithm is a procedure which is executed 

iteratively by comparing various solutions until an optimum solution is found (MathWorks, 2022c; Tavares 

da Silva, 2003). In mathematical terms, a general optimization problem can be stated as 

 min ( )f x  (5.34) 

subjected to 
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where x is the vector of design parameters or optimization variables – 1 2{ , ,..., }nx x x=x  –, each 

one of them bounded between l

jx  and u

jx , and f (x) is the objective function to be minimized, which can 

be subjected to equality and inequality constraints evaluated at x. The optimal solution from among the 

set of candidate solutions, x*, is constituted by the parameters that minimize the objective function, 

fulfilling the restrictions imposed. Optimization problem formulation constitutes an efficient method for 

solving large-scale problems that cannot be easily addressed by other techniques, or when highly iterative 

processes are needed (El-Halwagi, 2006; MathWorks, 2022c; Tavares da Silva, 2003). 

In this work, the objective is to approximate the curves from the simulations to those obtained by 

experimental analysis. The optimization problem is solved using the MATLAB ‘fmincon’, which is a 

gradient-based method. This method applies a gradient descent algorithm to iteratively find a local 

minimum of the objective function. First, the algorithm calculates the gradient (slope) of the function at 

the current point, i.e., the first-order derivative. Then, the algorithm iteratively determines the next point, 
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using the gradient at the current position, scaled by a learning rate14. The obtained value is subtracted 

from the current position, taking a step in the opposite direction of the gradient, in order to minimize the 

function. This process is repeated until the maximum number of iterations is reached or until the step 

size is smaller than the step tolerance – which is set to the default value 1 × 10-10. The MATLAB ‘fmincon’ 

also requires the definition of a starting point – an initial guess – from which the optimization algorithm 

will start the iterative process (Kwiatkowski, 2021; MathWorks, 2022b; Yadav, 2021). 

 

 

Simulation Results and Discussion 

As mentioned previously, with the objective of minimizing the difference between the simulation 

results and the experimental data, an optimization process is implemented. Therefore, the optimization 

process intends to find the best values for the geometric and contact parameters of the proposed model 

that minimize the prescribed objective function. The results presented below are focused on the use of 3 

circles to define the foot geometry, however other situations were tested, namely for 2 and 4 circles. 

First, it is important to mention that a new reference frame – 
4 4' '   (Figure 5.14) – was created 

in the foot to more easily define the parameters related to coordinates of the circles’ center and their 

lower and upper limits.  

 

 

Figure 5.14. New reference frame created in the foot. 

 

Table 5.9 presents the parameters that are not optimized, i.e., those that are included as 

predefined values. These values are the same for all considered circles and are valid for all simulations 

performed from this point onwards. 

 

Table 5.9. Contact parameters for the considered contact circles 

n [-]  d N.s/m  
0,n  [m/s]v  

0,t  [m/s]v  

3/2 3 0.01 0.01 

 
14 The learning rate is a scaling factor utilized to adjust the step size at each iteration (Kwiatkowski, 2021). 
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This optimization process is intended to find the best values for the position of the center of each 

circle, and for the radius, contact stiffness, coefficient of restitution and Coulomb friction coefficient 

assigned to each circle. On Table 5.10, the initial guess vector, 
0x , which contains an initial value for 

each parameter to optimize, as well as the lower and upper limits, lb and ub respectively, defined for 

each one, are shown. It should be noticed that the parameters values were normalized between 0 and 1, 

corresponding, respectively, to the lower and upper limits of the variables. 

 

Table 5.10. Initial guess and lower and upper limits of each parameter for optimization process 

 Parameters 0x  lb ub  

C
irc

le
 1

 

1  [m]x  -0.04 -0.09 0.0 

1  [m]y  -0.02 -0.0562 0.02 

1  [m]r  0.065 0.04 0.11 

1 3/2 [N/m ]k  230000.0 40000.0 400000.0 

1

r  [-]c  0.94 0.3 0.95 

1

c  [-]  0.11 0.1 0.3 

C
irc

le
 2

 

2  [m]x  0.01 0.0 0.08 

2  [m]y  0.009 -0.0562 0.02 

2  [m]r  0.11 0.045 0.115 

2 3/2 [N/m ]k  130000.0 40000.0 400000.0 

2

r  [-]c  0.94 0.3 0.95 

2

c  [-]  0.11 0.1 0.3 

C
irc

le
 3

 

3  [m]x  0.118 0.08 0.126 

3  [m]y  -0.063 -0.075 0.0 

3  [m]r  0.0095 0.005 0.1 

3 3/2 [N/m ]k  100000.0 40000.0 400000.0 

3

r  [-]c  0.94 0.3 0.95 

3

c  [-]  0.11 0.1 0.3 
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For this initial guess, the distribution of the contact circles, and the graphs related to the normal 

and tangential contact forces, as well as to the position of the COP, are depicted in Figure 5.15. The 

geometry of the foot is defined by three circles, positioned at the heel, the MTP joints and at the middle 

region of the foot. The obtained simulation curve for the normal force has two evident peaks, which is in 

agreement with the experimental data. However, these peaks are out of phase when compared with the 

experimental curve. The simulated tangential force has some divergencies when compared with the 

experimental one, being lower in magnitude and discordant in shape, around the 0.7 s. The position of 

the COP follows more strictly the experimental data.  

 

 

 

Figure 5.15. Initial guess: (a) Contact circles arrangement; (b) Comparison between the experimental and simulated normal 
contact force; (c) Comparison between the experimental and simulated tangential contact force; (d) Comparison between the 

experimental and simulated COP position. 

 

Regarding the objective function, three different approaches were evaluated. The divergency 

between them is the utilized exponent. For the first case, the function is formulated through the sum of 

the absolute value of the error of each component under study, i.e., the difference between the simulation 

and experimental results for the normal force, tangential force and COP location (Eq. (5.36)). 

 
sim exp sim exp sim exp

,n ,n ,t ,t ,COP ,COP

nc 1 2 3exp exp exp

total n t COP

1

max( ) max( ) max( )

i i i i i i

i

f f f f x x
J w w w w

w f f x

 − − −
= + + + 

  
  (5.36) 

The second considered objective function is defined based on the sum of the square differences 

between the simulation and experimental data, as seen in Eq. (5.37). 

 

2 2 2
sim exp sim exp sim exp

,n ,n ,t ,t ,COP ,COP

nc 1 2 3exp exp exp

total n t COP

1

max( ) max( ) max( )

i i i i i i

i

f f f f x x
J w w w w

w f f x

      − − −
 = + + +                 

  (5.37) 

(a) (b) (c) (d)
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The third approach is the definition of the objective function based on the sum of the cubed error 

of each component, as demonstrated in Eq. (5.38). 

 

3 3 3
sim exp sim exp sim exp

,n ,n ,t ,t ,COP ,COP

nc 1 2 3exp exp exp

total n t COP

1

max( ) max( ) max( )

i i i i i i

i

f f f f x x
J w w w w

w f f x

 − − −
 = + + +
 
 

  (5.38) 

In these expressions, 
,nif  is the normal contact force, 

,tif  is the tangential contact force, and 

COPx  is the x-coordinate of the COP, at time step i. The indication sim represents the results obtained 

by the simulations, while exp stands for experimental data. Moreover, the differences between the 

simulation and experimental data for each component are divided by the maximum experimental value 

registered, with the objective of adjusting the units and making the expression dimensionless. 
1w , 2w  

and 
3w  are assigned weights for each component, being 

totalw  the sum of the other three. Finally, 
ncw  

is a weight which aims to penalize the situations that have one or more circles presenting less contact, 

evaluated through a pseudo-penetration close or equal to zero. For situations where the deformation is 

very small, ncw  will take a high value and, therefore, the objective function value will increase. This weight 

is calculated by the following expression 

 r
nc

0max( )c c

w


 
=

+
  (5.39) 

where max( )c  is the maximum value of pseudo-penetration registered for each circle c, 
0  is a 

penetration tolerance (defined as 1×10-7 m) and 
r  represents a value below which a greater penalization 

is applied (defined as 0.01 m).  

A study on these three objective functions was performed. For this study, the weights attributed to 

the normal contact force, to tangential contact force and to the position of the COP were 1 3w = , 2 1w =  

and 3 0.1w = , respectively. The results of the performed optimizations, comparing the effects of the 

exponent used in the objective function (absolute value, square or cube), are represented in Table 5.11, 

where the graphs of the three components in study are represented, as well as the obtained value of the 

objective function. The detailed results of the optimal solution for each optimization can be found in the 

Appendix I (Table I.1). 
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Table 5.11. Comparison between the results obtained from the optimizations performed with three different approaches for 

the definition of the objective function 

Absolute value Square Cube 

J = 69.9671 J = 38.8928 J = 24.2175 

   

   

   



 

 96 

From this study, it is possible to conclude that the results are very similar between each other. The 

normal contact force curve of the simulation analysis had three peaks, which is in disagreement with the 

experimental data. The simulated tangential force had discrepancies when compared with the 

experimental curve. The last peak was the one that presented the best fitting in terms of magnitude for 

the optimizations performed with any of the three objective functions. The first valley of the tangential 

contact force closely matched the experimental curve, when the objective function defined with the 

absolute value was employed. Around 0.6 s, this curve presented an undesirable peak for the square and 

cube approaches. About 0.7 s the simulated curve was discordant in shape for all three approaches. The 

position of the COP followed more closely the experimental data, showing less error in the first approach 

(objective function defined with the absolute value). All the results presented contact in the swing phase 

of the gait cycle, being less evident in the graphs of the first column of the Table 5.11, where the forces 

had a lower magnitude, and the contact took less time. For the reasons described above, the implemented 

objective function for the next optimizations were the described in Eq. (5.36), which is formulated through 

the sum of the absolute value of the error of each component under study, i.e., the absolute value of the 

difference between the simulation and experimental results for the normal force, tangential force and 

COP location. 

On Table 5.12, a study on the weights applied for each component is shown. Firstly, it was 

performed an optimization in which equal values for 
1w , 

2w  and 
3w  were considered. It means that 

both the normal and tangential forces, as well as the position of the COP, influence the objective function 

in equal measure. Then, a higher weight was assigned to each component separately, in order to study 

the influence of attributing more value to each component. The results of the performed optimizations, 

comparing the simulated and experimental curves of the normal contact force, the tangential contact 

force and the COP position, are represented, as well as the obtained value of the objective function. The 

detailed results of the optimal solution for each optimization can be found in the Appendix I (Table I.2). 
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Table 5.12. Comparison between the results obtained from the optimizations performed with different weights for each 

component 

1 2 31, 1, 1w w w= = =  
1 2 33, 1, 1w w w= = =  

1 2 31, 3, 1w w w= = =  
1 2 31, 1, 3w w w= = =  

J = 59.5477 J = 61.5484 J = 70.9911 J = 43.6112 
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The results show that, in general, a higher weight assigned to a component results in improvements 

in the respective curve obtained. For the normal contact force, the curves presented in the first, third and 

fourth columns of Table 5.12 were worse in terms of error established between the simulation and 

experimental analyses. This can be seen as the portion of the blue curve that falls out of the shaded area. 

In spite of registering three peaks, when a higher weight for the normal contact force was considered, the 

simulation curve acted closer to the experimental one, in comparison with the other results of other 

optimizations performed. The tangential force curve obtained from the simulations was similar for the 

optimization accomplished with equal values for 
1w , 

2w  and 
3w  for each component, and for the one 

that considered a higher value for 
2w . However, the last peak appeared closer to the one presented in 

the experimental curve for the results of the third column of the table. For the COP position, opposing to 

what was expected, the simulated curve which seems to follow more strictly the experimental data was 

the one presented in the third column (for 
1 2 31, 3, 1w w w= = = ), rather than when a higher weight was 

considered for that component. Nevertheless, all the simulated curves for x-position of the COP were 

consistent with the experimental data. 

As the normal contact force is the one that has more relevance in the context of multibody 

dynamics, a study on the influence of the weight of that component was carried out. The weight assigned 

to the normal force was subject to a variation between 3, 5 and 10, with the objective of improving the 

respective curve obtained from the simulation, preferentially removing the extra peak that persisted in the 

previous results. The results of the performed optimizations, comparing the curves established from the 

simulation and experimental analysis of the normal and the tangential contact force, are displayed in 

Table 5.13, as well as the obtained objective function value. The graphs of the position of the COP are 

not shown, as they were all similar, fitting well with the experimental data. The detailed results of the 

optimal solution for each optimization can be found in the Appendix I (Table I.3). 
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Table 5.13. Comparison between the results obtained from the optimizations performed with different weights for normal 

contact force 

1 2 33, 1, 1w w w= = =  
1 2 35, 1, 1w w w= = =  

1 2 310, 1, 1w w w= = =  

J = 61.5484 J = 60.9049 J = 58.7934 

   

   

 

The obtained results were not very different from each other. Regarding the normal contact force, 

which was the principal object of study in this analysis, it presents three peaks for all performed 

optimizations, which is in disagreement with the experimental results. In spite of increasing the weight of 

the normal contact force component, the results did not show this difference significantly, because the 

objective function accounts for the relative weight instead of the defined absolute weight. For example, 

an increase of twice from the second to the third column, does not mean that the relative weight has 

duplicated. The difference in the normal force weight between these two approaches is approximately 

13%, in relative terms. In what concerns to the tangential force, its last peak was best fitted in terms of 

magnitude in the second approach (for 1w = 5). When a weight of 10 was assigned to the normal force, 
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the tangential curve obtained from the simulation got worse, registering an undesirable peak, around 

0.6 s. The results from the second and third columns of the Table 5.13 presented contact in the swing 

phase of the gait cycle, being more evident with the increasing of 
1w . Moreover, the optimization 

accomplished with a higher value for 
1w , was more expensive in terms of computational time (see Table 

I.3 from Appendix I).  

Lastly, a study on the number of circles used to define the geometry of the foot surface was carried 

out. A comparison between the results of optimizations performed with 2, 3 and 4 circles is displayed in 

Table 5.14. For these optimizations the following weights were used: 
1 2 35, 1, 1w w w= = = . The graphs 

of the COP position are not shown, as they were all similar, fitting well with the experimental data. The 

detailed results of the optimal solution for each optimization can be found in the Appendix I (Table I.4). 

 

Table 5.14. Comparison between the results obtained from the optimizations performed with different number of circles 

2 circles 3 circles 4 circles 

J = 79.7097 J = 60.9049 J = 64.4905 
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Regarding the study of the number of the circles used to describe the foot plantar surface, the 

expected would be that for a higher number of circles, the curves obtained in the simulations would be 

more similar to those of the experimental data. The reason to believe in that is the fact that the 

optimization algorithm could adjust the circles’ size and rearrange them in a position that represented 

more realistically the foot anatomy, and consequently, provide better results in terms of contact forces. 

The more circles, the more possibilities there are for creating new configurations with them, in order to 

describe accurately the foot plantar surface. This was true for the transition between 2 and 3 circles. 

However, when the fourth circle is added, there are no significant improvements in the normal contact 

force curve and the tangential one gets worse. The tangential contact force curve, for 2 circles has big 

discrepancies from the experimental curve in the last peak. Comparing the tangential force between the 

3 and 4 circles’ approach, the last peak presented the best fitting in terms of magnitude for the results 

obtained with 3 circles. Moreover, all the results presented contact in the swing phase of the gait cycle, 

being less evident in the graphs of the second column of the Table 5.14, where the forces had a lower 

magnitude, and the contact took less time. For the reasons described above, the approach that considers 

3 circles to model the foot was the one that presented the best overall results. Concerning the 

computational time spent with these optimizations, for 4 circles, there was a substantial increase in the 

optimization time (see Table I.4 from Appendix I).  

Despite the number of optimizations performed, with the intent of improving the simulation curves 

– in particular the one of the normal contact force –, the best acquired graph for that component was the 

one provided by the initial guess, as it is the only one that only presented two peaks and followed closely 

the shape of the experimental data.  

In this sense, it is desirable to improve the tangential force curve, depicted in Figure 5.15, keeping 

the simulation curve of the normal force and of the position of the COP. With this objective, a new 

optimization was done, in which the only parameters that were varied were the coefficients of friction for 

the three circles. The input data, as well as the obtained results for the optimal solution are described in 

Appendix I (Table I.5). The final curves of the normal and tangential contact forces, as well as the 

x-position of the COP are displayed in Figure 5.16. 
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Figure 5.16. Comparison between the experimental data and the results obtained from the optimization of the coefficient of 
friction, for (a) the normal contact force; (b) the tangential contact force; (c) the COP position. 

 

Although these results are not perfect, they were the best achieved after numerous trials and 

optimizations. The normal contact force has two evident peaks, in agreement with the experimental data, 

but they are out of phase compared to the experimental curve. The tangential force has a discordancy in 

shape, around the 0.7 s, presenting an undesirable valley. The position of the COP follows more strictly 

the experimental data.  

Gradient based algorithms, like the one used – MATLAB ‘fmincon’ –, iteratively find the nearest 

local minimum from the given starting point. There is no method to guarantee that ‘fmincon’ finds a 

global minimum of the objective function. The only approach to mitigate the problem is running the 

optimization process from various starting points, which can become computationally expensive 

(Hendricks, 2015). Despite the fact that only one initial guess was specified in this work for performing 

the optimizations presented in this section, various initial guesses were tested. Nonetheless, only the 

results of the optimizations with the initial guess described in Table 5.10 were analyzed and presented in 

this dissertation, otherwise the presentation of the results would be too extensive. This initial guess was 

reached after several attempts, and was considered to be the best one tested because the optimization 

process would start from a good approximation for the normal contact force. 

It should also be mentioned that tests were made with another optimization algorithm, the genetic 

algorithm. However, the obtained results in terms of both the value of the objective function and the 

computational time were not satisfactory, which is the reason why this method was not adopted for the 

optimization of the foot-ground contact parameters and its results are not presented here. 

 

(a) (b) (c)
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5.6. Summary 

In this chapter, the main aspects related to the modeling and simulation of contact problems in 

the context of MBS dynamics were presented, and two application examples were described and 

discussed. First, the fundamental aspects of a generic contact problem were approached, and the 

methodologies that deal with contact detection and contact resolution were introduced. 

In the first application example, a simple leg motion was simulated with the objective of validating 

the methodologies of contact geometry definition and contact detection. This simulation consisted of a 

simple drop test in which the motion of the model is generated by the action of the gravitational force. 

This example validated the methodologies of contact geometry definition, contact detection and the 

application of the contact forces through constitutive laws.  

The second application example was presented for studying the interaction between the foot and 

the level ground during human gait. After a manual parameter adjustment approach, an optimization 

process was implemented to obtain the most suitable values for the geometric and contact parameters 

of the proposed model. All obtained results from optimizations were compared to the ones obtained by 

experimental analysis, with the intention of validating the proposed approach. Studies were carried out 

on the formulation of the objective function, on the weights assigned to each component, and particularly 

on the weight attributed to the normal contact force. An evaluation of the influence of the number of 

circles was also performed. Lastly, since all the obtained results from the optimizations were not close 

enough to the experimental data, and the normal force curve obtained from the initial guess was the one 

that presented a better shape, an attempt was made in order to improve, individually, the tangential force 

curve, optimizing only the coefficient of friction for each circle.  
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Chapter 6 – Concluding Remarks 

 

In this final chapter, the general conclusions concerning the development of this dissertation are 

pointed out. Moreover, in this chapter, some future perspectives and developments that can be conducted 

in the context of this work are also mentioned, with the aim of further improving the accuracy in 

reproducing the foot-ground interaction, within the framework of biomechanical multibody systems 

analysis. 

 

 

6.1. Conclusions 

In this dissertation report, a two-dimensional computational multibody model was developed and 

implemented in the MATLAB software, in order to analyze the dynamic behavior of the human body and 

its interaction with the surrounding environment. To achieve these results, the main aspects related to 

multibody systems formulation were reviewed and discussed in the context of biomechanics of planar 

motion. In addition, and to understand the expected movements, the fundamental anatomical and 

biomechanical aspects of the human lower limb were explored. The literature on the foot-ground contact 

modeling strategies for human motion analysis was revisited in Section 1.3, and a review article 

concerning this theme was also produced. 

In Chapter four, it was intended to perform a dynamic analysis of the human gait, in which 

kinematic and kinetic data are prescribed, and all DOF are guided. The developed multibody model – ½ 

HAT-leg model – was described employing cartesian coordinates and it was composed of four rigid bodies, 

that correspond to the main segments of the right side of the human body, linked by three ideal revolute 

joints. The consistency of the initial conditions required to begin the dynamic analysis, in particular the 

initial velocities, were analyzed to verify its conformity with the kinematic structure of the biomechanical 

model. The constraint equations, relative to the revolute joints and to the bodies’ CM trajectories, were 

established and explicitly presented, and the external applied forces were also specified. Three different 

interpolation methods – ‘spline’, ‘pchip’ and ‘akima’ – were presented and compared in terms of the 

outcomes from the graphs and the simulation time. Moreover, the integration algorithm applied to solve 

the equations of motion in MATLAB was analyzed, and a study on the influence of the values of the 
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Baumgarte stabilization parameters on the violation of constraints was presented. Lastly, an animation of 

the ½ HAT-leg model was developed in MATLAB, in order to visualize the prescribed motion. 

In Chapter five, contact modeling was considered for the foot-ground interface. First, the main 

aspects associated with the modeling and simulation of a generic contact problem were introduced, 

namely the methodologies concerning the detection and resolution of contact events. Furthermore, two 

application examples were described and discussed. The first one dealt with a simulation of a simple leg 

motion, generated by the action of the gravitational force. This example validated the methodologies of 

contact geometry definition, contact detection and the application of the contact forces through 

constitutive laws. The second application example was presented for studying the interaction between the 

foot and the level ground during human gait. Following the conclusions of the previous chapter, in this 

approach, contact circles were used to define the geometry of the plantar surface. After a manual 

parameter adjustment methodology, an optimization process was implemented to obtain the most 

suitable values for the geometric and contact parameters of the proposed model. The results obtained 

from optimizations were compared to those obtained by experimental analysis, with the intention of 

validating the proposed model. The formulation of the objective function, the weights assigned to each 

component, in particular the weight attributed to the normal contact force, and the number of circles 

considered for the foot geometry were studied, and their influences on the results were analyzed. All the 

obtained results from the optimizations were not sufficient close to the experimental data. Lastly, since 

the normal force curve obtained from the initial guess was the one that presented a better shape, an 

attempt was made to improve, individually, the tangential force curve, optimizing only the coefficient of 

friction for each circle. Although these last results were not perfect in terms of the shape of GRF curves, 

they were the best achieved after numerous trials and optimizations. The normal contact force had two 

evident peaks, in agreement with the experimental data, but they were out of phase compared to the 

experimental curve. The tangential force had a discordancy in shape, around the 0.7 s, presenting an 

undesirable valley. The position of the COP curve was the one that more rigorously followed the 

experimental data, in all the simulations performed.  
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6.2. Future Developments 

As a limitation to this study, it is important to mention the restriction of the simulations to the 

sagittal plane, since the considered biomechanical model was bi-dimensional. Due to this assumption, 

the movements executed on the frontal and transverse planes were not considered, in particular the effects 

of eversion-inversion, abduction-adduction and pronation-supination movements of the foot were 

disregarded. However, the joints present in the human lower limb exhibit motion primarily in the sagittal 

plane, making it possible to simplify the analysis of the gait process only in this plane. According to Oatis 

(2009), the fundamental biomechanical principles in a 2D analysis are the same as those in a 3D 

analysis. Consequently, a simplified 2D representation of a 3D problem may be used to describe a model 

with less complexity. Nevertheless, in the future, a three-dimensional analysis of the gait and of the 

interaction between the foot and the ground during this process would be interesting. 

Additionally, the following items are proposed, aiming to contribute to the improvement of this work, 

with regard to the accuracy of the foot-ground interface model:  

• Testing other objective functions, to refine the shape of the contact force curves; 

• Testing other optimization algorithms, in order to find the global minimum of the objective 

function; 

• Implementing other, possibly more detailed, contact models; 

• Defining the foot geometry more accurately, for example with a larger number of contact 

circles, or using more complex geometries such as ellipses or shapes obtained from 

scanning procedures. 
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Appendix I – Optimizations Results 

 

The detailed results of the optimal solution for each optimization are shown in this appendix. 

 

Table I.1. Results obtained from the optimizations performed with three different approaches for the definition of the objective 
function: simulation time, objective function value, optimal solution values, circles arrangement and deformation registered for 
each circle 

Parameters 

Absolute value Square Cube 

40.0839 min 1.1632 h 1.2738 h 

J = 69.9671 J = 38.8928 J = 24.2175 

C
irc

le
 1

 

1  [m]x  -0.0518491251470155 -0.0899999941640296 -0.0475943416457909 

1  [m]y  -0.0393906630819456 0.0199999799924073 -0.0494671525536236 

1  [m]r  0.0496748467669693 0.0977303604615632 0.0400000023593449 

1 3/2 [N/m ]k  91472.7368523186 40000.0043727620 40000.0010899561 

1

r  [-]c  0.931404628582939 0.300000062089286 0.949999995177022 

1

c  [-]  0.288980868270326 0.182509829972697 0.299999993133613 

C
irc

le
 2

 

2  [m]x  0.0261047671820263 0.0174190609518387 0.0243272085466871 

2  [m]y  -0.0273273510376784 -0.0382113955601078 -0.0417281851965196 

2  [m]r  0.0783611313882680 0.0720788206007646 0.0692036549294389 

2 3/2 [N/m ]k  81333.0275816798 79825.6914887128 73267.0053881352 

2

r  [-]c  0.947323937846691 0.949999998772587 0.949999999722267 

2

c  [-]  0.101399528305163 0.100000001700533 0.100000000241202 

C
irc

le
 3

 

3  [m]x  0.123487663612708 0.125999975014369 0.125959768187517 

3  [m]y  -0.0650530286342784 -0.0628197265583963 -0.0624840250457698 

3  [m]r  0.00528260439302679 0.00500000018642009 0.00500000004249970 

3 3/2 [N/m ]k  171443.940034051 191684.178045047 187817.982784519 

3

r  [-]c  0.830587925907759 0.733160141291290 0.669666339012370 

3

c  [-]  0.256840230599321 0.233737791001910 0.206318106391331 
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Table I.1. (Continued) 

  Absolute value Square Cube 

  

   

  

   

 

 

Table I.2. Results obtained from the optimizations performed with different weights for each component: simulation time, 
objective function value, optimal solution values, circles arrangement and deformation registered for each circle 

Parameters 

1 2

3

1, 1,

1

w w

w

= =

=
 1 2

3

3, 1,

1

w w

w

= =

=
 1 2

3

1, 3,

1

w w

w

= =

=
 1 2

3

1, 1,

3

w w

w

= =

=
 

32.7862 min 29.4794 min 32.1823 min 42.4562 min 

J = 59.5477 J = 61.5484 J = 70.9911 J = 43.6112 

C
irc

le
 1

 

1  [m]x  -0.029880001580229 -0.059337619296876 -0.034042013063866 -0.031595684589175 

1  [m]y  -0.022955892311147 -0.026007448205412 -0.024032853404429 -0.028344756991265 

1  [m]r  0.061316459894652 0.062692152881704 0.062659811343786 0.066113608681935 

1 3/2 [N/m ]k  358007.254664848 60163.1176785023 342746.156045324 212611.770282291 

1

r  [-]c  0.935296915050365 0.914109243362881 0.944343239950238 0.945010565372750 

1

c  [-]  0.286501513209191 0.279552166259736 0.206419885993584 0.138602808899114 

C
irc

le
 2

 

2  [m]x  0.006761423437602 0.017834245515927 0.005798580842639 0.006223782384759 

2  [m]y  0.008002943431741 0.002432636467010 0.006202300863513 0.006642597503308 

2  [m]r  0.112713483419635 0.105710777621313 0.101020058333383 0.106211528881309 

2 3/2 [N/m ]k  70307.6712688777 98340.3619167409 97508.2994372973 15261.7310405757 

2

r  [-]c  0.940367953953484 0.946279012270217 0.943032431884713 0.942345080063622 

2

c  [-]  0.103806015365960 0.102463112924927 0.106488957242783 0.105399211289834 
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Table I.2. (Continued) 
  

1 2

3

1, 1,

1

w w

w

= =

=
 

1 2

3

3, 1,

1

w w

w

= =

=
 

1 2

3

1, 3,

1

w w

w

= =

=
 

1 2

3

1, 1,

3

w w

w

= =

=
 

C
irc

le
 3

 

3  [m]x  0.113757055068767 0.123128993301128 0.118025834788009 0.116159370902503 

3  [m]y  -0.066414450909115 -0.064940279054549 -0.068388677732853 -0.064420035018166 

3  [m]r  0.005217677383433 0.005244472328703 0.005178779450060 0.009554796829983 

3 3/2 [N/m ]k  277616.979263205 189422.832434102 219498.147459558 201973.668286658 

3

r  [-]c  0.886596486561927 0.784537152475946 0.940100385190604 0.928128835603263 

3

c  [-]  0.219830233807815 0.258489349041566 0.179387756388975 0.196468650994033 

  

    

  

    

 

 

Table I.3. Results obtained from the optimizations performed with different weights for the normal contact force: simulation 
time, objective function value, optimal solution values, circles arrangement and deformation registered for each circle 

Parameters 

1 2 33, 1, 1w w w= = =  1 2 35, 1, 1w w w= = =  1 2 310, 1, 1w w w= = =  

29.4794 min 30.2760 min 42.7354 min 

J = 61.5484 J = 60.9049 J = 58.7934 

C
irc

le
 1

 

1  [m]x  -0.059337619296876 -0.0469197184107885 -0.0585154001863755 

1  [m]y  -0.026007448205412 -0.0245845170640143 -0.0239424833381920 

1  [m]r  0.062692152881704 0.0646152707409038 0.0653740203370361 

1 3/2 [N/m ]k  60163.1176785023 69586.3448506172 48042.2489410720 

1

r  [-]c  0.914109243362881 0.911374309469984 0.882438042023281 

1

c  [-]  0.279552166259736 0.295479423356325 0.263859158621709 
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Table I.3. (Continued) 
  1 2 33, 1, 1w w w= = =  

1 2 35, 1, 1w w w= = =  
1 2 310, 1, 1w w w= = =  

C
irc

le
 2

 

2  [m]x  0.017834245515927 0.0218059531078360 0.0294098094078077 

2  [m]y  0.002432636467010 -0.00147845185636913 -0.0353340637186228 

2  [m]r  0.105710777621313 0.101312406075407 0.0703340648984460 

2 3/2 [N/m ]k  98340.3619167409 96744.1796157937 88699.1992667915 

2

r  [-]c  0.946279012270217 0.947199052980423 0.947921235960139 

2

c  [-]  0.102463112924927 0.103380713264854 0.104276949436917 

C
irc

le
 3

 

3  [m]x  0.123128993301128 0.121611751393944 0.125081970698060 

3  [m]y  -0.064940279054549 -0.0656481790916719 -0.0631937504364688 

3  [m]r  0.005244472328703 0.00554674141243399 0.00582673517748603 

3 3/2 [N/m ]k  189422.832434102 166944.325204332 170058.573313197 

3

r  [-]c  0.784537152475946 0.896998424288154 0.819276178358362 

3

c  [-]  0.258489349041566 0.251471145133103 0.260281851045516 
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Table I.4. Results obtained from the optimizations performed with different number of circles: simulation time, objective 
function value, optimal solution values, circles arrangement and deformation registered for each circle 

Parameters 

2 circles 3 circles 4 circles 

17.4021 min 30.2760 min 1.2829 h 

J = 79.7097 J = 60.9049 J = 64.4905  

C
irc

le
 1

 

1  [m]x  -0.0550836069499121 -0.0469197184107885 -0.0611893927455937 

1  [m]y  -0.0328539618614885 -0.0245845170640143 -0.0142611978600249 

1  [m]r  0.0554039859770372 0.0646152707409038 0.0732983634529163 

1 3/2 [N/m ]k  120864.899171467 69586.3448506172 49601.2656032485 

1

r  [-]c  0.920751696098002 0.911374309469984 0.648488223774429 

1

c  [-]  0.260948402314856 0.295479423356325 0.242960685554087 

C
irc

le
 2

 

2  [m]x  0.0625213823559498 0.0218059531078360 0.0224714983439461 

2  [m]y  -0.00139054287160450 -0.00147845185636913 -0.0335656104839206 

2  [m]r  0.0929245007256398 0.101312406075407 0.0728063186785116 

2 3/2 [N/m ]k  164225.792523086 96744.1796157937 88322.2374229034 

2

r  [-]c  0.946201386508549 0.947199052980423 0.947737943723191 

2

c  [-]  0.100763115872392 0.103380713264854 0.102852200808672 

C
irc

le
 3

 

3  [m]x  – 0.121611751393944 0.0844628271469532 

3  [m]y  – -0.0656481790916719 0.00361453132647913 

3  [m]r  – 0.00554674141243399 0.0719716856305403 

3 3/2 [N/m ]k  – 166944.325204332 46328.0974866249 

3

r  [-]c  – 0.896998424288154 0.702405999449174 

3

c  [-]  – 0.251471145133103 0.152925449338915 

C
irc

le
 4

 

4  [m]x  – – 0.124677829048996 

4  [m]y  – – -0.0641203630891000 

4  [m]r  – – 0.00541126679758649 

4 3/2 [N/m ]k  – – 165480.065589068 

4

r  [-]c  – – 0.774024159515308 

4

c  [-]  – – 0.285073898656879 
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Table I.4. (Continued) 

 2 circles 3 circles 4 circles 

  

   

  

   
 

 

Table I.5. Initial guess, lower and upper limits and results obtained from the optimization of the friction coefficient for each 
circle: simulation time, objective function value, optimal solution values, circles arrangement and deformation registered for 
each circle 

Parameters 0x  lb ub  
7.5227 min 

J = 71.6954 

C
irc

le
 1

 

1

c  [-]  0.11 0.1 0.5 0.263603413613223 

C
irc

le
 2

 

2

c  [-]  0.11 0.1 0.5 0.100001329705190 

C
irc

le
 3

 

3

c  [-]  0.11 0.1 0.5 0.413526498778733 

     

 

     

 
 


