
Universidade do Minho

Escola de Engenharia

Jorge Gabriel Alves Cerqueira

Automatic Repair of Behavioural

Specifications

October, 2022





Universidade do Minho

Escola de Engenharia

Jorge Gabriel Alves Cerqueira

Automatic Repair of Behavioural

Specifications

Master Thesis

Master in Integrated Master’s in Informatics Engineering

Work developed under the supervision of:

Manuel Alcino Pereira Cunha

Nuno Filipe Moreira Macedo

October, 2022



COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and good

practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositoriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

iv

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Acknowledgements

I would like to thank both of my advisors, Alcino Cunha and Nuno Macedo. Through the entire process

of writing this thesis, they have made themselves available and shown interest in its success, constantly

providing feedback, suggesting and discussing ideas, and providing advice. Their support was invaluable

for the development of this thesis.

I would also like to thank my parents, for their support and their trust not only this year but through-

out my entire academic journey. Also thanks to my girlfriend, for the support and for helping me keep

motivated to finish.

This work is financed by National Funds through the Portuguese funding agency, FCT – Fundação

para a Ciência e a Tecnologia within project EXPL/CCI-COM/1637/2021.

v



STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do

Minho.

,
(Place) (Date)

(Jorge Gabriel Alves Cerqueira)

vi



”Simplicity does not precede complexity, but follows it.”

- Alan Perlis

vii



Resumo

Reparação Automática de Especificações Comportamentais

De forma preocupante, o software está a tornar-se cada vez mais complexo com a passagem do

tempo. A sociedade está completamente dependente dele. No entanto, mesmo nos dias que decorrem,

não há ensino nem ferramentas suficientes que permitam aos engenheiros de software verificar a correção

das suas soluções. Para além disto, soluções construídas rapidamente e com negligência relativamente

à qualidade são incentivadas em contraste a uma abordagem mais rigorosa.

Todo o tipo de software terá inevitavelmente defeitos. No entanto, as linguagens de especificação

formal permitem modelar sistemas complexos através da especificação das entidades relevantes, como

as mesmas interagem, e testes das garantias esperadas. Consequentemente isto auxilia profissionais

a compreender mais aprofundadamente os sistemas em que trabalham. Esta abordagem tem algumas

desvantagens, como ser custosa temporalmente, sendo que adiciona mais um passo no processo de

desenvolvimento, para além de ser difícil de aprender. A causa disto vem da natureza abstrata de es-

pecificações quando comparadas a programação, em conjunto da necessidade de estar confortável a

trabalhar com conceitos de lógica formal.

Alloy é uma linguagem de especificação formal, capaz de análise estrutural e também temporal. É

uma framework popular para validar e verificar requisitos, em grande parte por ser bastante expressiva

e flexível. Isto torna-a uma excelente candidata para desenvolver e testar novas técnicas de reparação

automática. Estas podem ser capazes ajudar estudantes a aprender mais rapidamente, tal como acelerar

o desenvolvimento para utilizadores experientes. Com esta finalidade, algum trabalho já foi feito em

relação à reparação de modelos estruturais em Alloy; no entanto, nada se encontra feito quando se põe

em consideração os aspetos temporais.

Sendo assim, este trabalho apresenta um resumo da linguagem Alloy, em conjunto com as técnicas

de reparação automática já propostas; propõe a primeira técnica baseada em mutações para reparação

automática de especificações de lógica de primeira ordem em Alloy 6; para alem disso, descreve a

integração de um sistema de geração automática de dicas para a plataforma Alloy4Fun.

Palavras-chave: Métodos Formais, Especificações Temporais, Reparação Automatica de Especifica-

ções, Alloy
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Abstract

Automatic Repair of Behavioural Specifications

Somewhat worryingly, software is becoming increasingly complex with the passing of time. Even

though society has become completely dependent on it, there’s still not enough quality teaching and tooling

to help software engineers verify the correctness of their solutions. Furthermore, quickly put together

solutions are often incentivized over a more rigorous approach.

Software is always bound to have bugs. However, formal specification languages allow the model-

ing of complex systems by specifying the relevant entities, how they interact, and testing the expected

guarantees. Hence, helping developers gain valuable understanding of the systems they work with. This

approach has the drawbacks of not only being time costly, adding another step in the development process

that requires deep understanding of the problem, but also being difficult to learn. The cause is due to the

more abstract nature of specification compared to programming, paired with the need to be comfortable

working with formal logic concepts.

Alloy is a formal specification language capable of structural and behavioral analysis. It is a popu-

lar framework for validating and verifying requirements, in part due to its expressiveness and flexibility.

This makes it a prime candidate to develop and experiment new automatic repair techniques. They can

help experienced developers speed up the process of writing specifications and new developers to learn

quicker. With this in mind, some work has been done on repairing flawed structural Alloy models, but

none considering behavioral aspects.

Thus, this thesis presents an overview of the Alloy language, along with previously proposed automatic

repair techniques; it proposes the first mutation-based technique for the automatic repair of first-order

temporal logic specifications using Alloy6; also, it describes the integration of an automatic hint generation

system for Alloy4Fun, an online platform for teaching Alloy.

Keywords: Formal Methods, Behavioural Specifications, Automatic Specification Repair, Alloy
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1

Introduction

With time, software systems are getting more and more complex. Instead of simple sequential programs

we now have gigantic interconnected distributed systems. The former will often present bugs and failures,

in the latter these problems are even more frequent and severe.

The question then becomes, how to understand and manage the complexity of these systems, and

ensure that they are resilient and secure. In an idealized world, mathematical proofs would be given to

prove the correctness of these systems. Unfortunately, such proofs are in many situations too costly or

not possible.

Lightweight formal methods are a middle ground. They keep the rigor of a mathematical approach,

however, they still allow enough flexibility to guarantee that assumptions about a system are correct up to

a level of certainty.

1.1 Contextualization

As previously mentioned, software systems are getting increasingly complex. The reliability of these sys-

tems is currently a necessity with so many people depending on them.

Fortunately, the correctness concern has been recognized and techniques such as property-based

testing is being integrated into software engineering workflow. This is a good improvement, however, us-

ing formal specifications in addition to these techniques would be a massive help, both for finding bugs

and also for wrong assumptions made for certain systems. Unfortunately, due to the abstract and com-

plex nature of formal specification languages, professionals still often struggle with writing, understanding

and validating them [22]. This increases the costs of training and actively maintaining specifications. It

ultimately undermines the quality and reliability of the software development process.

The topic of automatic program repair is very active in software engineering [28]. It has many appli-

cations such as bug fixing, detection of vulnerabilities, and support for autonomous learning. Automatic

specification repair is not as developed. Some of the challenges in automatic repair of programs are not

present for specifications, however, new ones exist. The further development of these techniques might

open a lot of possibilities in easing the usage of specification languages.

1



CHAPTER 1. INTRODUCTION

1.2 Motivation

Alloy [17] is a formal specification language. It was previously tailored for structural analysis, but now, it

is also capable of handling behavioural analysis in the latest version 6 [4], with the merge of the Electrum

extension [9]. It is a popular framework for validating and verifying requirements, due to being a high-level

language with good expressiveness and flexibility. The same reasons also make it an excellent candidate

to introduce students to formal specification languages. Due to this, it is already being used in various

universities [11]. Alloy has been successfully used in various domains. Examples of this are the validation

and discovery of flaws in distributed protocols [43], detection of security flaws in mobile and IoT devices [6,

3, 7], analysis of filesystems [19], automation of software testing [20], validation of rail traffic management

systems [13] and many other domains.

Alloy4Fun [25] is an online platform, aiming to help students be able to study specification languages

(specifically Alloy) autonomously. Currently, tutors can write and share exercises for students to solve.

It already gives some feedback, checking if an answer is correct and giving counterexamples otherwise,

but the students often have difficulty interpreting these counterexamples. Repair hints have shown to be

helpful in autonomous learning platforms [30].

All these reasons make Alloy a good candidate to experiment and develop new techniques of automatic

repair in the context of specification languages. These would help improve the learning experience for new

users. Specifically, by opening the possibility of implementing hint generation systems in the Alloy4Fun

learning platform, since current feedback is difficult for students to interpret. Work has been done on

repairing Alloy structural specifications, however, none of it takes into consideration the recently added

support for behavioural specifications.

1.3 Main Contributions

This thesis focuses on the exploration of the feasibility of using automatic repair techniques to repair and

generate hints of rich specifications in Alloy.

The main contribution has been the development of a new repair technique. It is capable of repairing

issues in incorrect specifications and able to report the result to the user. Current repair techniques were

insufficient:

• They did not provide support for Alloy 6 specifications, which is the most recent version, supported

in the Alloy4Fun platform;

• They did not focus on performance, specifically in providing results in short time.

Thus, the technique developed focuses on these points: by building on top of Alloy 6, and taking into

account the introduced temporal operators; and by basing itself on previously implemented techniques,

while providing additional ways to speed up the repair process.

2



1.4. DOCUMENT STRUCTURE

The technique was also expanded to provide a way to report possible fixes as hints. This was then

integrated into the Alloy4Fun platform, allowing for students to ask for hints when their submissions are

incorrect.

The contributions presented in this thesis also originated a research paper on the International Con-

ference on Software Engineering and Formal Methods (SEFM’22) [10].

1.4 Document Structure

This thesis has the following structure.

Chapter 2 goes over the Alloy language, both the structural and behavioural aspects. It presents both

the syntax and semantics of the language. This starts with a practical explanation, guided by an example,

and ends with a formal overview of the language.

Chapter 3 explores the state of the art in automatic repair of specifications. It starts with a high-

level overview of automatic repair and the relevant concepts. Then, it proceeds to present the current

techniques developed along with a succinct explanation of how they work.

Chapter 4 describes the technique developed for automatic repair. It starts with an explanation of the

context leading to some of the decisions made. This is followed by a description of the implementation.

In the end, a comparison is made between the similar tools available.

Chapter 5 talks about the extensions and changes made to the Alloy4Fun platform. It begins with an

overview of how the platform is implemented and what its regular use looks like. It ends by explaining the

changes made to it in the implementation of the hint system.

Chapter 6 concludes the thesis, reflecting on the contributions made in it and also thoughts about

future works.

3



2

Formal Specification with Alloy

Alloy [17] is both a tool and language that allows the analysis of structural specifications using relational

logic. Electrum [9] is an extension of the Alloy language that introduces first-order temporal expressions

and extends the backend to support temporal analysis, allowing behavioral specifications. It has recently

been merged into the latest version Alloy 6.

In this chapter, the Alloy 6 language will be introduced along with a practical example of a specification.

Starting with a structural specification and moving into a behavioral specification. The example presented

will be a basic railway system having connected tracks with signals and trains moving through them.

Note that this example is only meant as an illustrative exercise and not a real railway system, although

some have been implemented [12, 33]. After that, the syntax and semantics of the Alloy language will be

presented formally.

2.1 Structural Specification

Firstly, it is necessary to define the entities within the system. For this, Alloy has the concept of signatures.

A signature is used to express a new type within the system. In an instance of the specification, it will be

represented by a set (a unary relation) of elements, called atoms. To declare a signature the sig keyword
is used. The set of tracks in our system can be declared the following way.

sig Track {}

A signature has now been defined, and Alloy will show instances where tracks are present. These

are, however, not very useful, since they have no connections. Alloy allows declaring fields for signatures.

These define relations between types. Fields are declared the following way.

sig Track {
next: set Track

}

4



2.1. STRUCTURAL SPECIFICATION

This creates a relation named next, the set keyword indicates that each track can be linked to any

number of tracks.

After declaring this signature, the command run can be used to generate instances for the model.

In Alloy, the analysis is always made within a finite universe, so instances can be exhaustively generated.

The size of this universe is defined by the scope. The scope limits the number of atoms that can be

contained in a signature. The for keyword can be added as a modifier to a command to define the

scope. Formulas can also be added to the body of the command to filter instances where these formulas

evaluate to true. A command to show all the instances possible with a maximum of three tracks can be

expressed as follows.

run {} for 3

Figure 1 shows two instances that can be obtained with the previous run command. Both figures

present instances with two atoms, Track0 and Track1.

Figure 1: Example of possible instances for Track and next.

With tracks now declared, light signals can be taken into account. The types of lights can be enumer-

ated, in this case, they’ll be either red or green and never both at the same time. For cases like this, the

keywords extends and abstract are useful. The former allows declaring a signature that is a subset

of another signature. The latter ensures that all the members of the parent abstract signature belong to

an extension. Signatures that extend or abstract the signature will also be disjunct. The light signals can

be declared in the following way.

abstract sig Color {}
one sig Red, Green extends Color {}
sig Signal {

color: one Color
}

If the declarations are identical for multiple signatures, they can be declared within the same line, as

is demonstrated with the red and green colors. The abstract declaration above guarantees that atoms

5



CHAPTER 2. FORMAL SPECIFICATION WITH ALLOY

contained in Color are contained in one of the extending signatures (either red or green). The extends
guarantees that the sets of red and green colors are disjoint, this disallows a color from being red and

green at the same time.

The keyword one has also been used; in the case of the Red and Green signatures, it guarantees

the number of atoms in the sets Red and Green is one, in other words, there aren’t multiple reds or

greens. In the case of color: one Color, the keyword one ensures that, in the relation color, each
signal is always linked to exactly one color.

The pattern described above is the color signature is so common that Alloy provides a way to declare

it more concisely with the keyword enum the following way.

enum Color { Red, Green }
sig Signal {

color: one Color
}

An alternative approach would have been making Green and Red as subsets of Signal, instead of
creating an attribute.

Finally, the signals can be added as a field in the Track signature, with the keyword lone assuring

that a Track can’t have more than one signal.

sig Track {
next: set Track,
signal: lone Signal

}

Figure 2: Instaces with Signal atoms.

Figure 2 shows the new instances with Signals added, but the instances don’t always make sense,

for example, tracks can link to themselves and signals can sometimes not be connected to a track. To fix

this, it makes sense to start writing properties for the system.

6



2.1. STRUCTURAL SPECIFICATION

Alloy has support for functions. They can evaluate an expression and return a value and can also take

arguments. The keyword fun is used to define functions. Functions to calculate the set of tracks that are
forks and junctions can be defined the following way.

fun Fork : set Track {
{ track : Track | not lone track.next }

}

fun Junction : set Track {
{ track : Track | not lone next.track }

}

The Fork function filters the atoms in the set Track that pass the assertion. The dot join operator,

‘.’, can be applied between two relations or a relation and a set. Let x be a set of type X and rel be

a relation of type X×Y. The resulting type of x.rel will be of type Y and contain all the atoms that are

related to an atom in x based on the relation rel. Keep in mind that every signature and variable in

Alloy evaluates to a relation, which allows for this kind of expression. In this specific example, track is

a singleton set of type Track and next a relation with type Track×Track. Therefore, track.next
will evaluate to the set of tracks track is linked to based on next.

The expression not lone expresses the negation of lone, where lone checks that the cardinality

of a set is zero or one. Thus, not lone will check that the cardinality of a set is greater than one.

The expression for Fork can therefore be read as the set of tracks that have more than one successor.
Similarly, the expression for Junction can be read as the set of tracks with more than one predecessor.

Alloy also supports predicates. These are similar to functions but can only be true or false. The

keyword pred is used to define predicates. A predicate to check if a signal is always connected to exactly
one track can be defined the following way.

pred signal_is_connected[s : Signal] {
one signal.s

}

The predicate filters from the relation signal the tracks that have s as its signal and checks if the

number of elements in this set is one.

Similarly, predicates can be defined to check that no tracks are left unconnected and no tracks are

connecting to themselves.

pred track_is_connected[t : Track] {
some t.next or some next.t

}

7



CHAPTER 2. FORMAL SPECIFICATION WITH ALLOY

pred track_no_loop[t : Track] {
t not in t.^next

}
pred track_no_multiple_signal[t : Track] {

lone t.signal
}

The transitive closure operator, ‘^’, can be applied to a binary relation between equal types. It returns
all the reachable atoms from a given atom (i.e. ^next = next + next.next + next.next.next
+ ...).

These predicates can now be used within facts, facts are formulas that are assumed to be valid. Alloy

will only check instances where facts evaluate to true. The keyword fact is used to define facts. Since

facts cannot be called in other places naming them is optional. The previously shown predicates can be

used within a fact in the following way.

fact Layout {
all s : Signal | signal_is_connected[s]
all t : Track |

track_is_connected[t] and
track_no_loop[t] and
track_no_multiple_signal[t]

all s : Signal | s.color = Red
}

The expression quantifier all allows checking if an expression is true for every element in a set. On the
first line, s : Signal binds an atom in the Signal set to the variable s. Then, signal_is_connected[s]
checks that the signal is connected, and all ensures that the expression is true for every possible value

of s. Other expression quantifiers are some, one, lone and no.

Note that expressions within the same scope separated by a line are connected by logical conjunction.

Figure 3 shows one of the instances obtained by using the run after adding the Layout fact. The

instances from figures 1 and 2 will not appear now since the Layout fact invalidates them.

8



2.1. STRUCTURAL SPECIFICATION

Figure 3: Instance following layout fact.

Finally, expressions can be checked for the specification written. For these, Alloy uses the keywords

assert and check. The assert keyword is used to define the expression to be checked. The check
keyword is used to define the boundaries of the search, for example checking instances with less than 5

tracks.

The safety property of enforcing tracks leading into a junction to have signaling, and not having two

green lights leading into the same junction track can be expressed and checked the following way.

fun RedSignal : set Signal {
{ s : Signal | s.color = Red }

}
assert JunctionSafety {

all j : Junction |
all disj t, t2: next.j |

some t.signal and
some t2.signal and
(t.signal in RedSignal or t2.signal in RedSignal)

}

check JunctionSafety for 10

The property checks all tracks leading to the same junction. It verifies that each track has signals,

9
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and, within each disjunct pair, at least one of them has a red signal (or equivalently that signals aren’t

green in both tracks). The for used in the check keyword indicates that the program will perform the

check for instances with up to 10 elements for each type.

Figure 4: Counterexample for JunctionSafety.

This check will fail, as shown in Figure 4. This is because in the Layout fact no expression has

been written to guarantee that tracks leading to junctions have a signalling light. To fix this the following

expression can be added, and the assertion no longer produces counterexamples, as shown in Figure 5.

fact Layout {
...
all t : next.Junction | one t.signal

}

Figure 5: Check passed for the assertion.
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2.2 Behavioral Specification

In the previous section a basic structure of the railway was modeled, however instances found are static.

It would be more useful to be able to specify the possibility of changes in signal color and also add moving

trains. To achieve this with Alloy 6, it is first needed to express the relations or signatures that can change

over time, which can be done with the var keyword. A new relation representing the currently active next

track (it dictates which of the tracks in next a train is authorized to move to), along with the indication

that the signal colors can change can be added the following way.

sig Track {
var active: lone Track,
...

}
sig Signal {

var color: one Color
}
fact Layout {

all t : Track | t.active in t.next
...

}

This enables the relations color and active to change freely. This raises a problem: the value

of these relations will be arbitrary over time, for obvious reasons leading to invalid instances. This can

be seen in Figure 6. From the first state to the second, various invalid changes are made, for example

Track1×Track1 being added to the active relation. Notice that the instance in Figure 6 has colors,

these were achieved with the theming feature in Alloy. Themes are used to improve the clarity and

readability of instances. It is possible to select different colors and shapes for each atom, depending on

the signatures they belong to, or if they belong to the result of a function. In this case, functions like

RedTrack and GreenTrack were added, which filter tracks with red and green signals, respectively.

These functions were then used to set the color of the atoms in Track, and the atoms in Signal have

been hidden for clarity.

To solve the previously mentioned problem there’s the need to establish the possible events within

the system. In this case, one of the events that make sense to allow is a switch in the color of a signal

linked to a track, this event can be expressed as follows.

pred switch_color[t: Track] {
one t.signal and (t in GreenTrack or active.(t.active) in RedTrack)

t.signal.color' != t.signal.color

11
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Figure 6: Variable relations freely changing. (States 1 and 2).

active' = active
all s: Signal - t.signal | s.color' = s.color

}

The prime symbol returns the value of the sets in the next state. For example, t.signal.color'
!= t.signal.color enforces that, in the next state, the signal color for t will be different from the

current one.

Transitions can often be separated into three sections, highlighted in the code with an empty line

separating them:

• the preconditions, where the properties necessary for the transition are expressed;

• the effect, where the changes that are going to occur from a state to the next are specified;

• the frame conditions, expressions to prevent relations unrelated to the transaction to change.

In this example, the precondition is the first line. There, it is verified that the track has a signal, and

that the light is green or all the tracks leading to the currently active track has a red signal. The effect is

expressed by the change of the signal color in the next state. Then, it is stated that for this transition to

occur, active tracks must stay the same, and all signals except the one being changed must also stay the

same.

A predicate to express the transition of switching active tracks can be expressed the following way.

pred switch_active[t: Track] {
t.signal.color in Red and some t.next

12
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t.active' != t.active
t.active' in t.next

all track: Track - t | track.active' = track.active
color' = color

}

In the predicate for switching the next active track, firstly it is checked that if the track signal exists

it is red (if it is green it might change into a track with a green signal already leading to it). Also, it is

checked that there’s a next track to change to in the first place. Secondly, it is enforced that in the next

state the active track for t will be different from the current one. Not only that, this new active track must

be, for obvious reasons, in the set of tracks t is connected to. Finally, it is enforced that other tracks don’t
change their active connections and signal colors don’t change.

Generally, it is also useful to define a transition, usually given the name nop. It simply keeps all

variables and relations the same in the next state. The reason for this is that the traces (sequences of

states in time) Alloy generates are infinite, so there’s always a state after the current one. The way to

support this within a bounded analysis is by considering only the sequences that loop at some point. This

is the main use for nop, at any point, the system can freeze with an infinite loop of nop events. This

allows the analysis of traces where a loop would not exist otherwise. One definition for nop for the current
model is the following.

pred nop {
active' = active
color' = color

}

Finally, a Transitions fact can be added with the allowed events.

fact Transitions {
always nop or (some t: Track | switch_active[t] or switch_color[t])

}

The always keyword has been added in Alloy 6, it evaluates to true if, and only if, the expression

below it evaluates to true at every state for an instance. So the expression will simply force that at every

change of state either: nop is taken; some tracks change their next active track; some tracks change their
signal color. The specified system has become quite complex. With the possibility of signals and active

track connections changing, it makes sense to add the final signature relevant to the model, trains. Trains

shall have a variable position corresponding to the track they are currently on, and they can be expressed

in the following way.

13
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sig Train {
var pos: lone Track

}

With trains added, there’s a need to rewrite the previous transition predicates to ensure positions don’t

change when they occur (called frame conditions, as explained previously). Not only that, the previously

defined Layout fact is not enough since it doesn’t prevent the initial state from having multiple trains in

the same position. It is sensible to turn Layout into a predicate and create a new fact encompassing all

the desired initial conditions of the system.

pred nop {
...
pos' = pos

}
pred switch_active[t: Track] {

...
pos' = pos

}

pred switch_color[t: Track] {
...
pos' = pos

}
fact Init {

layout
all t: Track | lone pos.t // A track can't start with multiple trains

}

Now there’s also a need to add a transition to move the train. It shouldn’t be able to move when the

light is red at its position. In addition, its position on the next state should be the actively connected track

from its current position.

pred move_train[t: Train] {
t.pos.signal.color not in Red
some t.pos.active or no t.pos.next

t.pos' = t.pos.active

active' = active

14
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color' = color
all train: Train - t | train.pos' = train.pos

}
fact Transitions {

always {
... or
(some t: Train | move_train[t])

}
}

Figure 7 shows an instance where the move_train transition is taken, and the train moves to the

track linked to its current one.

Figure 7: First two states of an instance with a moving train.

Having the system behavior specified, some assertions should be added to verify if the desirable safety

properties hold. An assertion to verify that for all the tracks going into a certain track, only one of them

can be green. In addition, an assertion to check that a track cannot have multiple trains in it at the same

time. These can be expressed in the following way.

assert SignalSafety {
always all track: Track | all disj t, t2: active.track {

t in RedTrack or t2 in RedTrack
}

15
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}
assert NoCollision {

always all t: Track | lone pos.t
}
check SignalSafety for 5
check NoCollision for 5

Figure 8: First three states for a counterexample of the NoCollision assertion.

The first check SignalSafety does not yield any counterexamples. This means that it is valid for

any instance within the scope, but not necessarily for instances bigger than it. An infinite number of

instances can not be tested, but the scope can be increased until there is enough confidence that the

check is valid.

Unfortunately, the check for NoCollision fails, as shown by the counterexample in Figure 8. An-

alyzing the counterexample, the problem is evident, the transition to change signal color disregards the

presence of trains in the actively connected tracks. In the first state of the counterexample, Track1 has

a train in it, and therefore, the signal in Track2 cannot change to green, since this later leads to the

collision between Train0 and Train1.
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The fix starts with calculating the reachable tracks in the case lights don’t change, and checking if

there’s currently a train on any of those tracks. The following change can be added to the pre-condition

of the transition to take this into account.

fun reachable_tracks[t: Track] : Track {
t.^(active - RedTrack -> Track + t -> t.active)

}
pred switch_color[t: Track] {

t in GreenTrack or {
active.(t.active) in RedTrack
all track : reachable_tracks[t] | no pos.track

}
...

}

2.3 Syntax and Semantics

In previous sections, Alloy has been presented with a focus on the practical usage of the language. This

section will attempt to formalize the concepts used previously.

Below the syntactic rules are presented both in the Alloy syntax and in the more traditional math-

ematical notation. It is based on previously presented definitions [17, 16, 26] and doesn’t attempt to

encompass the entire syntax for Alloy. The presented operators are expressive enough to capture all the

language, since missing operators can be derived from the presented ones.

The identifiers used are the following:

• c for constants;

• v for variables;

• � for n-ary relational expressions;

• φ for formulas.

The formation rules for expressions are the shown below. On the left, the alloy representation is

presented, and, on the right, the corresponding mathematical representation.

Φ ::= e Φ

| c 2

| v E

17
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| e1 + e2 Φ1 ∪ Φ2

| e1 & e2 Φ1 ∩ Φ2

| e1 - e2 Φ1\Φ2

| e1 -> e2 Φ1 × Φ2

| e1 . e2 Φ1 � Φ2

| ~e Φ◦1

| ^e Φ+1

| *e Φ∗1

| {v : e1 | f1} {E ∈ Φ1 |q1}

The formation rules for formulas are shown below. Like previously, in the left is presented the Al-

loy representation, and, in the right, the corresponding mathematical representation. For the temporal

operators the corresponding standard operator from linear temporal logic is presented.

q ::= e1 in e2 Φ1 ⊆ Φ2

| e1 = e2 Φ1 = Φ2

| not f1 ¬q1
| f1 or f2 q1 ∨ q2
| f1 and f2 q1 ∧ q2
| f1 implies f2 q1 → q2

| all v : A | f1 ∀E · E * � ∨ q1
| some v : A | f1 ∃E · E ⊆ � ∧ q1
| no e1 |q1 | = 0

| lone e1 |q1 | ≤ 1

| one e1 |q1 | = 1

| some e1 |q1 | ≥ 1

| always f1 �q1

| eventually f1 �q1

| after f1 -q1

| f1 until f2 q1*q2

| f1 releases f2 q1'q2

| historically f1 �q1

| once f1 $q1
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| before f1 .q1

| f1 since f2 q1(q2

| f1 triggered f2 q1)q2

Below are presented the semantics for the evaluation of both expressions and formulas. The double

brackets represent the evaluation, and it takes two arguments:

• c is an infinite sequence of interpretations for constants, predicates and variables;

• = is a natural number, denoting which interpretation is being considered.

The semantics for evaluation of the value of an expression are the following.

ÈEÉ8c =c (8) (E)
È2É8c =2

ÈΦ1 + Φ2É8c =ÈΦ1É8c ∪ ÈΦ2É8c
ÈΦ1 & Φ2É8c =ÈΦ1É8c ∩ ÈΦ2É8c
ÈΦ1 - Φ2É8c =ÈΦ1É8c \ ÈΦ2É8c
ÈΦ1 � Φ2É8c =ÈΦ1É8c× ∈ ÈΦ2É8c
ÈΦ1 . Φ2É8c ={(01, ..., 0=−1, 11, ..., 1<−1) | (01, ..., 0=) ∈ ÈΦ1É8c

∧ (11, ..., 1=) ∈ ÈΦ2É8c ∧ 0= = 1=)}
È~ Φ1É8c ={(1, 0) | (0,1) ∈ ÈΦ1É8c }
È^ Φ1É8c ={(0,1) | (0,1) ∈ ÈΦ1É8c ∨ ∃21, ..., 2= · ((0, 21) ∈ ÈΦ1É8c

∧ (21, 22) ∈ ÈΦ1É8c ∧ ... ∧ (2=, 1) ∈ ÈΦ1É8c )}
È* Φ1É8c ={(0, 0) |0 ∈ �} ∪ È^ Φ1É8c
È{G1 : Φ1, ..., G= : Φ= |q1}É8c={(01, ..., 0=) |01 ∈ ÈΦ1É8c ∧ ... ∧ 0= ∈ ÈΦ=É8c

∧ c, 8 |= q1 [01/G1, ..., 0=/G=]}
ÈΦ′É8c =ÈΦÉ8+1c

The semantics for the evaluation of the value of a formula are the following.

c, 8 |= Φ1in Φ2 ≡ÈΦ1É8c ⊆ ÈΦ2É8c
c, 8 |= Φ1= Φ2 ≡ÈΦ1É8c = ÈΦ2É8c
c, 8 |= not q1 ≡c, 8 6 |= q1

c, 8 |= q1 or q2 ≡c, 8 |= q1 ∨ c, 8 |= q2

c, 8 |= q1 and q2 ≡c, 8 |= q1 ∧ c, 8 |= q2

c, 8 |= q1 implies q2 ≡c, 8 6 |= q1 ∨ c, 8 |= q2
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c, 8 |= all E : � | q1 ≡c, 8 |=
∧

2∈È�É8c

q1 [2/E]

c, 8 |= some E : � | q1 ≡c, 8 |=
∨

2∈È�É8c

q1 [2/E]

c, 8 |= no Φ1 ≡ÈΦ1É8c = 0

c, 8 |= lone Φ1 ≡ÈΦ1É8c ≤ 1

c, 8 |= one Φ1 ≡ÈΦ1É8c = 1

c, 8 |= some Φ1 ≡ÈΦ1É8c ≥ 1

c, 8 |= always q1 ≡∀8 ≤ 9 · c, 9 |= q1

c, 8 |= eventually q1 ≡∃8 ≤ 9 · c, 9 |= q1

c, 8 |= after q1 ≡c, 8 + 1 |= q1

c, 8 |= q1 until q2 ≡∃8 ≤ : · (c, : |= q2 ∧ ∀8 ≤ 9 < : · c, 9 |= q1)
c, 8 |= q1 releases q2 ≡∀8 ≤ : · (c, : |= q2 ∨ ∃8 ≤ 9 < : · c, 8 |= q1)
c, 8 |= historically q1 ≡∀9 ≤ 8 · c, 9 |= q1

c, 8 |= once q1 ≡∃ 9 ≤ 8 · c, 9 |= q1

c, 8 |= before q1 ≡0 < 8 ∧ c, 8 − 1 |= q1

c, 8 |= q1 since q2 ≡∃: ≤ 8 · (c, : |= q2 ∧ ∀: < 9 ≤ 8 · c, 9 |= q1)
c, 8 |= q1 triggered q2≡∀: ≤ 8 · (c, : |= q2 ∨ ∃: < 9 ≤ 8 · c, 9 |= q1)

Concrete examples of evaluation are shown below, relating to Figure 9.

• È)A02:É=c = c (=) ()A02:) = {)A02:0,)A02:1}, = ∈ ℕ;

• È)A02:0É=c = c (=) ()A02:0) = {)A02:0}, = ∈ ℕ;

• È02C8E4É0c = c (0) (02C8E4) = {)A02:1 ×)A02:0};

• È∼ 02C8E4É0c = {)A02:0 ×)A02:1}

• È)A02:É1c = c (1) (02C8E4) = {};

• È=4GC − 02C8E4É0c = È=4GCÉ0c\È02C8E4É0c = {)A02:1 ×)A02:0}\{)A02:1 ×)A02:0} = {};

• È=4GC − 02C8E4É1c = È=4GCÉ1c\È02C8E4É1c = {)A02:1 ×)A02:0}\{} = {)A02:1 ×)A02:0};

The previous examples show the evaluation of a formula for a specific state. The evaluation of a

formula for an entire trace is made by checking if it is valid for every state of that trace, c |= Φ ≡
∀8 ∈ N0 · c, 8 |= Φ. For a formula to be generally valid, it has to be valid for every possible trace,

|= Φ ≡ ∀c · c |= Φ.

20



2.3. SYNTAX AND SEMANTICS

Figure 9: Instance with the active tracks changing.
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3

State of the Art

This chapter will provide an overview of automatic repair. It will first introduce some concepts relating to

the area and the various stages of an automatic repair technique. It will then analyze the previous work on

Alloy automatic specification repair that works for static models, namely, the fault localization extension

AlloyFL, the automatic repair tool ARepair [35, 34], the fault localization technique FLACK and the

automatic repair technique BeAFix [8].

3.1 Overview

Automatic repair revolves around bugs, namely finding, correcting or improving them. The term ’bug’

encompasses multiple terms [28]: failures refer to unacceptable behaviour; errors refer to an incorrect

state prior to a failure; faults refer to the root cause of the error. A bug can then be seen as a difference

in the expected versus the actual behavior of a system.

In the definition of a bug, there’s an implicit notion of an observer, the observer is the one who dictates

what the expected output is. This observer is very often a human simply looking at the behavior and saying

it is not correct. In automatic program repair, however, the machine needs to be able to differentiate faulty

outputs from correct ones. For this, the concept of an oracle is often introduced; it determines whether

the behavior of the system is correct. It can do this using, for example, unit tests that map inputs to their

expected outputs. In the case of Alloy, assertions can be added, allowing the use of the logic system and,

therefore, a more precise way to differentiate correct specifications from incorrect ones.

Fault localization refers to the process of finding the exact localization or possible localizations that

can be causing a fault [41]. Finally, program repair refers to the process of finding patches for the current

code that the oracle deems as correct.

Unlike automatic program repair, there is little work for the automatic repair of specifications, even

outside of Alloy. In the sections below, the current state of the art for automatic repair of Alloy models

will be presented. Two techniques for fault localization and two techniques for model repairing, as well as

some other techniques that complement these.
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3.2 AlloyFL

AlloyFL is a fault localization tool for Alloy [21, 5]. It also denotes the first set of fault localization techniques

for faulty Alloy models and also the first set of fault localization techniques at the AST node granularity

[38]. AlloyFL relies on AUnit, a test automation tool for Alloy [31], that is responsible for checking the

expected validity of certain instances for the model. AlloyFL does not rank all AST nodes due to the lack

of control flow leading to many equally suspicious nodes. Furthermore, to reduce the number of returned

nodes, the root node of the AST subtree with the highest number of equally suspicious AST nodes is the

one returned. After presenting AUnit five variants of AlloyFL are presented, AlloyFL2> , AlloyFLD=, AlloyFLBD ,

AlloyFL<D and AlloyFLℎ~ .

3.2.1 AUnit

AUnit is inspired by the unit testing technique that is mostly used for imperative languages. In AUnit, it is

possible to define a test case and the expected outcome for that test case. It also can generate coverage

results, allowing the user to verify the parts of the code being tested by the test cases.

To quickly illustrate the capabilities of AUnit a simple model of a list will be presented along with a

function and predicate. A list can either be empty or have a beginning node, which can then be connected

to 0 or 1 other nodes.

sig List { begin: lone Node }
sig Node { tail: lone Node }
pred empty[l: List] {

no l.begin
}

Valuations can now be specified with the val keyword. Valuations can be used in tests, to create

a new test the @Test keyword is used. A @cmd:... keyword is also introduced to allow embedding

formulas to the AUnit test. This is particularly useful to test predicates with parameters, whose variables

wouldn’t be possible to bind outside the valuation scope. For example in Test1 shown below, writing

run testEmpty and empty[List0] wouldn’t make sense since List0 isn’t bound on that scope.

val testUnitList {
some List0: List, Node0: Node {

List = List0
begin = List0->Node0
Node = Node0

}
}
val testEmpty {
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some List0: List, Node0: Node {
List = List0
begin = List0->Node0
Node = Node0
@cmd: { empty[List0] }

}
}
@Test Test0: run testUnitList for 3 expect 1
@Test Test1: run testEmpty for 3 expect 0

Figure 10: Previously defined tests passing.

The tests pass, as can be seen on Figure 10. Altering the @cmd to not empty[List0] will make

the test fail, yielding the result seen in Figure 11.

Figure 11: Altered test failing.

The generated coverage results are also handy to understand the cases missing in the test cases. For

example, from Figure 12, it can easily be seen that there are no tests for instances with no lists, or more

than one list.
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Figure 12: Coverage results.

The coverage is calculated by checking each test. If a signature is set with a cardinality of 0, 1 or

above 1, then |s| = 0, |s| = 1, |s| > 1 is marked as covered, respectively. Similarly, for the case
of boolean expressions, if their result is false or true in a test, that result is marked as covered. Adding a

simple test case for no list is reflected in the coverage, as seen in Figure 13.

val noList {
no List

}
Test Test2: run noList for 3 expect 1

Figure 13: Coverage results.

3.2.2 AlloyFL2>

AlloyFL2> implements the spectrum-based FL (SBFL) technique. It consists of running the test suite and

checking the blocks used in each test. In imperative languages, these blocks can be, for example, single
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instructions. Since Alloy is a declarative language, without control flow or execution traces, the expres-

sions/formulas within a paragraph (i.e. signature, predicate, function, fact and assertion) are either all

or none executed by a given test. This means nodes within the same paragraph will share the same

suspiciousness scores.

By default, all facts are implicitly used for each test. So, this technique will only yield different suspi-

ciousness scores for predicates called in the test suite but not in facts. A static analyzer is used to find all

the paragraphs transitively used in each test. It then ranks them based on the number of passing/failing

tests using a suspiciousness formula. This technique is expected to be inaccurate due to the limitations

presented above.

AlloyFL2> allows selecting one out of five suspiciousness ranking formulas. These are presented in

Table 1, where passed(e) and failed(e) denote the amount of passed and failed tests with the expression

being examined; and totalpassed totalfailed represent the total of passed and failed tests in the test suite.

Name Formula

Tarantula [18]

5 08;43 (4)
C>C0; 5 08;43

5 08;43 (4)
C>C0; 5 08;43

+ ?0BB43 (4)
C>C0;?0BB43

Ochiai [2]

5 08;43 (4)√
C>C0; 5 08;43×(5 08;43 (4)+?0BB43 (4))

Op2 [29]

5 08;43 (4) − ?0BB43 (4)
C>C0;?0BB43+1

Barinel [1]

1 − ?0BB43 (4)
?0BB43 (4)+5 08;43 (4)

DStar [42]

5 08;43 (4)
?0BB43 (4)+(C>C0; 5 08;43−5 08;43 (4))

Table 1: Available suspiciousness ranking formulas for AlloyFL2> , AlloyFL<D and AlloyFLℎ~ [21].
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3.2.3 AlloyFLD=

AlloyFLD= modifies the standard Alloy toolset to be able to return the potentially faulty AST nodes using

unsat core (a set of formulas for which no satisfying instance exists). This is only available for the MiniSat

solver since it is the only solver in Alloy that returns this information. Note that this technique only takes

into account unsatisfiable failing tests, AlloyFLBD expands this to satisfiable failing tests. It constructs a hit

map for the entire AST with each node having an initial count of 0, and whenever a node is returned by

the unsat core, the count for the node and its descendants increases by one. After checking every test it

collects nodes whose counts are greater than their parents (note that a node count can only be greater or

equal to its parent). The collected nodes are ranked in descending order of the corresponding count, in

case of a tie in the count, nodes with fewer descendants are prioritized.

The researchers present the Figure 14 to illustrate this behavior. Firstly, all nodes have the count set

to 0. There’s then a hit on the node with a square, it and its descendants have their counts increased.

After that occurs a second hit and the same process applies. In the end AlloyFLD= would return the node

hit first and second, with the first one being ranked higher in suspiciousness.

Figure 14: Illustration for AlloyFLD= and AlloyFLBD presented by the AlloyFL researchers [21].

3.2.4 AlloyFLBD

AlloyFLBD is similar to AlloyFLD=, however, it also takes into account satisfiable failing tests. The nodes

reported from the unsatisfiable tests are the same as the ones from AlloyFLD=. For satisfiable tests, it uses

the same static analyzer from AlloyFL2> and increases by one of the nodes returned by it.

3.2.5 AlloyFL<D

AlloyFL<D implements a mutation-based FL (MBFL) technique. It mutates AST nodes to non-equivalent

mutants (i.e. a&&b to a||b) and compares the results of the mutated model to the ones from the original

model.

The algorithm can be stated simply as follows: collect all the nodes covered by failing tests using the

static analyzer; for each of these nodes, attempt to apply every mutation (one at a time); if the mutation is

not applicable, leads to compilation error or is equivalent to the original model, skip it; otherwise, rerun the
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tests for the mutated model and compute a suspiciousness score for each node using one of the formulas

presented in Table 1; the final score for each node is the maximum suspiciousness score it got through

the mutated models.

Table 2 shows the list of mutation operators presented by the researchers, along with examples.

Operator Description Alloy

MOR Multiplicity Operator

Replacement

”one sig”→”lone sig”

QOR Quantifer Operator

Replacement

”some”→”all”

UOR Unary Operator Replacement ”a.^b”→”a.*b”

BOR Binary Operator Replacement ”a<=>b”→”a=>b”

LOR Formula List Operator

Replacement

”a&&b”→”a||b”

UOI Unary Operator Insertion ”a”→” a”

UOD Unary Operator Deletion ” a”→”a”

LOD Logical Operand Deletion ”a&&b”→”b”

PBD Paragraph Body Deletion ”fact{ e }”→”fact{}”

BOE Binary Operand Exchange ”a-b”→”b-a”

IEOE Imply-Else Operand Exchange ”a=>b else c”→”a=>c else b”

Table 2: Mutation operators used in AlloyFL<D [36].

3.2.6 AlloyFLℎ~

AlloyFLℎ~ implements a hybrid between the previously mentioned SBFL and MBFL techniques. It takes

the average suspiciousness score obtained from AlloyFL2> and AlloyFL<D and assigns a score to each AST

node. In the case an AST node is not mutable (and therefore doesn’t have a suspiciousness score from

Alloy<D ) only the score from AlloyFL2> is used. If multiple nodes have the same score, the ones with fewer

descendants are prioritized.

In the benchmarks performed by the researchers, AlloyFLℎ~ was able to perform better than the other

variants under various metrics. Intuitively, it is designed to combine the strengths of the two other tech-

niques, since AlloyFL<D tends to perform badly for omission errors (since it can’t add extra information),

where AlloyFL2> performs relatively well.

3.3 ARepair

ARepair is a command-line tool, and it is the first automatic repair technique for Alloy [35, 34]. ARepair

depends on multiple Alloy extensionsl, namely: the previously presented AlloyFL; AUnit, for the notion
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of unit testing; MuAlloy, [32, 36] to define mutation operators for Alloy grammar and perform mutation

testing; RexGen, [40] to generate non-equivalent relational expressions; and ASketch, [37, 39] to complete

missing fragments of models in a way that all AUnit tests pass.

ARepair follows the generate-and-validate approach [15]. This means it receives an Alloy model and an

AUnit test suite where the model triggers failing tests. ARepair then searches through various candidates

and tries to fix the model in such a way that all tests pass. ARepair may run for multiple iterations to

fix a model. This is because at each iteration it only applies a change in such a way that some of the

previously failing tests pass, while the previously passing tests keep passing. This greedy approach means

that ARepair may not always be able to find a patch to make all tests pass, and therefore it can fail to fix

a model.

Since ARepair relies on many previously defined tools, the technique can be explained rather simply.

The model and unit tests are fed into AlloyFL, which will output the AST nodes ranked by their suspi-

ciousness score. ARepair attempts to apply mutations on the most suspicious node. The mutations are

generated using MuAlloy. If a mutation making some failing tests pass while preserving passing tests, it

is applied. In the case no such mutation is found, for each suspicious node, ARepair creates holes at

each level of the AST in a bottom-up fashion, and tries to synthesize code for them. The holes are made

using ASketch, and the synthesizations are made using RexGen. Assuming a suspicious AST with depth

D, ARepair will replace all nodes at depth D with holes and try to synthesize code for these nodes such

that some failing tests pass while keeping passing tests. In case no valid patch is found, ARepair will

instead replace all the nodes at depth D-1 with holes and repeat the process; if no patch is found at depth

0, ARepair moves on to the next suspicious AST node. Figure 15, presented by the ARepair researchers,

shows how the various components link together as explained above.

Figure 15: Diagram illustrating the various components in ARepair [34].
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3.4 FLACK

FLACK is a tool suite for fault localization in Alloy models using counterexamples [45]. Unlike AlloyFL, it

doesn’t rely on unit tests to localize faults in models. Instead, it relies on Alloy assertions, more specifically,

on the counter-examples presented by the Alloy Analyzer. These are already commonly used by Alloy users,

so their usage is more natural and makes for a better user experience.

FLACK relies on various components, namely:

• the Alloy Analyzer, capable of generating counterexamples having as input an Alloy model and a

violated assertion. A counterexample is an instance � of the model" that is invalid for the asserted

predicate ?, in logic notation: � |= " ∧ ¬?;

• A PMAX-SAT (Partial-Max SAT) solver, more specifically, the Pardinus solver [14]. Given an unsat-

isfiable normal form formula, a PMAX-SAT solver can calculate the maximum amount of clauses

that can be made true. For FLACK, this is used to find the satisfiable instance most close to a

counterexample;

• A Comparator, capable of identifying differences in instances (counterexamples generated by the

Alloy Analyzer and the satisfiable model generated by the PMAX-SAT solver). These differences

involve atoms, tuples and relations. Intuitively these differences are the ones causing faults so

relations dependent on them are more suspicious;

• A Diff Analyzer that given the model, pairs of counterexamples and their satisfiable instances, along

with their differences, can generate a ranked list of suspicious expressions in the model.

Figure 16 presents an overview of these components and how they interact, as shown by its re-

searchers.

Figure 16: Overview of the components used in FLACK [45].

Algorithm 1 shows the base FLACK algorithm. It receives as input the model and a property not

satisfied by the model (a violated assertion). FLACK uses the Alloy Analyzer to get the counterexample

instances that violate the property. It then uses the Pardinus PMAX-SAT to generate pairs of counterex-

amples and their most similar satisfiable instances. After this, FLACK computes the differences between

the pairs of instances and runs the diff analyzer to locate the error. If FLACK cannot generate a similar

satisfiable instance, it instead uses the unsat core returned by the Alloy Analyzer to locate the error.
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Algorithm 1: FLACK fault localization process [45].

Input: Alloy model M, property p not satisfied by M

Output: Ranked list of suspicious expressions in M

AlloySolver ← AlloyAnalyzer (M, p)
pairs← ∅
while |pairs | < max_instance_pairs do

c ← AlloySolver .gencex ()
AlloySolver .blockcex (c)
s← PMaxSolver (M, c)
if s = nil then

U ← AlloySolver .get_unsatcore()
return unsat_analyzer (M,U , c)

pairs← pair ∪ (c, s)
end

diffs← comparator (pairs)
return diffs_analyzer (diffs)
Algorithm 2 shows the algorithm FLACK uses to calculate the suspiciousness score of expressions

based on the differences between counterexamples and their satisfiable instances. It takes the model,

pairs of counterexamples, their satisfiable instances and the differences between them and returns a

ranked list of suspicious expressions. Firstly, the diff analyzer tries to compute the suspicious expressions

based on the diff. For example, if two atoms are part of a relation in the counterexample but not in the

satisfiable instance, expressions dependent on these atoms or this relation will be flagged as suspicious.

After these suspicious expressions are calculated, a score is computed for each of them, the expressions

are given as an AST tree and computed recursively.

• If the expression is a leaf, then FLACK instantiates it with the atoms from the instance differences,

and then it evaluates it for each pair of counterexamples and satisfiable instances. If the evaluated

result for an instantiated expression contains all atoms involved in the differences, it increases the

score for the expression. If no evaluated result contains all atoms involved in the differences, the

returned score will be 0.

• In case the expression evaluates to a Boolean (i.e. ’foo in bar’), then it is instantiated with atoms

from the differences and evaluated for each pair. If the result is different for the counterexample

and valid instance, the score is incremented. This score is then added to the sum of the scores of

the children expressions.

• If the expression is neither a leaf nor evaluates to a Boolean, the score is the sum of the scores of

the children expressions.
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Algorithm 2: FLACK Diff Analyzer. [45].

Input: Alloy model M, pairs of counterexamples and satisfiable instances pairs, differences

between the pairs diffs

Output: Ranked list of suspicious expressions in M

exprs← get_susp_exprs(M, diffs)
results← ∅
foreach expr ∈ exprs do compute_score(expr, results)
return sort (results)

Function compute_score(expr, results) is
score← 0

if isleaf (expr) then
isexpr ← instantiate(expr, diff )
foreach (c, s) ∈ pairs do

cvals← eval(c, isexpr)
svals← eval(s, isexpr)
instscore← 0

if diff ⊂ cvals then

instscore← instscore + |diff ||cvals |
if diff ⊂ svals then

instscore← instscore + |diff ||svals |
score← score + instscore

2

end

score← score
|pairs |

else

if isbool(expr) then
isexpr ← instantiate(expr, diff )
foreach (c, s) ∈ pairs do

if eval(c, isexpr) ≠ eval(s, isexpr) then
score← score + 1

end

foreach child ∈ getchildren(expr) do
score← score + compute_score(child, results)

end

end

results← results ∪ (expr, score)
end

There might be cases where a counterexample is generated, but similar satisfiable instances can’t be
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found. This indicates that the model has a logic conflict with the property we want to check (a contradic-

tion). In these cases FLACK inspects the unsat core generated by Alloy. This is a smaller subset of the

original constraints containing the conflicting constraints.

Algorithm 3 explains the process of obtaining the faulty expressions based on the unsat core. It

receives as input an Alloy model, a counterexample and the unsat core generated by Alloy. FLACK starts

by producing a sliced model of the original where the expressions in the unsat core are omitted. Since

the conflicting instances are removed, it should now be possible to generate a satisfiable instance with

the sliced model to compare with the counterexample. The counterexample is compared to the satisfiable

instance and the differences between them are identified. Finally, FLACK attempts to identify which

removed expressions are really conflicting with the assertion by evaluating them on obtained differences.

Intuitively, if an expression evaluates to true this means adding it back to the model would still allow the

sat instance to be generated. Therefore, expressions evaluating to false are the ones conflicting with the

assertion, and so they return as suspicious.

Algorithm 3: FLACK UNSAT Analyzer [45].

Input: Alloy model M, unsat core U, counterexample c

Output: a set of expressions in M

M′← slice(M,U )
s← PMaxSolver (M′, c)
diffs← comparator ((c, s))
exprs← collect_exprs(U )
conflicts← ∅
foreach expr ∈exprs do

foreach diff ∈ diffs do
if eval(expr, diff ,M′) = false then

conflicts← conflicts ∪ expr
end

end

return conflicts

The FLACK researchers present various benchmarks for the technique, notably, where some models

were compared to AlloyFL. The results of this comparison are shown in Figure 17. As can be seen, for

the 152 benchmark models, FLACK was able to better rank the faulty expressions (a rank n means the

faulty expression was ranked as the n-th most suspicious position). Perhaps more importantly, FLACK

can generate the ranking of suspicious nodes two orders of magnitude faster than AlloyFL. FLACK failed

to find the faulty expression more often than AlloyFL.
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Figure 17: Comparison between FLACK and AlloyFL [45].

3.5 BeAFix

BeAFix is a tool for bounded exhaustive search of Alloy specification repairs [8]. This means it explores

every possible repair candidate within certain bounds, applying pruning techniques to reduce the search

space without losing valid candidates. Similarly to FLACK, this technique goes along the spirit of Alloy

which also searches all possible instances within a bounded scope to verify assertions.

For the purposes of repair, BeAFix describes a faulty specification as one where at least one of the

analysis commands for it has an outcome contrary to expected. This encompasses things like failing

assertions or unsatisfiable predicates. Similarly, a fix is defined as a patch capable of making the outcome

for all the commands align with its expected outcome. This technique, therefore, requires the user to

specify the assertions, predicates, or tests that the technique will use for its fix acceptance criterion. This

specified portion of the code cannot be changed by the generated patch as it would lead to trivial solutions.

The fault detection stage resorts to the underlying mechanism behind Alloy Analyzer. Once a speci-

fication is regarded as faulty, there’s a need to identify the parts of the specification that are more likely

to be causing the fault. For this, BeAFix assumes an external tool able to provide a ranking of suspicious

specification locations. The implementation of this technique was developed with FLACK as a backend for

fault localization. However, the technique doesn’t rely on unit testing. Thus, unlike ARepair, it should be

compatible with any fault localization technique, as long as the acceptance criteria is valid for said fault

localization technique.

With the suspicious nodes identified, BeAFix can start the process of generating fix candidates. These

candidates are mutations of the original model. Examples of mutation operations considered are: logical

and relational operator insertion, removal and replacement; quantifier replacement; multiplicity constraint

replacement; field or variable swap and replacement. The specification is processed for type information to

prevent generating mutations that would lead to type errors. Contradictory formulas are also disregarded.

Mutations can be applied to already mutated models, and both the available mutation operations and the

maximum number of combined mutations can be configured. These are then exhaustively generated (up

until the configured maximum amount of combined mutations) as the space of fix candidates is traversed.

Since there will be a very high amount of possible generated fixes, BeAFix presents pruning techniques

capable of eliminating candidates, without the loss of candidates that will possibly be fixes. The search

space is organized as a search tree, the root being the original specification with the obtained faulty

locations. If specification s is in the search tree and s’ can be obtained by applying a mutation to s, then s’

will also be in the tree with the same locations marked as faulty. For BeAFix nodes of the tree are visited
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in a breadth-first fashion. Other traversals could be adopted without impacting the ability to find a fix (but

possibly changing execution time).

BeAFix proposes two pruning techniques. The first pruning technique is referred to as Partial repair

checking. It consists in identifying one of the suspicious locations for which a current repair candidate fails

independently of changes in other suspicious locations. Let (?42 be an Alloy specification, �ℎ42:1, ...,

�ℎ42:: the checks used as oracles and !0, !1 the suspicious locations previously identified. Each�ℎ42:8

refers only to specific parts of (?42, these can be identified by syntactic analysis (recursively checking the

formulas, relations, etc. used inside the check). With this analysis, it can be determined for every check

which of the locations it involves. Let <0 and =0 be the modifications for !0 and !1, respectively. If a

failing check �ℎ42:8 refers to only one of the suspicious locations, say !0 and its current expression<0,

this means that �ℎ42:8 will still be false for any =0. Therefore, if<0 is maintained, modifying !1 cannot

be a fix for (?42, and this means all the candidates (<0, =8) can be excluded from the search.

It is important to note that the previously presented pruning technique relies on some properties of

Alloy’s relational logic. Namely, that the validity and satisfiability of a formula only depends on symbols

it refers to; and the property that adding more assumptions to a formula cannot reduce the conclusions

drawn from it originally (this technique relies on unsatisfiability, where 5 0;B4 is concluded).

The second pruning technique is referred to as Variabilization. It consists in identifying modifications

that won’t generate fixes when paired with any modifications in a specific location. Let�ℎ42:8 be a failing

assertion referring to suspicious locations; !0 and !1, (<0, =0) the current failing fix candidates; and��-8

a counterexample as result of the assertion violation (��-8 6 |= (?42 [<0, =0] → �ℎ42:8 ). The purpose

of variabilization is to check whether the current fix for !0 may work with some candidate for !1 (=0 is

already known not to work). Let �1 be a formula containing !1, ) the most general type for !1 in context

�1, (?42!1 the specification obtained by replacing �1 in (?42 with the expression ∃;1 : ) |�1[;1/!1]. In
(?42!1, !1 is replaced by the existence of any variable of type ) , which will be either the same or more

generic type than the type of !1. The expression ��-8 |= (?42!1 → �ℎ42:8 can be now checked, and

will verify if there exists any value of type ) for which ��-8 stops being a counterexample. If this check

fails, it means no value that is put in !1 would work while<0 is in !0, therefore all candidates (<0, =8)
can be discarded from the search.

Figures 18 and 19 show the benchmarks presented in the BeAFix paper. The benchmarks are made

with FLACK being used as the method for BeAFix to get the suspicious locations. In general, BeAFix seems

to be able to find repairs more consistently than ARepair and with better average times. Notably, there

is a discrepancy between the success of ARepair for its own benchmarks and the ones from Alloy4Fun.

The explanation presented by the BeAFix researchers is that the unit tests for Alloy4Fun tests have been

automatically generated using AUnit. Which lead to incorrect fixes that passed the generated tests, while

the benchmarks from ARepair were manually designed preventing as much overfitting. This shows that

the ARepair has its results very dependent on writing the right set of tests. This would be time-consuming

since, as shown, automatically generated tests don’t yield the best results.
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Figure 18: Comparison between ARepair and BeAFix for ARepair benchmarks [8].

Figure 19: Comparison between ARepair and BeAFix for Alloy4Fun models [8].
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Temporal Alloy Repair

This chapter will provide an overview of the technique developed, along with explanation of the implemen-

tation, and the decisions made in the development process. It will also provide benchmarks comparing

the results of previously developed tools with TAR, the technique presented in this chapter, as well as

benchmarks for temporal models and other observations.

The developed tool is capable of repairing Alloy 6 temporal specifications, as expected by the main

goal of this thesis. It was, therefore, named TAR, standing for Temporal Alloy Repair.

4.1 Overview

The benchmarks shown in Figures 18 and 19 seem to indicate that the mutation-based repair technique,

presented in BeAFix, is able to produce better results than the mainly synthesis-based technique, pre-

sented in ARepair. For this reason, the technique in TAR gets its roots from BeAFix. Namely, it is also
mutation-based, exhaustively searching the candidates up to a certain depth; and uses pruning methods

to skip certain candidates known not to be a valid solution. The main differences between the techniques

are: the ability to repair temporal expressions; a different set of mutators; and differences in pruning

techniques.

TAR has also been developed with the intent of being used in a teaching and learning context, as

explained in the motivation. Specifically, to generate hints for students using the Alloy4Fun platform.

Alloy4Fun is a platform that allows the instructor to create challenges for students, by permitting the

definition of hidden predicates and checks. In typical usage, the instructor will write a base model. Then,

a hidden predicate, corresponding to the correct answer. Also, a hidden check, which verifies if the

hidden predicate is equal to the answer given by the student. This has two main implications for the

repair: the tool does not need to have fault localization implemented because the fault will always be

in the predicates written by the student; and second, in typical usage, the student only has to write one

predicate per challenge. This means pruning techniques relying on having multiple suspicious locations in

different paragraphs are not useful. Both techniques in BeAFix are only applied in these cases (although
variabilization could be applied more generally). To further illustrate how the platform works, consider the
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var sig File {
var link : lone File

}
var sig Trash in File {}
var sig Protected in File {}

//SECRET
pred prop4o { eventually some Trash }

//SECRET
check prop4ok { prop4 <=> prop4o }

// some file will eventually be sent to the trash
pred prop4 { }

Listing 1: Portion of the code from a challenge in Alloy4Fun.

Alloy snippet below, which is part of the code behind an exercise in Alloy4Fun.

The exercise presents the model of a simple filesystem. It contains three signatures: File, to rep-
resent the files in the system; Trash which is a subset of File and represents the files that have been

sent to the trash; and Protected, also a subset of File, to represent protected files. It also contains
the link relation, indicating if a file is a regular file or a link to a different file. All these signatures and

relations are marked as variable, indicating that files can appear, disappear, and change status throughout

temporal states.

The fourth challenge asks the student to write a predicate that evaluates to true if, and only if, a file is

at any time sent to the trash. The solution proposed by the tutor can be seen in the prop4o predicate. It

is marked with the //SECRET so the platform knows this paragraph should be hidden from the student.

The student is expected to fill the body of the prop4 predicate with the solution to the challenge. To verify
the answer, the prop4ok check is used to test if the solution proposed is semantically equivalent to the

one written by the student. Here the previous points are clear, the student can only change one predicate,

prop4, and the fault, if it exists, is always present in that predicate since prop4o and prop4ok are

correct.

A common faulty solution submitted by students is the following.

pred prop4 { some f : File | eventually f in Trash }

At first glance, this solution might seem correct. However, without temporal operators, expressions

are only evaluated for the first state. This means that the property actually only checks if some file present

in the initial state is eventually in the trash. Knowing this, it’s easy to figure out what counterexample Alloy

could give, an instance where a file is added to the system after the first state, and then also sent to the
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trash, Figure 20 shows this counterexample. This counterexample would then be shown to the students,

which they are expected to interpret to find the fault in their reasoning.

Figure 20: Counterexample to a faulty predicate shown by Alloy.

In mutation-based approaches to repair, candidates are generally obtained by mutating an AST node

into a new one based on certain mutation rules. The depth of a candidate is defined by the number of mu-

tators that compose it. For instance, the incorrect submission above could have the following candidates

at depth 1, meaning these candidates are composed of only one mutator:

• some f : Trash | eventually f in Trash

In this candidate, the File set is replaced by Trash;

• some f : File | eventually f in File

In this candidate, the Trash set is replaced by File;

• some f : File | always f in Trash

In this candidate, the eventually operator is replaced by always;

• some f : File | after f in Trash

In this candidate, the eventually operator is replaced by after;

• some f : File | eventually not (f in Trash)

In this candidate, a not unary operator is added, negating the f in Trash expression;

• one f : File | eventually f not in Trash

In this candidate, the some quantifier is replaced by one;

• eventually some f : File | eventually f in Trash

In this candidate, the eventually operator is added behind the entire expression.

Keep in mind that this is not an exhaustive list of candidates that might be generated at depth 1. Of

these mutants, only the last one, eventually some f : File | eventually f in Trash, is
equivalent to prop4o and therefore a correct solution. Note that this solution is not syntactically equivalent
to the oracle, it is however semantically equivalent, and closer to the shape of the predicate submitted by

the student. This means that for every instance within the scope of the validation command, the oracle

expression and the candidate evaluate to the same value. Having to evaluate all the instances within the
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scope implies that making sure a candidate is a correct solution amounts to calling the solver in Alloy

to run the check command. Calls to the solver can be expensive, especially if a simple counterexample

cannot be found. Since a lot of candidates will be generated, the process might generally take a long time.

Thus, the necessity for pruning methods, without them, the repair times will be too high and, therefore,

the educational application will be infeasible.

Note, however, that Figure 20 can also serve as a counterexample for all the candidates presented

above (except the correct one), since it is accepted by the oracle but not the candidates. This is the main

idea behind the pruning method in TAR. Counterexamples can be shared between candidates, this means

that to disqualify a candidate it might only be necessary to call the Alloy evaluator, which is less expensive

than calling the solver. Also, by storing the counterexamples obtained, these can then be used to attempt

to skip future candidates.

4.2 Implementation

This section explains the concepts and implementation of the tool. It starts by explaining the concept

of mutators. Then, it goes over how these mutators are combined to create candidates. Finally, how

counterexamples are used to prune candidates.

It is also important to introduce the concept of a location in TAR, a location is simply an AST node.

In the implementation, it also carries some extra metadata relating to the AST node, for example, the

variables in scope. To generate the suspicious locations, the user has to specify a predicate named

__repair and put the suspicious predicates there. This predicate name has no special meaning for

Alloy. It was chosen with the intent to make its purpose clear, while not colliding with predicates with

names more relevant to the model. TAR will then go to each of the predicates referenced and add every

expression and subexpression of them as a suspicious location.

4.2.1 Mutators and Candidate Generation

A mutator can be seen as a pair of a location (reference to the original expression), and the mutated

expression. Mutators also carry a list of blacklisted locations, meaning these locations will disappear or

are in some way not allowed to change when the mutator is applied. For example, a mutator can take an

originally binary expression and keep only one of its sides. In this case, the other side will be blacklisted,

since its subexpressions will cease to exist after the mutator is applied. Mutators are also able to generate

children, these children are new mutators that apply to locations created by the current mutator. The

application of a mutator is simple, take the example of Figure 21. The original expression is some File
+ Trash, and the mutator is File Trash. The numbers represent the reference to the AST node
object. Notice that locations are compared by reference, not syntactically. If the latter was the case, there

could be ambiguity on which node a mutator is applied to, however, the reference is unique. Using the

nodes reference for comparison has favorable properties. For example Figure 21, after the mutator is
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applied, there will be two nodes syntactically equivalent (0x3 and 0x4) and there would be ambiguity if a
mutator was to be applied to one of them.

0x0
some

0x1
+

0x2 
File

0x3 
Trash

0x0
some

0x1
+

0x4 
Trash 

0x3 
Trash

Figure 21: Diagram of the result of applying the candidate {File Trash} to the expression some
File + Trash.

A candidate is obtained from the application of multiple mutators. It is useful to be able to treat a

candidate as a set of mutators instead of a list, because this means candidates [<0,<1] and [<1,<0]
are actually equivalent. The issue arises when<0 and<1 are applied to the same location. In this case,

the order of application does matter. To prevent this, two mutators belonging to a candidate cannot be

applied to the same location. Instead, the mutator can generate a new location and more fine-tuned

children mutators for that location. This allows skipping a lot of candidates, for example, if [<1,<0] is
skipped this way, then [<1,<0,<=] can also be skipped, since an equivalent candidate will be covered
by [<0,<1,<=].

Tables 3 and 4 show the available mutators in TAR. These are not a complete representation of the

implementation as some of the mutators were merged into the same line due to having similar behavior.

The tables have three columns: one with the name attributed to the mutator; one showing the general

format of the mutator; and one giving an example for a possible instance of the mutator. The tables

are split into two categories, which are based on the type of expression they target. An expression can

either be Boolean or relation, and the mutations in TAR always keep Boolean expressions as Boolean and

relational expressions as relations.

Each mutator might only be implemented for certain expressions, for example, RemoveBinary is

(for obvious reasons) only applicable when the expression is binary. Most mutators also have generation

rules to reduce the number of candidates that will cause type errors. The following explains these rules:

• RemoveBinary is only implemented for binary expressions. The only rule is that the side of the

expression being taken has the same type as the original. For example, in operator will never be

removable since it takes two relations and returns a Boolean. However, we can always generate

two mutators for the operator and;

• ReplaceBinary is only implemented for binary expressions. It defines three groups of operators,
�>>;×�>>; → �>>; ,'4;0C8>=×'4;0C8>= → '4;0C8>= and'4;0C8>=×'4;0C8>= → �>>; , and

41



CHAPTER 4. TEMPORAL ALLOY REPAIR

only replaces operations within these same groups. For example, the operator + can be replaced

with -, since both are in the '4;0C8>= × '4;0C8>= → '4;0C8>= group, but it cannot be replaced

with the operator or, which is in the �>>; × �>>; → �>>; group;

• RemoveUnary is only implemented for unary expressions. The only rule is that the subexpression
of the original is of the same type. For example, the not operator can always be removed, but

multiplicities, like one and some, cannot;

• ReplaceUnary is only implemented for unary expressions. It defines three groups of operators,

�>>; → �>>; , '4;0C8>= → �>>; and '4;0C8>= → '4;0C8>=, and only replaces operations

within the same group. For example, always is replaceable by eventually since both belong

to �>>; → �>>; , but it is not replaceable by multiplicities, which belong to '4;0C8>= → �>>; ;

• BinaryToUnary is only implemented for binary expressions. The original operator has to be of

type '4;0C8>= × '4;0C8>= → �>>; . This allows us to replace the original operator with one of

the group '4;0C8>= × '4;0C8>= → '4;0C8>= and apply to the result an operator from the group

'4;0C8>= → �>>; , matching the type of the original expression. For example, the expression A
in B takes the relations A and B and returns a Boolean, this can be changed to no (A + B)
which takes the same relations and also returns a Boolean;

• InsertUnary is implemented for any expression. The only rule is that types are kept. For

example, the not operator can always be added to a Boolean expression;

• QuantifierToUnary is implemented only for quantifiers. It takes the relation being bounded to
one of the variables and applies an operator of the group '4;0C8>= → �>>; to it. For example,

some x: X | foo[x] would result in the mutator some X;

• ReplaceQuantifier is implemented only for quantifiers. It simply replaces quantifiers, it will

always type check since it does not consider sum and comprehension;

• ReplaceRelation is implemented for any expression that is a relation. It guarantees that the

arity of the relation is maintained, but the type can be changed;

• InsertBinary is split into multiple implementations. It tries to maintain the arity of the relation

and also checks that the resulting type does not result in an empty set. For example, if A is a subset
of B, then the mutator A - B would not be generated from the expression A, as this would result
in an empty set. Similarly, if A has an arity of 1 and B has an arity of 3, the mutator A . B would

not be generated, even if the expression type checks, since this would result in an expression of

arity 2.
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Name Mutation Example

RemoveBinary A [bop] B A A and B A
A [bop] B B

ReplaceBinary A [bop] B A [bop'] B A and B A or B
RemoveUnary [uop] A A always no A no A
ReplaceUnary [uop] A [uop'] A no A some A
InsertUnary A [uop] A no A always no A
BinaryToUnary A [bop] B A in B no (A + B)

 [uop] (A [bop'] B)
QuantifierToUnary [qtop] a:A | B [uop] A no a:A | foo[a] no A
ReplaceQuantifier [qtop] a:A | B no a:A | foo[a] 

[qtop'] a:A | B some a:A | foo[a]

Table 3: List of mutators for Boolean formulas.

Name Mutation Example

RemoveBinary A [bop] B A A + B A
A [bop] B B

ReplaceBinary A [bop] B A [bop'] B A + B A - B
RemoveUnary [uop] A A ~A A
ReplaceUnary [uop] A [uop'] A ^A *A
InsertBinary A A [bop] B A A + B
InsertUnary A [uop] A A ~A

ReplaceRelation A B A B

Table 4: List of mutators for relational expressions.

Algorithm 4 illustrates the candidate generation process in TAR. The algorithm starts by initializing

the various variables necessary for the generation. The list of candidates, 20=3B is initialized with a sin-

gle value, a candidate with no mutators, which will return the original model when applied; a variable

2DAA_20=3830C4B keeps track of the index of the candidate that will be returned next call to the itera-

tor; another variable, 2DAA_64=4A0C8>= keeps track of the index of the candidate that will be used to

generate more candidates when the ones currently in the list have all been returned; finally, the variable

<DC0C>AB stores the mutators for the initial repair locations (the ones not generated by other mutators),

the generation is made one location at a time, using the rules presented previously. The function next
is seen here as an iterator, which returns the next candidate to be used. If some of the candidates in-

side 20=3B have not already been returned, meaning the variable 2DAA_20=3830C4 is smaller than the

length of 20=3B, then the candidate is simply extracted using the index 2DAA_20=3830C4 and the variable

is incremented. Otherwise, if all the candidates inside 20=3B have been returned, there is the need to

generate more. To achieve this, the candidate in index 2DAA_64=4A0C8>= is retrieved and its children can-

didates are generated. These children candidates are generated by appending a mutator to the candidate,

under the rules that this mutator is not incompatible with one of the mutators inside the candidate. After

these new candidates are generated they are traversed and added to the list of candidates if there is no
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previously equivalent one. In this case, an equivalent candidate means one that has the same mutators

inside it, even if in a different order. After this process, the value of 2DAA_64=4A0C8>= is incremented.

The generation might yield no new candidates, in which case this process is repeated with a new index

in 2DAA_64=4A0C8>=. If 2DAA_64=4A0C8>= reaches a value equal to the length of 20=3B, this means no

new candidates can be generated, and thus, the function returns ⊥.

Algorithm 4: Candidate generation process in TAR.

Input: A set of repair locations.
Output: An iterator over the candidates.

cands← [[]] // list of candidates generated, initialized with just an empty candidate
curr_candidate← 0 // index of the candidate that will be returned in the next call
curr_generation← 0 // index of the next candidate new children candidates will be generated

from

mutators← {} // set of mutators generated
// generate and store the mutators for each location

foreach location ∈ locations do
mutators.add(generate_mutators(location))

end

Function next () is
// try to generate more candidates while all the currently generated ones have already been

returned

while curr_candidate ≥ cands.length() do
if curr_generation ≥ cands.length() then return ⊥
curr_generation_cand ← cands.get(curr_generation)
generated_cands← curr_generation_cand
foreach cand ∈ generated_cands do

if ¬cands.any_prev_equivalent(curr_generation) then
cands.add(cand)

end

curr_generation← curr_generation + 1
end

ret ← cands.get(curr_candidate)
curr_candidate← curr_candidate + 1
return ret

end

return next

4.2.2 Mutation-based repair with counterexample-based pruning

In Alloy, a check command with a formula q over a specification defined by formula k (in Alloy, defined

through fact constraints) is converted into a model finding problem for a single formula, ¬q ∧ k . If
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for any instance, this formula evaluates to true, then that instance is a counterexample, it also means

that both ¬q and k are true. If we mutate the model and either k or ¬q evaluate to false, then the

instance is not a counterexample for the new model. This is the basis for why the counterexamples of

previous candidates can be used to prune future candidates. If the instance of a previous counterexample

is stored, it can be evaluated for the new model and check formula. If it keeps being a counterexample,

the candidate can be pruned.

Algorithm 5 gives a good idea of how the repair is done in TAR. It starts by getting the iterator over the

candidates, which is shown in Algorithm 4, and, by initiating an empty priority queue for the counterexam-

ples. Then, while more candidates can be generated, first it is checked if the candidate generated is over

the max depth. If so, no solution can be found up to the max depth (note that the depth of a candidate

is always equal or superior to the previous one); after that, the candidate is applied to the original model

to obtain the mutated model; next, the counterexamples are traversed, starting with the one with highest

priority (the one that has been able to prune the most candidates). If at any point a previous counterex-

ample is also a counterexample for the current candidate, then the candidate is skipped and the priority

for the counterexample is incremented; if the candidate has not been pruned, a final solve command is

run. This will either pass, meaning the candidate is a correct solution, or return a counterexample. In the

former case the candidate is simply returned, in the latter case the counterexample is added to the queue

with a priority of one.

To improve efficiency, the implementation has some slight modifications to Algorithms 4 and 5. The

last counterexample used to prune is tracked and tested first. The reasoning is that candidates coming af-

ter one another will likely mutate the same locations, due to the way candidate generation is implemented.

Thus, they are also more likely to be pruned by the same counterexamples.

The technique has been implemented as an extension to Alloy 6. However, it does not make any

changes to the original core source code files. Instead, all the functionality is added in new packages,

which use the public methods from the original source code. This is in contrast to BeAFix, which does

change the original Alloy source code. Furthermore, since it was based on a previous Alloy release it was

more viable to write a new mutation-based technique from scratch then upgrading BeAFix source code to

the Alloy 6 version. Since TAR does not modify the original source code, it should be easier to update it

to newer Alloy versions, and, also easier to understand and modify the implementation. The source code

is public and can be found on GitHub 1. The docker image used to obtain the results in the next section

can also be obtained on DockerHub 2.

4.3 Evaluation

The main goals in TAR are being able to repair temporal models and obtaining a good enough performance

for students to get timely feedback. Improving the number of models able to be solved is also a secondary

1https://github.com/Kaixi26/TAR
2https://hub.docker.com/r/kaixi26/tar
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Algorithm 5: Repair process in TAR.

Input: A model" , a formula q representing an invalid check and a list of suspicious locations

;>2B.

Output: A candidate that turns the check valid or ⊥.
cexs← []
cands← candidates(locs)
while cands.hasNext() do

cand ← cands.next()
if cand .length() > MaxDepth then return ⊥
M′← M .apply(cand)
valid ← true

cexs′← cexs.clone()
while valid ∧ cexs′ ≠ ∅ do

cex ← cexs′.pullHighest()
valid ← cex .evaluate(M′, q)
if ≠ valid then cexs.incrementPriority(cex)

end

if valid then
cex ← solve(M′, phi)
if cex ≠ ⊥ then

return cand
else

cexs.pushPriority(cex, 1)
end

end

return ⊥

goal. However, the mutators implemented in previous techniques seem to already cover most of the

mutators that would be useful. Adding mutators that would only produce a fix on a few occasions can

conflict with the main goal of performance. In this section, the performance of the proposed technique is

evaluated, with the intent to answer the following research questions.

RQ1 What is the performance of mutation-based repair with counterexample-based pruning for temporal

Alloy 6 specifications?

RQ2 How does its performance compare with that of existing automatic repair techniques for static Alloy

specifications?

RQ3 What is the actual impact of counterexample-based pruning?

One teaching team has been using alloy4fun in classes and shares the students submissions after

anonymization [25, 24]. The data from these challenges is the source for these benchmarks. Thus, to

answer RQ1, TAR was executed for all erroneous submissions to challenges with temporal aspects in their

models. This amounts to 2 models (TrashLTL and Trains), composed of 38 challenges and a total of
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3671 submissions. To answer RQ2, TAR was executed, along with BeAFix and ARepair, to a subset of the

submissions, the same used by the researchers BeAFix in their benchmarks. This amounts to 6 models

(TrashRL, ClassroomRL, CV, Graphs, LTS and Production), comprised of 48 challenges and a

total of 1935 submissions. Note that the total cases tested for these benchmarks do not match Figure 18,

which shows 2209 submissions. The reason for this is that the missing submissions were marked with

two faulty locations. This does not make a lot of sense in the context of Alloy4Fun challenges, which are

tested one at a time. Moreover, although TAR can be used with multiple suspicious paragraphs, this was

not a focus in the development, since it does not apply to the use case. To answer RQ3, all the executions

of TAR were also run with counterexample-based pruning disabled.

The challenges follow the same shape seen in Listing 1. To adapt these challenges for usage in

benchmarking TAR, a script was developed to extract the student predicate and put it in a new separate

predicate. The file for repair will look similar to the one below. This is the file for the submission with id

Sf4uc8gXRxwtv6pZ2, main refers to the full source code of the challenge. All the files for benchmark-
ing within the same challenge share the same main predicate, __repair indicates which predicate is

suspicious and able to be mutated, the __repair check is the oracle. When it passes, TAR knows it has
a correct candidate.

open main
pred idSf4uc8gXRxwtv6pZ2_prop4 {

always some f:File | eventually f in Trash
}
pred __repair { idSf4uc8gXRxwtv6pZ2_prop4 }
check __repair { idSf4uc8gXRxwtv6pZ2_prop4 <=> prop4o }

The benchmarks in Figure 19, performed by the BeAFix team, shows a huge discrepancy between

the results of ARepair and BeAFix. Since Figure 18 did not show as big of an improvement, it seemed

that the results were in big part because of the lack of quality in the unit tests. The unit tests from the

benchmarks with ARepair models were manually selected, while the ones from Alloy4Fun were generated

automatically using AUnit. Since there is a huge amount of challenges in the Alloy4Fun benchmark, it is

not feasible to write tests manually for all of them. Not only that, these tests could end up being biased.

However, in an attempt to provide a fairer comparison, since TAR stores the counterexamples, and

since the expected solution is known, the expected value of the instance can also easily be found by eval-

uating the oracle. With this insight, new unit tests were generated by running TAR for all the submissions

of a challenge, and then merging and adding the occurrences of all the counterexamples for that chal-

lenge. Note that, to prevent models testing a lot of candidates from weighting too much, the individual

occurrences of a counterexample do not matter. It only matters if the counterexample appeared or not

during the repair process.
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ARepair (25 Tests) BeAFix TAR

Exercise Cases Fixed (%) TO Failed Fixed (%) TO Failed Fixed (%) TO Failed

Classroom 999 102 (10%) 246 651 311 (31%) 578 110 408 (41%) 52 539

CV 137 26 (19%) 6 105 77 (56%) 44 16 85 (62%) 1 51

Graphs 283 181 (64%) 0 102 220 (78%) 28 35 240 (85%) 4 39

LTS 249 20 (8%) 5 224 35 (14%) 144 70 33 (13%) 5 211

Production 61 18 (30%) 1 42 47 (77%) 10 4 50 (82%) 0 11

Trash 206 89 (43%) 6 111 182 (88%) 14 10 193 (94%) 0 13

total (static) 1935 436 (22%) 264 1235 872 (45%) 818 245 1009 (52%) 62 864

TrashLTL 2890 - - - - - - 1832 (63%) 116 942

Trains 781 - - - - - - 213 (27%) 47 521

total (temporal) 3671 - - - - - - 2045 (56%) 163 1463

Table 5: Performance of the 3 techniques under a 1-minute threshold and maximum depth 3.

For all the benchmarks that will be shown below, the timeout used was one minute. The reason for

this is that we care most about repairs in lower time thresholds and the granularity for the timeout in

BeAFix is by the minute. All the raw data, as well as the scripts to generate the graphs shown, can be

checked in the same URL as the tool itself. 3 All tests were run on a Linux-5.15 machine with docker

version 20.10, an Intel Core i5 4460 processor and 8 gigabytes of RAM.

RQ1 The data in Table 5 shows the results for the temporal benchmarks, more specifically, lines

trashLTL, Trains and total (temporal). Figure 22 shows the same results for the temporal

benchmarks, but highlighting the number of models fixed within a certain time frame and with different

parameters. The data shows that TAR is viable for Alloy 6 repair. It can repair about 35% of the specifica-

tions within 2 seconds, and by 1 minute it can repair 56%, results that even surpass those for non-temporal

Alloy repair, as we will shortly see. Increasing the depth to 3 does not seem to increase significantly the

performance of the approach, and with depth 2 the results stagnated at 45% by 10 seconds. As shown

in Table 5, of the 46% challenges that failed to be fixed under 1 minute, 10% were due to time-out while

the remainder failed due to exhausting the search space.

3https://github.com/Kaixi26/TAR
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Figure 22: Percentage of specification challenges repaired by the proposed approach under a certain time

threshold, for different search depth levels and with and without pruning.

RQ2 Table 5 shows the results of the static benchmarks. Figure 23 shows the same results for the

static benchmarks, but highlights the number of models fixed within a certain time frame and with different

parameters. The data shows that TAR consistently outperforms the other techniques, particularly in the

lower time frames. At 1 second, TAR was able to fix around 35% of the models, while BeAFix was only

able to fix around 20%. By the 1 minute threshold, the difference is reduced, with TAR able to fix around

52% of the models compared to the 45% models fixed by BeAFix. However, 1 minute is considered to be

already too long for a student to wait for automatic feedback. Figure 24 also further demonstrates this

point. It shows the overlap in solved cases at the 1-second threshold, where TAR has fixed 306 cases

that BeAFix was not able to. BeAFix only has 9 cases that it has solved but TAR has not, 6 of these are

just cases where BeAFix was able to repair faster than TAR; and the 3 remaining are due to differences

in mutators, namely, the introduction of a join operation changing the arity of the expression, which is not

always supported in TAR. A case could be made that BeAFix still has a lot more timed-out cases, so it might

have been able to get more fixed cases given enough time. However, in the benchmarks made by the

authors of BeAFix, with a timeout of 1 hour, the number of fixed cases was 50.7%, still below the results

obtained by TAR. Similarly to the temporal benchmarks, depth 3 does not seem to increase significantly

the performance of the approach compared to depth 2. The unit tests obtained for ARepair (the best 25

counterexamples were selected for the benchmark) also seem to show better results. It was able to more

than double the results obtained by the authors of BeAFix, however, it seems even in a near best case

scenario, the technique from ARepair cannot compete with a mutation-based approach.
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Figure 23: Percentage of submissions to static challenges correctly repaired by the proposed approach

under a certain time threshold, for different search depth levels and with and without pruning.
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Figure 24: Classification of submissions to static challenges according to which tool was able to effectively

repair under 1 second.
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RQ3 Looking at the performance of TAR with pruning disabled shown in Figures 23 and 22, it is clear

counterexample-based pruning has a very positive impact on performance. This seems especially true

for lower time frames, for the higher time frames the differences seem to be lower. The reason for

this might be because of the nature of the candidate generation. Generally, the bigger the depth, the

bigger the number of candidates generated for that depth, and the difficulty of finding a solution at that

depth. The benchmarks presented previously show clearly the efficacy of using counterexamples to prune

candidates. Additionally, the average amount of generated counterexamples is low. Recall the number of

counterexamples correlates with the number of calls to the solver. For static benchmarks an average of 5.4

counterexamples are generated, this value is around 6.4 for the temporal benchmarks. This small amount

of counterexamples ends up being able to prune an impressive amount of candidates. This number is, on

average, around 100000 for the static benchmarks, 76% of which are pruned by the same counterexample;

and 160000 for the temporal benchmarks, 67% of which are pruned by the same counterexample.
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Hint Generation in Alloy4Fun

This chapter will provide an overview of the online platform Alloy4Fun, which has been used by tutors at

the universities of Minho and Porto for several years. First, there will be an overview of how the platform

is usually used. This is followed by an explanation of the implementation. Then, a discussion on some

of the possible ways to integrate automatic repair to help students with learning; the way this ended up

being implemented; the improvements to the platform; and how the repairs were transformed into hints.

5.1 Alloy4Fun Usage Overview

When a user enters the website in the root path, they are greeted with an empty editor where Alloy models

can be written, as seen in Figure 25.

Figure 25: Root path of Alloy4Fun.

After the user writes either a run or a check command, the Execute button becomes available,

as can be seen in Figure 26. This button allows the user to execute the analysis. This will show the

witness instances in the case of a run (or show a warning if no instances are found); or, will show the

counterexamples in the case of a check (or show a message telling the user the predicate might be

consistent).
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The Share Model button is the feature that makes Alloy4Fun so useful in the educational context.

After the user writes the model, they can share it, this will create a fixed URL that can be accessed later,

and the editor will start with the shared model instead of being empty. This feature also can share models

with some of the runs, predicates, functions or checks hidden. The way it works is by writing a tag

//SECRET before the block to be hidden. When secret tags are present in the model, the share button

instead creates two URLs: one for the public model, with all the secret tags hidden; and one private model,

with the original model. This can be seen in Figure 26. After the model is shared Alloy4Fun provides two

links, and Figure 27 shows what a user opening the public link would be greeted with. Notice also that

the execute icon is different, to indicate that the command being run is hidden. This feature makes it so

the checks and oracles can be written by the instructor. It can then be hidden from the students, leaving

only, for example, an explanation of the exercise and an empty predicate.

Figure 26: Sharing a model in Alloy4Fun.

Figure 27: Example of a shared model in Alloy4Fun, with secret paragraphs.
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5.2 Implementation

Alloy4fun is a web application composed of three main services: a main server, taking care of the frontend

and backend of the application; an API server taking care of tasks related to Alloy; and a mongodb server

to store data. Figure 28 shows how the user interacts with the application and how the servers interact

with each other.

API
(Java) 

Database
(MongoDB) 

FrontendBackend

Main Server
(Javascript, Meteor)

Figure 28: Architecture of Alloy4Fun.

The main server is written in javascript, with meteor, a full-stack framework for web applications.

Requests from the user are always sent to this server, which then may query one of the other servers to

obtain the result.

The API server is written in java, since this makes it simple to use the Alloy code as a library. The main

purpose of this server is to receive Alloy code, run the commands wanted, and return the results from these

commands. When the server receives such a request, it creates a new session and stores information

about the code parsed and command ran. This makes it possible to later ask for more instances or

counterexamples.

Alloy4Fun stores in its database some of the information relating to interactions with the tool. These

include models, which are created when the share or execute features are used. They contain the source

code of the model, and may also contain extra information like: the model it was derived from; the

command executed; and its result. The database also stores links, which simply reference a model and

have a flag, indicating if the link is a private one or not (so it can hide the secrets in case it is). Navigation

information is also stored, this indicates when a user used the buttons to show the next or previous

instances. Finally, themes are also stored, so they can be recovered for shared instances.

5.3 Automatic Hints

The final objective of this thesis was to use the developed automatic repair tool and integrate it into

Alloy4Fun in a cohesive way, such that it can help students in the learning process. Several behaviors

were discussed to reach the final one. The main objective is having the hints be helpful enough, but, at
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the same time, not giving the solution, so the students still have to reach it themselves. The source code

for the development can be seen on github 1.

One of the ideas was to use the counterexamples obtained in the repair process. However, due to

a lack of evidence that these counterexamples would indeed be more helpful to students; and, since it

is likely that the first counterexample shown on a check will likely also be at the top of counterexamples

returned from the repair, this idea was ultimately discarded. Another idea was to simply indicate how

distant a student is from a correct solution. This was discarded since it doesn’t give information about

how to get closer to a correct solution, and thus might lead to a frustrating experience.

The idea that ended up being implemented is the generation of hints, telling the student where the

code needs to be modified and a general tip about the modification that needs to be made. This still

forces students to think about the correct answer, just guiding their attention, and, if no hint can be found,

tells them that the attempt might not be close to a correct answer. To implement the hint generation, the

following features had to be taken into consideration:

• Conversion of candidates into hints;

• Addition of an endpoint in the API server for hint requests;

• Mechanism to be able to identify which predicate is suspicious;

• Implement the interface for requesting and showing hints;

• Storing metadata about hint requests in the database.

The first step in the implementation is to find a way to generate hints from the candidates. The most

obvious way to do this is to implement it directly into TAR. This is because it already knows the type of

all the mutators in a repair candidate. It also knows the positions of the original expressions for these

mutators. Because of this, a hint method was added to the mutator class and a simple text was given to

every mutator. Table 6 shows the hints for each of the mutators classes present.

The next step is to integrate TAR and hint generation into the API server. Since it is written in java,

the classes from the compiled file of TAR can simply be imported and used. A new endpoint was created

(/getHint), it expects to receive JSON in the request with 3 arguments: the model to be repaired; the

index of the command to act as the oracle; the suspicious paragraphs for the repair. With this data, it

creates a temporary file, dumps the model into it and parses it. With the parsed model, it finds the oracle

command and the suspicious predicates. After this, it attempts the repair. The timeout and maximum

depth are defined as global variables. Both are set at low values, to lower the time spent waiting by the

students and the resources used. However, these values can be changed very simply. Finally, the reply

can be built, which will contain metadata about the repair process, namely: the time elapsed in the repair

process; if the model was repaired or not; the hints, and the locations they refer to; the resulting fixed

expression.

1https://github.com/Kaixi26/Alloy4Fun
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Mutator Class(es) Hint

BinaryToUnary Transform into a unary expression.

RemoveBinary

ReplaceBinary
Binary operator has to be changed or removed.

InsertUnary

InsertPrime
Insert an operator.

QtToUnary

ReplaceQt
Quantifier has to be changed.

ExtendOrReduce

ReplaceRelation
A different relation is required.

InsertJoinMutator

RelationToBinary

RelationToUnary

Add a binary or unary operator.

RemoveUnary

ReplaceUnary
Unary operator has to be changed or removed.

Table 6: Hints for each of the mutator classes.

The third step is to have a way to know the predicate being modified by the student, so it can be marked

as a suspicious location. This could have been done automatically, for example, by checking if the body of

a check is in the form A[] <=> B[] and the scope of either A or B is empty, being very likely this is the

suspicious predicate. However, this would have a lot of edge cases (for example, checks are sometimes

in the form C => (A[] <=> B[])), likely resulting in bugs, and would lock the platform into this way

of doing exercises. Our approach to doing this was to continue with the already established feature of

using tags. Similarly to the //SECRET tag, a //REPAIR tag has been added to mark the suspicious

predicates for the following check. This is tedious but also simpler and more powerful. However, current

exercises have to either be recreated or the shared models need to be altered directly in the database. The

implementation is simple. The tag is found using a regular expression, then, the name of the suspicious

predicate, which comes after the tag is parsed. After this, the code searches for the first check command

appearing after the tag and saves the information in a map, connecting commands to their corresponding

suspicious expressions. The repair tag works well with the secret tag, when the repair tag is put between

a secret tag and a paragraph it is also hidden, however, the repair tag can also be used by itself.

For the request of hints, the main server was altered. A new button was added to the interface, which

is only available after execution is performed. The idea of limiting the usage of hints was discussed, for

example making it available only after solving certain smaller challenges, or after a certain number of

attempts were made, but these implementations seem needlessly complex and bad for user experience.

When clicked, it simply calls the backend of the main server which then performs a request to the API

server.

Alloy4Fun already has a system to handle messages, like errors or warnings, to be shown to the user,

as can be seen in Figure 29. Since the characteristics of the hints are very similar to errors and warnings,

it makes sense that all these are handled the same. However, the problem with the current system is
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that it is very intrusive. Since messages are presented in a popup they block a lot of the editor, which

makes it harder to verify the code. To remove the popup, it is necessary to click either the OK button

or outside the popup window. This leads to cases where the user removes the popup so they can have

better visibility of the code, and then losing the context of the message, having to execute the request

again. Furthermore, after execution, the button is locked until the model is changed. So, if the user wants

to check the error again, they will have to, for example, add and remove a character from the editor so

they can perform execution again. To improve the user experience, the proposal is to make it more similar

to the behavior of the Alloy editor. In the Alloy editor, the position of errors or warnings is highlighted until

the code is modified, and the error or warning message is displayed continuously. To achieve this change,

modifications were made to the main server. The editor marker was already supported by the editor library

and the markers are only cleared on change events. The code for log messages, which was mostly used

to notify the user if a check was likely correct (no counterexamples found) or not, was extended to allow

not only a value to be passed but also an array. The result of the changes can be seen in Figure 30, which

shows the new error messages; and Figure 31, which shows how the hints are presented.

Figure 29: Errors in the current Alloy4Fun version.

A new collection was also added to the database. It contains information about the execution of hint

commands, which can then be analyzed to test, for example, the effectiveness of the hints, by measuring

how long the student takes to reach the correct answer and also to find possible bugs. The information

stored is: the time elapsed; if the model was repaired or not; the hints given; the obtained repair; the

model used for the repair; and the timestamp for when the information was stored.
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Figure 30: Errors in the updated Alloy4Fun version.

Figure 31: Hints in the extended Alloy4Fun version.
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Conclusion

The main goals of this thesis were the development of a tool and technique capable of repairing Alloy

6 temporal specifications and its integration into the Alloy4Fun platform. We believe these goals were

achieved successfully. This thesis presented a mutation-based technique for the automatic repair of Alloy

6 specifications, being the first to consider its full temporal first-order logic. The tool developed has been

able to outperform existing Alloy repair tools. Both in time and also in the total amount of correct repairs.

It also presents the hint generation system implemented to guide students to correct solutions, without

revealing them right away.

Towards the end of the development of this thesis, a new technique was proposed named ATR [44]

(Alloy Template-Based Repair). The technique presented in this work was developed independently from

it. ATR takes inspiration from both ARepair and BeAFix, employing the use of both mutations and syn-

thesizations. It uses FLACK as the means to find the suspicious locations, and checks as the oracle for

correctness. The technique starts the repair process by trying a few simple mutators. This will either

generate a fix or some counterexamples, and ATR also uses previous counterexamples to try to skip some

mutators, similar to TAR. After this process, for each counterexample, ATR tries to obtain a satisfying in-

stance as close to it as possible. To achieve this, it uses a process similar as the one described in FLACK,

handling the problem with a PMAXSAT solver. ATR then goes through a synthesis process. It defines

repair templates, which are rules for how expressions can be synthesized, and the generated expressions

are then pruned by checking the differences in pairs of counterexamples and satisfying instances. The

benchmarks made for ATR by its researchers show impressive results, being able to repair around 66% of

the incorrect submissions, for the same dataset shown in Table 5. However, this value was obtained for a

timeout of 1 hour. We replicated the tests with a timeout of 1 minute, and the value obtained was around

17% of the submissions being repaired. This means ATR is not suitable for the use case proposed in this

thesis, and as such, TAR is still a very valuable contribution. ATR is also based on Alloy 4, so it does not

provide support for temporal models.

Automatic repair research, especially in the case of specification languages, is still in its infancy.

There are likely many improvements to come moving forward. After the development of this thesis, the

capabilities of mutation-based repair seem to be near its limits. The most relevant mutators have already
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been taken into consideration, so adding more mutators would likely not improve the benchmarks by a

considerable value. However, mutation-based repair has shown to be incredibly useful within the lower

time bounds. More specifically, for lower depths of mutators, and this might still be improved with new

pruning techniques. Due to this, future techniques will still likely benefit from attempting mutation-based

repair within a constrained depth of 1 or 2. Currently, the 4 techniques are very isolated, this is of

course expected since all have very different implementations. However, it would be interesting to have

the various techniques consolidated in a single codebase. This would allow the isolation and evaluation

of each component. For example, knowing if the counterexample-based pruning of TAR could have any

significance in improving the repair process of ATR.

The hint generation system has not yet been proven effective. It is important to find ways to verify

if it is, in fact, a valuable addition to Alloy4Fun or if it doesn’t help students with learning. This can be

done in several ways: testing students that have not yet been introduced to Alloy, and comparing how

fast they can solve and comprehend the exercises; testing students that have been introduced to Alloy,

and verifying if they can correctly understand the hint messages and diagnose the issue; analyzing the

data stored, for example, checking if a student asking for a hint to a challenge can reach solutions to the

following challenges faster.

In this thesis, the proposed way to generate hints was through a process of automatic repair. This

is a very versatile technique since it can generate hints for various types of exercises, only requiring the

model and the oracle. However, there are other ways to obtain hints, specifically in the case of Alloy4Fun.

Not only a possible final solution is already known (the oracle), but it is also likely that other solutions and

candidates match those already stored at its database, obtained from previous submissions from students.

In addition to this, the dataset also contains information about the paths (incorrect submissions) traversed

by a student to reach a solution. This might help to divide hints into small steps. With this information,

it is possible to calculate a path that is likely to lead the student to a more correct solution. A technique

has already been explored before for hint generation with code [27].
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