

O
ct

ob
er

 2
02

2

Jo

sé
 M

ig
ue

l F
er

na
nd

es
 M

ad
ei

ra
 P

in
to

A

u
to

m
a

ti
c

D
ri

vi
n

g
:

2
D

 D
e

te
ct

io
n

 a
n

d
 T

ra
ck

in
g

 u
si

n
g

 A
rt

if
ic

ia
l

In
te

ll
ig

e
n

ce
 T

ec
h

n
iq

u
e

s

October 2022

José Miguel Fernandes Madeira Pinto

Automatic Driving: 2D Detection and Tracking
using Artificial Intelligence Techniques

 i

José Miguel Fernandes Madeira Pinto

Automatic Driving: 2D Detection and Tracking
using Artificial Intelligence Techniques

Master Dissertation

Integrated Master in Informatics Engineering

Dissertation supervised by
Victor Alves
Helena López

October 2022

 i

DECLARATION

Name: José Miguel Fernandes Madeira Pinto

Dissertation Title: Artificial Intelligence Applied to Object Detection and Tracking

Advisors: Helena Fernández López, Victor Manuel Rodrigues Alves

Conclusion Year: 2022

Master Designation: Mestrado Integrado em Engenharia Informática

I declare that I grant to the University of Minho and its agents a non-exclusive license to file and make

available through its repository, in the conditions indicated below, my dissertation, as a whole or partially,

in digital support.

I declare that I authorize the University of Minho to file more than one copy of the dissertation and, without

altering its contents, to convert the dissertation to any format or support, for preservation and access.

Furthermore, I retain all copyrights related to the dissertation and the right to use it in future works.

I authorize the partial reproduction of this dissertation for investigation by means of a written declaration

of the interested person or entity.

This is an academic work that can be used by third parties if internationally accepted rules and good

practice with regard to copyright and related rights are respected.

Thus, the present work can be used under the terms of the license indicated below.

In case the user needs permission to be able to make use of the work in conditions not foreseen in the

indicated licensing, he should contact the author through the RepositóriUM of the University of Minho.

Attribution-NonCommercial
CC BY-NC

https://creativecommons.org/licenses/by-nc-nd/4.0/

Universidade do Minho, ____/____/______

Signature: ___________________________________

31 10 2022

https://creativecommons.org/licenses/by-nc-nd/4.0/

 ii

ACKNOWLEDGEMENTS

The realization of this master's thesis counted on important support and incentives, without which it

would not have become a reality. I will be eternally grateful for all the learning and support I had

throughout my academic journey.

To the University of Minho, professors and collaborators who have always provided me with the

necessary means to grow, in knowledge and as a person. To my supervisors Victor Alves and Helena

López, for their guidance, total support, availability, for the knowledge they conveyed, opinions and

criticisms, total collaboration in solving the problems that have arisen during the course of this work and

for all the words of incentive. To my friends and colleagues, I met along my academic path, who were

by my side with their companionship, strength, and support. My cousin Márcia and Ricardo for their

friendship, strength and help on this journey. My godmother, uncle, and cousins, for their friendship

and for all the support and advice on this challenging journey. My grandmother for her friendship, love,

and support. To my brother, who has always been by my side with his friendship, patience,

companionship, strength, and help. Finally, being aware that none of this would have been possible

alone, I would like to thank my parents, for being models of courage, for their unconditional support,

encouragement, friendship and help in overcoming the obstacles that have arisen along this journey.

I dedicate this work to all of them!

 iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

Universidade do Minho, ____/____/______

Signature: __

31 10 2022

 iv

ABSTRACT

Road accidents are estimated to be the cause of millions of deaths and tens of millions of injuries every

year. For this reason, any measure that reduces accidents' probability or severity will save lives.

Speeding, driving under the influence of psychotropic substances and distraction are leading causes of

road accidents. Causes that can be classified as human since they all come from driver errors.

Autonomous driving is a potential solution to this problem as it can reduce road accidents by removing

human error from the task of driving.

This dissertation aims to study Artificial Intelligence techniques and Edge Computing networks to explore

solutions for autonomous driving. To this end, Artificial Intelligence models for detecting and tracking

objects based on Machine Learning and Computer Vision, and Edge Computing networks for vehicles

were explored.

The YOLOv5 model was studied for object detection, in which different training parameters and data pre-

processing techniques were applied. For object tracking, the StrongSORT model was chosen, for which

its performance was evaluated for different combinations of its components. Finally, the Simu5G

simulation tool was studied in order to simulate an edge computing network, and the viability of this type

of network to aid autonomous driving was analysed.

Keywords: Autonomous Driving, Artificial Intelligence, Machine Learning, Computer Vision,

Edge Computing.

 v

RESUMO

É estimado que os acidentes rodoviários sejam a causa de milhões de mortes e dezenas de milhões de

lesões todos os anos. Por esta razão, qualquer medida que diminua a probabilidade de acidentes ou

que diminua a sua gravidade acabará por salvar vidas.

Excesso de velocidade, condução sob influência de substâncias psicotrópicas e distração no ato da

condução são algumas das principais causas de acidentes rodoviários. Causas essas que podem ser

classificadas como humanas visto que são oriundas de um erro do condutor.

A condução autónoma surge como solução para este problema. Esta tem o potencial de diminuir

acidentes rodoviários removendo o erro humano da tarefa da condução.

Esta dissertação teve como objetivo o estudo de técnicas Inteligência Artificial e redes Computação de

Borda de forma a explorar soluções para a condução autónoma. Para tal foram estuados modelos

Inteligência Artificial de deteção e rastreamento de objetos com base nas áreas de Aprendizagem

Máquina e Visão por Computador e redes de Computação de Borda para veículos.

Para a deteção de objetos foi estudado o modelo YOLOv5, no qual diferentes combinações de

parâmetros de treino e técnicas de pré-processamento de dados foram aplicadas. Para o rastreamento

de objetos foi escolhido o modelo StrongSORT, para o qual foi avaliada a sua performance para

diferentes combinações das suas componentes. Por fim, foi estudada a ferramenta de simulação

Simu5G, de forma a simular uma rede de computação de borda, e foi feita uma análise sobre a

viabilidade deste tipo de redes no auxílio à condução autónoma.

Palavras-Chave: Condução Autónoma, Inteligência Artificial, Aprendizagem de Máquina, Visão

por Computador, Computação de Borda.

.

 vi

Table of Contents

1 Introduction .. 13

1.1 Context and Motivation.. 14

1.2 Objectives .. 15

1.3 Investigation Methodology ... 15

1.4 Structure of the Dissertation... 16

2 Technologies and Concepts ... 17

2.1 Autonomous Driving .. 18

2.2 Artificial Intelligence .. 19

2.3 Computer Vision .. 21

2.4 Edge computing ... 22

3 2D Object Detection .. 25

3.1 Literature Review ... 26

3.2 Materials ... 33

3.2.1 Waymo 2D Detection Challenge .. 33

3.2.2 Object Detection Dataset .. 34

3.3 Methods .. 37

3.3.1 Data Analyses .. 37

3.3.2 Data Processing ... 40

3.3.3 Model Training ... 43

3.4 Results & Discussion ... 47

4 2D Object Tracking .. 55

4.1 Literature Review ... 56

4.2 Materials ... 62

4.2.1 Waymo 2D Tracking Challenge .. 62

4.2.2 Dataset ... 62

4.3 Methods .. 64

4.4 Results & Discussion ... 67

5 Multi-access Edge Computing (MEC) .. 70

5.1 Literature Review ... 71

5.2 Simplified Architecture ... 73

5.3 Results ... 74

 vii

6 Conclusion .. 77

References .. 81

 viii

LIST OF FIGURES

Figure 1 - Sub-fields of Machine Learning. ... 19

Figure 2 - Artificial Neural Network. ... 20

Figure 3 - How do Artificial Intelligence, Machine Learning and Deep Learning compare. 21

Figure 4 - Deep Neural Network. ... 21

Figure 5 - Artificial Intelligence and Computer Vision. ... 22

Figure 6 - Road map of object detection. Retrieved from [1]. .. 26

Figure 7 - Object Detector. Retrieved from [23]. ... 27

Figure 8 - Object detectors speed and accuracy comparison. Retrieved from [23]. 30

Figure 9 - YOLOv5 and EfficientDet models speed and accuracy comparison. Retrieved from [40]. 31

Figure 10 - Sensor layout and coordinate systems. Retrieved from [33]. .. 35

Figure 11 - Images of each class in the collected data. .. 38

Figure 12 - Instances of each class in the collected data. ... 38

Figure 13 - TFRecord data structure. ... 39

Figure 14 - YOLOv5 coordinate system. Retrieved from [57]. ... 40

Figure 15 – YOLOv5 object detection label file format. ... 41

Figure 16 - Image mixup. Retrieved from [40]. .. 46

Figure 17 - Image copy-paste. Retrieved from [40]. ... 47

Figure 18 - Baseline models mean AP results. ... 48

Figure 19 - Baseline models training and validation bounding box regression losses. 49

Figure 20 - Baseline models training and validation classification losses. ... 49

Figure 21 - Baseline models training and validation objectness losses. ... 49

Figure 22 - Model with high augmentation hyperparameters. ... 50

Figure 23 - High Augmentation model confusion matrix. .. 51

Figure 24 - High augmentation and baseline model training and validation classification losses. 52

Figure 25 - High augmentation and baseline model training and validation objectness losses. 53

Figure 26 - High augmentation and baseline model training and validation bounding box regression losses.

 .. 53

Figure 27 - Framework comparison between DeepSORT and StrongSORT. ... 60

Figure 28 - StrongSORT with YOLOv5 implementation framework. ... 61

Figure 29 - Tracking results example 1. ... 67

 ix

Figure 30 - Tracking results example 2. ... 67

Figure 31 - ETSI MEC environment. Retrieved from [16] .. 71

Figure 32 - Edge Computing application architecture ... 73

Figure 33 - Simulated Edge Computing network environment. ... 74

 x

List of Tables

Table 1 - Levels of driving automation. .. 18

Table 2 - Edge Computing característics. ... 23

Table 3 - Edge computing models. .. 23

Table 4 - Speed and accuracy of different object detectors on the MS-COCO dataset for different

thresholds. ... 31

Table 5 – Baseline model benchmarks on Waymo’s dataset separated by label difficulty. LEVEL 2 labels

are cumulative and include LEVEL1 labels, and the more difficult detections...................................... 32

Table 6 – Leader board of the Waymo Open Dataset Challenge – 2D Detection. 33

Table 7 - Comparation between Waymo Open Dataset and other popular autonomous driving datasets.

 .. 34

Table 8 - Scene counts for Phenix (PHX), Mountain View (MTV), and San Francisco (SF). 35

Table 9 -Scene counts for different times of the day... 35

Table 10 - Extracted data datasets distribution. ... 43

Table 11 - Pre-trained weights for object detection. .. 45

Table 12 - YOLOv5 model summary .. 45

Table 13 - Baseline models training settings .. 45

Table 14 - Differences between default and high augmentation hyperparameters. 47

Table 15 - mAP results for the different classes. .. 51

Table 16 -Trackers evaluation on MOT16. FPS column refers to frames per second. 62

Table 17 - MOT16 types of annotations. .. 64

Table 18 - OSNet model characeristics. ... 66

Table 19 - Object trackers with YOLOv5 detector trained on CrowdHuman. .. 68

Table 20 - Object trackers with YOLOv5 detector trained in Waymo detector. 68

Table 21 - Detection and tracking average execution times. ... 74

 xi

LIST OF ABBREVIATIONS AND ACRONYMS

A

AP Average Precision

AI Artificial Intelligence

ANN Artificial Neural Network

B

BoT Bag of Tricks

C

CNN Convolutional Neural Network

CV Computer Vision

D

DL Deep Learning

DSR Design Science Research

E

EC Edge computing

ECC Enhanced Correlation Coefficient Maximization

EMA Exponential Moving Average

F

FPS Frame Per Second

G

GA Genetic algorithm

H

HOG Histogram of Oriented Gradients

L

LIDAR Light Detection and Ranging

 xii

M

MEC Multi-access Edge Computing

ML Machine Learning

MOT Multiple Object Tracking

MOTA Multiple Object Tracking Accuracy

MOTP Multiple Object Tracking Precision

MS-COCO Microsoft COCO

mAP Mean Average Precision

O

OSNet Omni-Scale network

R

RL Reinforcement Learning

RPN Region Proposal Network

re-ID re-Identification

S

SL Supervised Learning

SOT Single Object Tracking

SSD Singe Shot Multi-Box Detector

U

UE User Equipment

UL Unsupervised Learning

Y

YOLO You Only Look Once

1 INTRODUCTION

INTRODUCTION

 14

1.1 CONTEXT AND MOTIVATION

Autonomous driving promises to revolutionize the transportation industry. Automating driving requires

vehicles to understand the surrounding space, and to have this capability, they must do various vital

tasks. Two of these essential tasks are object detection and object tracking. These two tasks turn the

vehicle capable of not only detecting objects around it and classifying them into various classes and

subclasses but also making it capable of tracking the movements of the objects in different instances of

time [1], [2]. These tasks are crucial for detecting immediate danger, predicting the future behaviour of

objects around the vehicle, and calculating the best paths.

Self-driving vehicles have six levels that define the degree of driving automation. Level 0 is no automation,

and Level 5 is full automation. Nowadays, the highest level of autonomy achieved is Level 4, which means

that the vehicle can perform all driving tasks under specific circumstances and by being limited to a

specific geographical area [3].

The guarantees needed for a system to have autonomy higher than Level 4 are difficult to achieve with

the technology used nowadays, and the reason for this difficulty is that autonomous driving is a critical

service with needs for fast and precise outputs. The lack of precision or speed in object detection and

tracking can lead to catastrophic consequences. For this reason, when building an architecture,

developers need to balance the speed and precision in a way that both have acceptable values for real-

world use. The struggle is that more precise models usually need more computational power, meaning

their execution time is longer [4].

Furthermore, in the autonomous driving industry, there is an ongoing debate about using Light Detection

and Ranging (LIDAR) sensors that help make a 3D render of the space around the vehicle. Some are

beating on using these sensors alongside camera systems for retrieving all input information for

autonomous driving. Others defend that fully automated driving with only camera systems can be

achieved [5].

At first glance, LIDAR sensors with cameras may seem the way to go since they make a 3D render of the

space around the vehicle, which is not only new information but also gives the system redundancy that

can help with camera malfunctions. However, LIDAR has its cons. For example, it is affected by variations

in temperature, poor signal-to-noise ratio, and the fact that it is an expensive piece of equipment [5].

Knowing that autonomous driving requires precise outputs that need considerable computational power

leads us to limitations in the hardware inside a vehicle. When building a system architecture for

autonomous driving software, developers need to consider the hardware's limitations inside the vehicle.

With such capable cloud services available, developers may wonder what would happen if they could run

INTRODUCTION

 15

the entire computation workload of autonomous driving on a cloud-based system. It would drop

computational times and give them room for making more computationally hungry but precise

architectures. Unfortunately, this is not a viable option for an autonomous driving service that needs to

work around the globe. The latency of communication with datacenters potentially far from the end-user

does not reach the required speed required for autonomous driving [6].

Edge computing is a mid-point between cloud-based and on-premises computing. It provides a more

computation-capable machine than the end-device hardware and lower latency than cloud-based

computation [6]. Low latency real-time applications are the use cases where Edge Computing shines,

which turns it into a potentially good solution for the object detection and tracking tasks of autonomous

driving.

The processing of data collected by embedded sensors in the vehicle may require that this vehicle be

endowed with high computational capacity. On the other hand, taking advantage of edge computing

resources can improve the algorithms' accuracy, reduce the algorithms' execution time, and cut down

costs in terms of the necessary resources. This dissertation aims to contribute to the emerging use of

edge computing to advance autonomous driving and experiment with Artificial Intelligence (AI) techniques

using real-world data from embedded sensors.

1.2 OBJECTIVES

This work aims to develop an edge application for object detection and tracking, in addition to the

implementation and testing of a simulated edge computing network.

These tasks will be achieved in the following steps: the first step is to acquire and analyse object detection

and tracking data for autonomous driving; the second and third steps are the training and testing of AI

models in 2D Object Detection and 2D Object Tracking, respectively; the final step involves the

development of an edge computing network that will make it possible to achieve the objective of this work.

1.3 INVESTIGATION METHODOLOGY

Rigorous research is required to gather knowledge, so the appropriate methods, tools, and strategies are

applied to develop the best possible solution. The research strategy selected for this dissertation was

Design Science Research (DSR). DSR is a scientific methodology of problem-solving that involves creating

new knowledge through the design of innovative artefacts, analysis of use and performance of these

artefacts to improve information systems [7].

INTRODUCTION

 16

The DSR methodology was applied into the fallowing stages [7]:

1. Problem identification and motivation – The research problem identified was using edge

computing to execute object detection and tracking algorithms and return results to the

appropriate users for autonomous driving. The motivations behind the interest in this problem

were the emerging and promising application of edge computing and autonomous driving

solutions.

2. Definition of the solution’s objectives - The objectives traced for the research problem resolution

were the research, selection, and training of object detection and tracking model and the

implementation of a simulated edge network.

3. Design and development – Object detection and tracking models training and choosing an

environment for MEC app testing. This stage of the methodology can be found in the sections

3.3.3, 4.3 and 5.2.

4. Demonstration – Test the edge application developed in the simulation tool identified in the

previous phase. This stage can be found in section 5.2.

5. Evaluation – The developed AI models were tested and evaluated by the appropriate metrics. In

addition, the simulated edge network was also scrutinised by evaluating the response times given

from the edge server to the end-users, representing the autonomous cars. These analyses can

be found in sections 3.4, 4.4 and 5.3.

6. Communication – The problem and the utility of the created artefacts for autonomous driving

and the application of edge computing in future solutions is discussed in this document.

1.4 STRUCTURE OF THE DISSERTATION

This dissertation is divided into six chapters. Chapter 1 comprises the contextualisation and motivation of

the problem, the dissertation objectives, investigation methodology and structure. Chapter 2 introduces

the concepts and technologies used in this dissertation. Chapter 3 refers to the development of the object

detection model, whereas chapter 4 refers to the development of the tracking model. Chapter 5 is referent

to the simulated edge computing network development. Finally, chapter 6 is composed of a summary of

the work, the conclusions drawn and future work.

2 TECHNOLOGIES AND

CONCEPTS

TECHNOLOGIES AND CONCEPTS

 18

2.1 AUTONOMOUS DRIVING

Autonomous driving refers to a vehicle or transport system capable of transporting people or goods

without human intervention. An autonomous vehicle can go anywhere a traditional vehicle can and do

everything that an experienced human driver does.

Autonomous vehicles create and maintain a map of their surroundings based on various sensors in

different parts of the vehicle. Video cameras, radar, LIDAR sensors and ultrasonic sensors are some of

the tools used by this type of vehicle to collect information. The software then processes the sensory

input, plots a path, and sends instructions to the vehicle’s actuators, which control acceleration, braking,

and steering.

The concept of a self-driving vehicle is used interchangeably with an autonomous vehicle, although it was

a different meaning. A self-driving vehicle can drive itself in some situations, but unlike an autonomous

vehicle, a human passenger must be present and ready to take control.

The international society of automotive engineers defined the standard of the various development levels

up to fully autonomous vehicles. As can be seen in Table 1, adapted from [3], there are currently six

levels for autonomous driving, ranging from Level 0 (no automation) up to Level 5 (full vehicle autonomy)

[3].

Table 1 - Levels of driving automation.

0 1 2 3 4 5

The driver

performs all

driving tasks,

even when

enhanced by

active safety

systems.

The driving

automation

system of either

the lateral or

the longitudinal

vehicle motion

control subtask,

but the driver

performs the

remaining

driving tasks.

Driving

automation

system of both

the lateral and

longitudinal

vehicle motion

control

subtasks of the

driving, but the

driver

supervises all

the tasks and

can take control

at any time.

Automated

driving system

of the entire

driving task with

the expectation

that the user is

ready to take

control.

Automated

driving system

of the entire

driving task and

fallback without

any expectation

that a user will

need to

intervene under

specific

conditions.

Automated

driving system

of the entire

driving task and

fallback without

any expectation

that a user will

need to

intervene under

all conditions.

TECHNOLOGIES AND CONCEPTS

 19

The upsides of an autonomous vehicle are numerous. It promises convenience and quality-of-life

improvements like offering more freedom to people, reducing traffic, lowering transportation costs, freeing

up city space and reducing CO2 emissions. As a result, there is much motivation to push for autonomous

technology.

However, it is not just a question of automated vehicles being able to set themselves in motion. Safety

will continue to be a top priority in the future, and passenger comfort will become even more critical.

Autonomy faces many challenges that need to be overcome. The challenges range from the technological

and legislative to the environmental and philosophical, and all of them must be tackled to achieve true

autonomy.

2.2 ARTIFICIAL INTELLIGENCE

AI refers to computing systems capable of performing activities by mimicking human behaviour and

performing tasks by learning and problem-solving [7].

Within AI, there is Machine Learning (ML), as described in Figure 3, which is an approach to achieving

AI, where a computer is trained using algorithms, analytics, and a large amount of data to build predictive

models without relying on rules-based programming [7]. ML algorithms can be divided into three main

categories, as Figure 1 illustrates: Supervised Learning (SL), Unsupervised Learning (UL) and

Reinforcement Learning (RL) [8], [9].

Figure 1 - Sub-fields of Machine Learning.

SL uses categorized training data, where the input and the desired output are already known. With this

method, systems can predict outputs for unseen data based on past data. In the case of UL, training data

is not labelled and has no known result. Instead, algorithms deduce patterns from unlabelled data on

TECHNOLOGIES AND CONCEPTS

 20

their own. Finally, RL tries to model agents in an environment that rewards the agent based on successful

actions concerning completing the task goal [8], [9].

One method to achieve ML is using Artificial Neural Networks (ANN). ANN are generalizations of

mathematical models of biological nervous systems. ANN aims to capture non-linear patterns in data by

adding layers of parameters to the model. The architecture of an ANN can be found in Figure 2. An ANN

is composed of artificial neurons, the basic neural network processing elements. An ANN is composed of

artificial neurons, the basic neural network processing elements. An artificial neuron is, at its core, a

variable that holds a number. However, it is best represented as a function that takes the weights, values

that represent an edge between neurons of consecutive layers, and the bias that is an offset that ensures

that the output is not only affected by the weights. This type of function is called an activation function,

and its result dictates if a neuron is or is not activated. Neurons are organized in layers within an ANN,

and the activated neurons of one layer dictate the activations in the following layer. At a basic level, a

neural network comprises four main components: inputs, weights, a bias, and an output. The basic

workflow of an ANN is that input nodes receive information, which is expressed numerically and activates

a group of neurons. This group of neurons represents a specific pattern that will cause a specific pattern

of activations in the following layer, making the information flow from node to node until it arrives at the

output layer that presents the model's predicted value [7], [10].

Figure 2 - Artificial Neural Network.

A loss function calculates the difference between the predicted and actual values as training errors. The

loss function enables the network to learn by adjusting the weights and biases per the chosen learning

algorithm. The learning is done by minimizing the loss function by calculating the loss function gradient

that specifies how the weights and biases values should vary.

TECHNOLOGIES AND CONCEPTS

 21

Deep Learning (DL) is a subfield of ML, as represented in Figure 3, which uses ANNs with multiple hidden

layers.

Figure 3 - How do Artificial Intelligence, Machine Learning and Deep Learning compare.

These multiple layers are organized in cascade and form a hierarchical feature representation. The layers

closer to the input layer learn simple features, while layers closer to the output layer learn more complex

features derived from the features of the previous layers. This type of architecture is known as Deep

Neural Network and is represented in Figure 4 [7], [10], [11].

Figure 4 - Deep Neural Network.

2.3 COMPUTER VISION

Computer Vision (CV) is a broad scientific field that deals with the ability of computers to gain high-level

understanding through digital images and videos. Recent advances in computing power, memory, and

consumption of computers, as well as the abundance of available data, have led to the introduction of DL

in CV, as illustrated in Figure 5. Although there are still domains within CV where the use of traditional

algorithms produces better results, excelling for its simplicity, for the most part, CV has directed its

TECHNOLOGIES AND CONCEPTS

 22

research to the application of DL models. DL methods mostly improve prediction performance using big

data and plentiful computing resources and have pushed the boundaries of what was possible [12].

CV's most common real-world applications include image classification, image generation, object

detection, semantic segmentation, and object tracking. These applications can be seen in technology like

self-driving cars, natural language processing, visual recognition, image and speech recognition, virtual

assistants, chatbots, fraud detection, medical image analysis, and others [13], [14].

Figure 5 - Artificial Intelligence and Computer Vision.

2.4 EDGE COMPUTING

Cloud computing is also a computing paradigm that offers on-demand services to the end-users through

a pool of computing resources. Edge computing (EC) is a distributed computing paradigm that brings the

service and utilities of cloud computing closer to the end-user. The main difference between EC and cloud

computing lies in the location of the servers. Cloud computing has a centralized model that can lead to

high distances between the cloud server and the end-user, meaning high latency. On the other hand, EC

uses a distributed model that offers the advantage of lower distances and, therefore, lower latencies. This

approach also has drawbacks since EC is not as scalable as cloud computing and has hardware with

limited capabilities [15]. The unique characteristics of EC are described in Table 2 [15]. EC has three

computing models to resolve the cloud computing issues. These models and their descriptions can be

found in Table 3 [15].

TECHNOLOGIES AND CONCEPTS

 23

Table 2 - Edge Computing característics.

Dense geographical distribution Numerous computing platforms in the edge networks.

Mobility support
The host identity from and the location identity are

decupled.

Location awareness

Users can access services from the edge server closest

to their physical location.

Proximity

The availability of computation resources and services

in the proximity of the users.

Low latency

Low latency derives from the proximity of computation

resources and services.

Context-awareness

Context information of the mobile device in EC can be

used to take offloading decisions and access the edge

services.

Heterogeneity

Existence of different infrastructures, platforms,

architectures, computing, and communication

technologies used by end devices, edge servers and

networks.

Table 3 - Edge computing models.

Mobile Edge Mobile users can utilize the computing services from

the base station, off-loading processing, application

services and storage to the edge servers.

Fog Enables the applications to run directly at the network

edge through billions of smart connected devices.

Cloudlets Uses the computer resources available in the local

network.

To avoid resource competition and improve resource management, virtualization technology has been

applied to EC. Applications are set up as a virtual machine or container with all the necessary

dependencies according to the application requirements and configurations [16].

Use cases like industrial automation, augmented reality, location services, and vehicle-to-vehicle

communications, require fast processing and quick response time. However, end users usually run these

applications on their resource-constrained devices while the core service and processing are performed

TECHNOLOGIES AND CONCEPTS

 24

on cloud servers, which results in high latency. EC complements cloud computing by enhancing the end

user service for delay-sensitive applications [15].

2D OBJECT DETECTION

 25

3 2D OBJECT DETECTION

2D OBJECT DETECTION

 26

3.1 LITERATURE REVIEW

Object detection is the task of detecting instances of objects from a particular class in a digital image,

and it is a fundamental task in CV [1].

Early object detection algorithms are known as traditional object detectors, and most of them were built

on handcrafted features [1]. Some of the early object detection methods include the Viola-Jones detectors

[17], Histogram of Oriented Gradients (HOG) detector [18] and Deformable Part-based model [19].

In recent years, with the development of deep learning and the rebirth of Convolutional Neural Networks

(CNN’s), which resulted from access to more computational power and large amounts of data,

tremendous progress has been achieved, which brought considerably more attention to the technology

[1], [20]. Krizhevsky, et al. [21] were the first to outperform traditional methods with CNN's. Since then,

Object Detection has entered a period known as deep learning-based detection [1].

Figure 6 illustrates the evolution of object detection through its existence, referencing the most important

milestones.

Figure 6 - Road map of object detection. Retrieved from [1].

Nowadays, there are mainly two types of state-of-the-art object detectors. There are two-stage detectors,

such as Faster RCNN and Mask R-CNN, that use Region Proposal Networks (RPNs) [4], as shown in

Figure 7 [23]. RPNs are fully convolutional networks used to generate regions of interest and then send

the region proposals down the pipeline for object classification and bounding-box regression, taking an

image as input and outputting a set of rectangular object proposals with an object score [4], [24]. Such

2D OBJECT DETECTION

 27

models usually reach the highest accuracy rates but are typically slower [4]. There are also single-stage

detectors, such as You Only Look Once (YOLO) [25] and Singe Shot Multi-Box Detector (SSD) [26]. This

type of object detector takes an input image and calculate the class probabilities and bounding boxes

coordinates, treating Object Detection as a regression problem. Such models usually reach lower

accuracy rates but are faster than two-stage object detectors [4].

An ordinary modern object detector model, as illustrated by Figure 7, is composed of: an Input layer; a

Backbone that is a deep CNN that acts as a feature generator network by taking an image as input and

generating a feature map [2]; a Neck that is a set of layers between the Backbone and Head used to

collect feature maps from different stages and a Head, that works in a different way depending if the

model is a one-stage or two-stage detector [23]. In the case of one-stage detectors, the Head takes in

the features from the Neck and performs both object localization and bounding-box classification

simultaneously to complete the detection process. On the other hand, two-stage detectors use a sparse

prediction with an RPN, which, as said before, generates regions of interest for object localization,

meaning that the Head only performs the bounding box classification [23], [27].

Figure 7 - Object Detector. Retrieved from [23].

Currently, the most frequently used metric for evaluating the effectiveness of an object detector is the

Average Precision (AP) [1].

AP is defined as the average detection accuracy across different recalls and is generally assessed in a

category-specific manner. An object is successfully detected if the Intersection over Union (IoU) between

the predicted box and the ground truth box is greater than a predefined threshold, otherwise will be

identified as missed [1], [20].

To compare performance over multiple object categories, the AP averaged over all object categories is

usually used as the final metric of performance [1], [20].

2D OBJECT DETECTION

 28

So that progress in Object Detection can be achieved is not only necessary to have a universally used

metric, but also large datasets with labelled data with the minimum possible bias [28], so that fair

comparisons between object detectors can be made. Several well-known datasets and benchmarks have

been released in recent years, including Microsoft COCO (MS-COCO) [29].

MS-COCO is a large-scale and most challenging detection dataset available today that has become the

standard for the object detection community with a considerable number of images, instances, and

categories. Furthermore, the MS-COCO dataset sets itself apart because of the object labelling with per-

instance segmentation to aid in precise localization and the fact that it contains a large amount of small

and densely located objects. These features make the object distribution in MS-COCO closer to the real

world [1], [29].

However, it is not the best solution to train detection models for autonomous driving exclusively in non-

autonomous driving datasets. The researchers in autonomous driving suffer from data inadequacy for

real-world driving scenarios. The major problems in acquiring and exploiting data for autonomous driving

drift from scarcity and lack of diversity in data resources and the fact that scenes must be collected by a

driving car on the roads in compliance with local regulations [30].

Image-based datasets like MS-COCO [29] obtain training data directly from websites, and the annotation

pipeline is relatively simple. On the other hand, most autonomous driving datasets collect data on the

roads with multiple sensors mounted on a vehicle, and the obtained images are further annotated for

perception tasks, including Object Detection and Tracking. The KITTI dataset [31] was the first

considerable-size autonomous driving dataset released. The nuScenes dataset [32] and the Waymo Open

dataset [33] are currently the most widely used autonomous driving datasets, the Waymo Open dataset

being the biggest of the two [30].

Although MS-COCO was not used for benchmarking in section 3.3, comparisons of the accuracy and

speed of different models in this dataset support the selection of models and their pre-training.

The reason for using the MS-COCO dataset to aid in the selection of models is that, as has said previously,

it is a very challenging dataset with a large amount of high-quality data. It also has the same object

categories found in Waymo’s Perception Open Dataset [29], [33]. Furthermore, as has also been said,

MS-COCO is highly benchmarked, meaning much more comparisons between models on this dataset

can be found. These benchmarks make it easier to withdraw conclusions even though results might not

be totally translatable from one dataset to another because of differences in the cases represented in the

data, the input image resolutions and boundary box encoding [20].

2D OBJECT DETECTION

 29

Relatively to the pre-training, this strategy is supported by the Waymo Open Dataset Challenge - 2D

Detection, described in section 3.2.1. It permitted models to be pre-trained on the MS-COCO dataset

[33]. Advantage exploited by some of the teams with the best results in the competition, and Waymo’s

base model, which pre-trained the model weights to save computational resources and combat labelled

data scarcity and then use transfer learning by fine-tuning the network with Waymo’s dataset.[33]–[35].

For Object Detection in real-life applications, there is no clear way of comparing different object detectors.

Therefore, a balance of speed and accuracy must be reached. The case of object detection for

autonomous driving is no different. It requires both high accuracy and real-time inference speed to

accurately perceive the environment and take the right control decisions to ensure safety [36].

Most autonomous driving Object Detection approaches rely on LIDAR sensors that give accurate depth

information [37]. Although highly precise and reliable, LIDAR sensors are expensive, have a short

perception range, and have sparse information [37], [38].

Recently, strategies using only camera systems have been introduced as an alternative [37]. Where the

depth of information can be predicted by semantic properties in scenes and object size [38], compared

with using LIDAR sensors using only camera systems is a low-cost approach that achieves a comparable

depth accuracy. Although, there is still a notable performance gap, especially for faraway objects. Also,

camera systems have the potential ability to provide a greater range of perception as the perception range

depends on the focal length and the baseline [37], [38].

Even though camera systems object detection and depth estimation have suffered many improvements,

stereo images are still inherently 2D, and it is unclear if they can ever match the accuracy and reliability

of a LIDAR sensor. Moreover, this trade-off between affordability and safety creates an ethical dilemma

[37].

One fact is common to all autonomous vehicle solutions. Even though they may have different

combinations of perception sensors, image-based object detection is almost irreplaceable. This is because

camera systems are inexpensive, and image data is much more abundant, easier to collect and annotate.

Furthermore, recent progress in deep learning shows the tendency that with more and more data, more

powerful neural networks can always be designed [36].

Nowadays, there are many different object detectors. As already been said, benchmarks on well-known

object detection datasets help to make comparations between different models that then can be used to

make an informed decision when choosing a model for a specific use case.

Figure 8, and Table 4, also adapted from [23], show the results of different object detectors on the MS-

COCO dataset for different thresholds. YOLOv4 is a significant update to the YOLO range and stands out

2D OBJECT DETECTION

 30

as having high Frames Per Second (FPS). This means that the object detector processes the input data

and generates the detections in a short amount of time. YOLOv4 also has accurate results with a high AP

compared to other architectures used in the state-of-the-art, proving the viability of one-stage detectors

[23] [39].

Figure 8 - Object detectors speed and accuracy comparison. Retrieved from [23].

2D OBJECT DETECTION

 31

Table 4 - Speed and accuracy of different object detectors on the MS-COCO dataset for different thresholds.

After the release of YOLOv4, YOLOv5 one-stage algorithm was proposed by Glenn Jocher [40]. As the

name indicates, YOLOv5 is the fifth iteration of YOLO, despite existing more than five implementations of

the model, and the five iterations not being all from the same author. Over time YOLO received some

improvements that led to faster and more precise predictions. YOLOv5 takes these improvements and

builds on them to make a more robust object detector than its predecessors (YOLO, YOLOv2 and

YOLOv3). Despite not being an incrementation of YOLOv4. YOLOv5 is architecturally similar to YOLOv4.

YOLOv5 claims to have comparable results to YOLOv4 in the MS-COCO dataset with a faster training

speed [41], [42]. Although, the authenticity of the performance cannot be guaranteed as there was no

official paper from the model authors by the time the model was studied.

The release of YOLOv5 includes five different models’ sizes: YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x.

As can be seen in Figure 9, YOLOv5 has an outstanding performance in object detection, especially the

140FPS reasoning speed of the YOLO V5 model [39].

Figure 9 - YOLOv5 and EfficientDet models speed and accuracy comparison. Retrieved from [40].

 Size FPS AP 30 AP 50 AP 75

YOLOv4 512 31(M) 43.0% 64.9% 46.5%

SSD 300 43(M) 25.1% 43.1% 25.8%

Faster R-CNN - 9.4(P) 39.8% 59.2% 43.5%

Cascade R-CNN - 8(P) 42.8% 62.1% 46.3%

2D OBJECT DETECTION

 32

YOLOv5 was the architecture chosen to train and test on Waymo Perception Open Dataset. YOLO is a

great choice because it is not a traditional image classifier that was repurposed as an object detector.

YOLO looks at an image only once but in a clever way. It divides an image into a grid where each cell is

responsible for predicting up to five bounding boxes, where one bounding box describes one rectangle

that encloses an object. YOLO also returns a confidence score relative to a bounding box containing an

object, the score is given depending on whether there is a promising shape, and it also returns a separate

confidence score of the object class. This methodology keeps the most promising bounding boxes and

makes all the predictions simultaneously, which results in a fast and precise model [25]. Also, the fact

that YOLOv5 implementation has been done in PyTorch [43] makes it easier to understand, train and

deploy.

As further explained in sections 3.3.2 and 3.2.2, throughout the year 2020, took place Challenge 3 of

the Waymo Open Dataset Challenges, Waymo Open Dataset Challenge – 2D Detection. Where Waymo

Open Perception Dataset was used to benchmark object detectors for autonomous driving, and many

researchers contributed with their solution. The dataset in question will be used in section 3.3, and the

baseline and best models of the competition were object of study.

For the challenge, a baseline model Faster R-CNN was released, achieving the results of Table 5 [24].

The model was pre-trained on the MS-COCO Dataset [29] before being fine-tuned on Waymo Perception

Dataset [33].

Table 5 – Baseline model benchmarks on Waymo’s dataset separated by label difficulty. LEVEL 2 labels are cumulative and
include LEVEL1 labels, and the more difficult detections.

An interesting solution found by the second-place team of Waymo Open Dataset Challenge – 2D Detection

seems to be a great strategy to explore. The implemented solution produces detections on state-of-the-

art two-stage and one-stage detectors and then fuses them to improve results [35]. The two-stage object

detector used was a Cascade R-CNN [44] which is skilled in precisely localizing object instances. In

contrast, the one-stage detector used was CenterNet [45], which may be better suited for detecting small

objects and objects in crowded scenes. The authors of the second-place model [35] also pre-trained a

base model detector in MS-COCO. Then to further improve results, expert models based on the base

 Vehicles Pedestrians

LEVEL 1 63.7 55.8

LEVEL 2 53.3 52.7

2D OBJECT DETECTION

 33

model were fine-tuned for specific situations. For example, night-time, daytime, pedestrian, and cyclist

experts. The results of the expert models were then merged into one group of detections.

The mean average precision (mAP) of the two best-classified teams in Waymo’s challenge for the different

types of labels can be found in Table 6 [28].

Table 6 – Leader board of the Waymo Open Dataset Challenge – 2D Detection.

3.2 MATERIALS

Object Detection is one of the essential prerequisites to autonomous navigation, as it allows the car

controller to account for obstacles when considering future trajectories. Therefore, the object detection

model must be reliable and accurate. However, object detection in autonomous driving presents unique

challenges that include the need for detection results in a timeframe under one second with accurate

results [46]. Moreover, object detectors have to accomplish this by operating strictly on the input image

and hardware memory limitations, which turn infeasible to store and run detectors with many parameters,

especially with large input image volumes [46].

3.2.1 WAYMO 2D DETECTION CHALLENGE

The Waymo Open Dataset used in the competition provides high-quality data collected by multiple LIDAR

and camera sensors in real self-driving scenarios. As said in section 3.1 this is the largest object detection

dataset for autonomous driving, for this reason it was the selected dataset to work with for the experiments

of sections 3.3.3 and 3.4.

The Waymo 2D Detection challenge consists of, given a camera image, producing a set of 2D boxes for

the objects in the scene [47]. The 2D Detection Challenge restricts the input data to camera images. The

classes included in the challenge (vehicle, pedestrian, and cyclist) are annotated with tight-fitting 2D

bounding boxes based on the camera images [35]. For metrics purposes, each one of these classes has

an IoU overlap threshold. Thresholds are as follows: Vehicle 0.7, Pedestrian 0.5, Cyclist 0.5 [35].

The leader board ranking for this challenge is done using mAP among the challenge classes [35].

The Average Precision (AP) formula is the flowing:

 mAP/Level1 mAP/Level2

1ºPlace 79.4 74.4

2ºPlace 75.6 70.3

2D OBJECT DETECTION

 34

𝐴𝑃 = ∫ 𝑝(𝑟) 𝑑𝑟,

Equation 1 - Average Precision

where 𝑝(𝑟) is the precision-recall curve that plots the precision against recall for different confident

thresholds, and precision is the ratio between the true positives, this being correct predictions and the

total number of predictions. Recall, on the other hand, is the ratio between true positives and the total

number of existing bounding boxes.

3.2.2 OBJECT DETECTION DATASET

Waymo Open Perception Dataset is a large-scale multimodal camera-LIDAR dataset for autonomous

driving research. This dataset is significantly larger, higher quality, and geographically diverse, both in

terms of complete area coverage and in the distribution of that coverage across geographies, compared

to any existing similar dataset [34] as suggested by Table 7, adapted from [33].

The dataset consists of 1150 scenes. Each scene contains about 200 frames for each of the five high-

resolution cameras with resolutions of 1280×1920 and 886×1920 and well-synchronized and calibrated

LIDAR and camera data captured across a range of urban and suburban geographies. The disposition of

the camera system can be found in Figure 10 [33]. Overall, the dataset contains about 1.15M images

and 9.9M 2D bounding boxes for vehicles, pedestrians, and cyclists [33], [34].

Table 7 - Comparation between Waymo Open Dataset and other popular autonomous driving datasets.

 KITTI NuScenes Waymo

Scenes 22 1000 1150

Hours 1.5 5.5 6.4

2D Boxes 80K - 9.9M

Lidars 1 1 5

Cameras 4 6 5

Visited Area (𝑘𝑚2) - 5 76

2D OBJECT DETECTION

 35

Figure 10 - Sensor layout and coordinate systems. Retrieved from [33].

The dataset data was recorded across various conditions, in multiple cities, with extensive geographic

coverage. As a result, the dataset has scenes from suburban and urban areas at different times of the

day. Table 8 and Table 9 [33] show the scenes distribution present in the dataset in different cities and

by the time of the day.

Table 8 - Scene counts for Phenix (PHX), Mountain View (MTV), and San Francisco (SF).

Table 9 -Scene counts for different times of the day.

Vehicles, pedestrians, and cyclists in all camera images were manually annotated with tightly fitting

bounding boxes. The bounding boxes’ labels are encoded as (cx, cy, l, w) with a unique tracking ID, where

cx and cy represent the center pixel of the box, l represents the length of the box along the horizontal (x)

 PHX MTV SF

Train 286 103 409

Validation 93 21 88

 Day Night Dawn

Train 646 79 73

Validation 160 23 19

2D OBJECT DETECTION

 36

axis in the image frame, and w represents the width of the box along the vertical (y) axis in the image

frame [33].

The Image frame is a 2D coordinate system defined for each camera image, where +x is along the image

width, with the column index starting from the left, and +y is along the image height, with the row index

starting from the top. The origin is the top-left corner [33].

2D OBJECT DETECTION

 37

3.3 METHODS

The following sections describe the employed approaches to pre-process data, model training and testing

of the YOLOv5 object detector model. Due to the large volume of data and high computational needs, a

container was created and deployed to a computational capable machine with a Xeon 12 CPU, NVIDIA

Quadro P6000 GPU and SATA disk with a total of 1.8 terabytes of available space for storage. The created

container has Ubuntu16 as the operating system and Anaconda [48] 4.12.0 installed with a base

environment with multiple packages. However, this machine had to be shared with multiple users.

3.3.1 DATA ANALYSES

The first step of the dataset analysis consisted of following the tutorial made available by Waymo [49].

For that to happen, some alterations to the initial script were made driven by incompatibility errors within

the library’s versions used in the Jupiter notebook [50] made available by Waymo.

The extraction of the Waymo dataset from the current public repositories [51], [52] proceeded, where

data is made available in two different ways: individual tfrecord files store a sequence of binary records

[53] and tar [54] files that compress multiple tfrecord files. The data was downloaded as

individual tfrecord files to facilitate data extraction and manipulation. In these files are stored all data

captured in a short period of time by a Waymo autonomous driving system.

First, only one of the available tfrecord files was downloaded to elaborate all scripts needed for data

processing and train a first test object detection model. This file of size 888 MB had a total of 995

images and labels.

For training object detection models with a larger amount of data, it was necessary to resort to Google

Cloud APIs to download multiple tfrecord files to the container where the model will train. In order to do

that, it was necessary to do environment configurations since credentials are needed to access Google

cloud storage. Therefore, the steps described in [55] were followed to obtain the credentials.

With access to the Google API a subset of Wayno’s training dataset was downloaded, amounting to

360 tfrecord file. This data amounted to 217G, which translated to 86219 images. This amount of data

was chosen driven by the available space in the container, considering that it is a shared environment.

In all collected data, there are 79690 images with at least on vehicle and a total of 800835 vehicle

instances, 52623 images with at least one pedestrian and 420719 pedestrian instances, and 7509

images with at least one cyclist and 11074 cyclist instances. The classes distribution in the collected data

can be seen in Figure 11 and Figure 12.

2D OBJECT DETECTION

 38

Figure 11 - Images of each class in the collected data.

Figure 12 - Instances of each class in the collected data.

The selected object detection model YOLOv5 has some considerations about the ideal dataset

conditions to achieve the best results. It recommends more than 1500 images and more than 10000

instances per class, criteria met by the collected data. YOLOv5 also recommends images

representative of the deployed environment, with label consistency and accuracy, features that the

Waymo dataset ensures [40].

The disparity verified between the existing classes comes from the fact that there is already this

disparity in the original Waymo dataset. Moreover, it is an understandable disparity since the data

was recorded in an actual driving environment where there is more likely to find cars, people, and

cyclists by that order.

In Waymo's public repository, the files dataset.proto and label.proto are available, where the structure

of the data stored in the .tfrecord files can be found [52]. The tfrecord files are composed of a list of

Frame structures where each one has the information collected on an instance of time. To access

the images collected by the vehicle cameras the Images property of the Frame structure was

accessed where it was possible to not only extract the image but also know which camera it was

2D OBJECT DETECTION

 39

taken from. Each element of the Images property of a frame was a Camera_Labels property where

the labels referent to that image have a Box structure where the coordinates and dimensions of the

bounding box are stored. Recapitulating, and as synthesized in Figure 13 - TFRecord data

structureFigure 13, for each tfrecord file exists a list of Frame structures where each of these

structures has images and labels referent to an instance of time.

 Figure 13 - TFRecord data structure.

The data analysis's final step consisted of trying to draw the bounding boxes in the images. The

bounding box coordinates follow the logic of the inverted grid, as mentioned in section 3.2.2. With

that information, the bounding boxes were drawn with the help of the OpenCV library [56] by

calculating the top left and bottom right nodes of the bounding box that were found with the following

formula:

𝑇𝑜𝑝 𝑙𝑒𝑓𝑡 𝑛𝑜𝑑𝑒 = (𝑐𝑒𝑛𝑡𝑒𝑟𝑥 − length ∗ 0.5, 𝑐𝑒𝑛𝑡𝑒𝑟𝑦 − width ∗ 0.5)

Equation 2 - Top left node equation.

𝐵𝑜𝑡𝑡𝑜𝑚 𝑟𝑖𝑔ℎ𝑡 𝑛𝑜𝑑𝑒 = (𝑐𝑒𝑛𝑡𝑒𝑟𝑥 + 𝑙𝑒𝑛𝑔𝑡ℎ ∗ 0.5, 𝑐𝑒𝑛𝑡𝑒𝑟𝑦 + 𝑤𝑖𝑑𝑡ℎ ∗ 0.5)

Equation 3 - Bottom right node equation.

2D OBJECT DETECTION

 40

Where the center is the coordinates of the center point of the bounding box, and the length and width

are his dimensions.

3.3.2 DATA PROCESSING

This section describes approaches to pre-processing the images and labels of the Waymo dataset.

In order to develop algorithms to pre-process data and train a test object detection model, a small part of

the downloaded data was used. This data is approximately 17G and allowed for faster development and

correction of the pre-processing algorithms and the object detection test model.

YOLOv5 model follows a similar coordinate system as Waymo Open Dataset labels, as illustrated in Figure

14. In this coordinate system, the x-axis extends across the image width, with the column index starting

from the left, and y-axis extends along the image height, with row index starting from the top, that in the

case of Waymo dataset is referred as length, and the origin is the top-left corner. Therefore, it was not

necessary to do any transformations to the dataset labels other than using the length coordinates as

height coordinates.

Figure 14 - YOLOv5 coordinate system. Retrieved from [57].

YOLOv5 expects the input image to have its annotations included on a text file. This text file with the

format described in Figure 15 expects bounding box coordinates and dimensions to be normalized

between 0 and 1 and the class numbers to be zero-indexed.

2D OBJECT DETECTION

 41

Figure 15 – YOLOv5 object detection label file format.

In order to convert the data to the specified format, the first step was to extract the data stored in

the tfRecord to JPG and text files that store the image and bounding box coordinates. Some label

parameters were filtered, and only the parameters relative to the width, length, and bounding box center

coordinates were kept. The coordinates and dimensions were rescaled between 0 and 1 by the image

shape, and class names were renamed to integers.

The next step of the data pre-processing is relative to the different shapes of images in the dataset. There

are images with the following resolutions: 1280x1920 pixels or 886x1920 pixels. The different sizes

translate to different resizes when training the YOLOv5 model, and the smaller size of some of the images

obliges training the model with a smaller image size, which can negatively impact the model accuracy. In

order to compare models trained on different image sizes, two baseline object detection models were

trained. One with the normal image data from the Waymo dataset with a smaller image size, and the

other model trained with data that suffered padding to the bottom side of the images with the resolution

of 886×1920 so that the 1280×1920 becomes the only existing resolution.

The results of these two baseline models were compared and used to choose what training data to use

to fine-tune the final object detection model.

The logic behind the pre-processing script that transformed the data to the correct format can be

summarized in the steps of Algorithm 1.

2D OBJECT DETECTION

 42

Algorithm 1 Pseudocode for pre-processing Waymo's Perception dataset data for YOLOv5 training.

 Input: padding ← Boolean that indicates if the images need padding
 Output: folder with all extracted images and labels
1 filesNames ← pre-defined directory gets searched for all tfRecord files names

2 path ← created folder for storing the images and labels that will be extracted

3 foreach(fileName : filesNames) //Read all tfRecord files
4 dataset ← Extract dataset from tfRecord file

5 foreach(data : dataset) //Iterate through the dataset data
6 frame ← Parse the attribute Frame from data

7 foreach(image : frame.images) //Iterate through the frame images
8 img ← Read image data from memory cache and convert to image format

9 rgb_img ← Convert an image for RGB color space

10 If(padding)
11 Color ← 255

12 width, height ← rgb_img.size

13 padding_size ←1280 - height

14 new_height ← height + padding_size

15 rgb_img ← Image.new(rgb_img.mode, (width, new_height), color)

16 Save rgb_img on path + “/Images” directory

17 end
18 foreach(image : frame.images) //Iterate through the frame images
19 img ← Convert to image format

20 width, height ← img.size

21 foreach(camera_labels:frame.camera_labels)//Iterate through camera_labels
camera_labels 22 If(camera_labels.name == image.name)

23 labels_file ← create a file for the image frame labels in the path +
“/Labels” directory 24 foreach(label: camera_labels.labels)//Iterate through the labels
camera_labels labels 25 center_x_norm, center_y_norm, width_norm, height_norm ←

Calculate the normalized coordinates of the bounding box
27 label_type ← Rename the label name from 4 to 2 or subtract one

to the name of the label in the other cases
28 labels_file ← write the bounding box information to a line of

txt file
29 end
30 labels_file ← Close txt file

31 end
32 end
33 end
34 end

During the development of the pre-processing script, some issues regarding Waymo's dataset, the CV2

[56] and Pillow [58] Python libraries' different definitions of an image height, length, and width, were

observed. These differences originated normalization errors confirmed by drawing bounding boxes stored

in the text files in the respective images. This problem has been overcome by figuring out the different

meanings for the same designations between the dataset and the used libraries.

2D OBJECT DETECTION

 43

A script to remove all images with no labels and a script to divide the available data into three different

datasets for training, testing and validation, with the distribution described in Table 10, were also

developed.

Table 10 - Extracted data datasets distribution.

3.3.3 MODEL TRAINING

A Conda [48] environment was created to train YOLOv5 models. This environment had Python installed

with a version equal or superior to 3.7.0, the package PyTorch [43] installed with a version equal or

superior to 1.7, and the rest of the dependencies of the YOLOv5 were also installed by running a script

file made available in the YOLO’s repository.

YOLOv5 has four different models that differ in size, inference time and precision. The model selected for

training was YOLOv5x, the model with the most parameters and the most accurate.

The YOLO model training can be configured with the number of epochs, batch size, image size, and a

group of 30 hyperparameters that can also be tuned. YOLO authors have some considerations relative to

the training settings. They recommend starting training with 300 epochs and, depending on if it overfits

or not, increasing or decreasing the number of epochs. The largest batch size that the hardware allows

should be used as small batch sizes produce poor batch normalization statistics and a large batch size

produces faster training and better resource utilization. Regarding image size, the dataset MS-COCO

where the pre-trained weights come from trains at a native resolution of 640 pixels, so it seems like a

good resolution for a base model. Although a higher image size can help detect small objects, on the

other hand, they may not benefit the overall accuracy of the model. The best inference results seem to

be obtained at the same image size as the training was run at, meaning testing and detecting should be

in the same resolution as the training should be used [40]. With this in mind, knowing that Waymo’s

dataset does not have all images with the same size, and in order to use the maximum size of the images

possible, the smaller images suffered transformations, so a universal could be reached. This

transformation existed in the form of padding, referred to in 3.3.2, and allowed for a universal image size

of 1280 x 1920. Padding was the best approach since merely resizing the images would distort the

objects.

 Total Train Test Validation

Images 86215 68972 8622 8621

2D OBJECT DETECTION

 44

Finally, regarding the hyperparameters, YOLOv5 has about 30 hyperparameters used for various training

settings. There are three different configurations of the hyperparameters that the YOLOv5 authors

recommend using. The default group of hyperparameters was used in the base model, and different

configurations were explored while fine-tuning the base models [40].

The first step for the YOLO model training, and to confirm if the environment was correctly configured

and if the data was correctly labelled a first model was trained for testing purposes, allowing for

corrections to the pre-processing scripts, finding incompatibilities between YOLOv5 and the used

hardware and it also served as a test of the capabilities of the available hardware.

The YOLOv5 model is prepared for running in a single GPU or multiple GPUs and allows for multiple data

loader workers being used in training. As the machine available for this dissertation only had one GPU,

the other option to improve training time was to use multiple data loader workers. Nonetheless, the shared

memory limit was repeatedly an issue. Since the limit was often trespassed and the training interrupted.

This problem is specific to the hardware where the training occurred, and the only definitive solution was

to run with 0 data loader workers, which resulted in long training sessions.

Two baseline YOLOv5X models, with pre-trained weights trained in 300 epochs on the MS-COCO dataset

[29], which characteristics can be seen in Table 11, were trained in Waymo’s dataset in order to

determine the optimal image size for the used dataset. Table 12 shows the YOLOv5x model summary,

and Table 13Table 13 shows the baseline models training settings. The required training time of these

models proved to be a problem that limited the training to 30 epochs, although the minimum

recommended number of training epochs by the YOLOv5 team is 300. However, the fact that pre-trained

weights were used helped with a faster conversion to an optimal solution.

As described in Table 13, the larger image size implicated a lower batch size value since a run time error

relative to CUDA [59] running out of memory caused by GPU limitations kept showing for higher batch

size values.

The first conclusion withdrawn from training was that using an image size of 640 pixels led to 40453

object labels occupying less than 3 pixels in size, a problem that does not occur with an image size of

1280 pixels.

2D OBJECT DETECTION

 45

Table 11 - Pre-trained weights for object detection.

Table 12 - YOLOv5 model summary

Table 13 - Baseline models training settings

With the analyse of the o baseline models, exposed in section 3.4, it was possible to conclude the best

image size and batch size combination. The only thing missing now was to find the optimal set of the 30

available YOLOv5 hyperparameters that minimize the loss function [40], [60].

The Genetic algorithm (GA) is the recommended technique by the YOLOv5 team for hyperparameter

optimization [40]. Traditional hyperparameter optimisation methods, like grid searches, can become

unviable due to the high dimensional search space, unknown correlations among the dimensions, and

the expensive nature of evaluating the fitness at each point [40]. The GA is inspired by the process of

natural selection relies on biologically inspired operators such as mutation, crossover, and selection [61].

The GA also presents a problem, as it is generally computationally expensive and time-consuming, as the

base scenario is trained hundreds of times. In the case of YOLOv5, a minimum of 300 generations of

evolution are recommended for best results [40]. The available computational resources could not match

these compactional requirements, so GA was not an option for the experiments of this dissertation.

YOLOv5 ensures that images are never presented in the same manner. This diversity is achieved by

applying augmentations in the training loader, a component designed to load train dataset images and

labels, to present a new and unique augmented Mosaic, the combination of the original image plus three

random images, each time an image is loaded for training. Increasing augmentation hyperparameters

 Image size

(pixels)

mAP Val

0.5:0.95

mAP Val

0.5

Paaramters (M) FLOPs

@640 (B)

YOLOv5x 640 50.7 68.9 86.7 205.7

YOLOv5x6 1280 55.0 72.7 140.7 209.8

 Layers Parameters Gradients FLOPs

YOLOv5 567 86231272 86231272 204.7 G

 Epochs Image Size Batch Size Hyperparameters

Baseline 30 640x640 32 Default

Baseline with padding 30 1280x1280 8 Default

2D OBJECT DETECTION

 46

will generally reduce and delay overfitting, allowing for more extended training and higher final mean AP

[40]. YOLOv5 developers recommend training with default hyperparameters first, which is why the

baseline models were trained on the default parameters [40]. As previously mentioned, there are three

sets of hyperparameters that the YOLOv5 team recommends using. These sets are the settings explored

during the model's fine-tuning. There is a set for low, medium, and high augmentation. According to the

developers of YOLOv5, the set of hyperparameters with low augmentation is recommended for nano or

small models, medium augmentation for medium models and high augmentation for larger models [40].

Since the YOLOv5 model used was the YOLOv5X, hyperparameters with high augmentation may delay

overfitting resulting in improvements relative to the baseline models.

Table 14 shows what hyperparameters change between the default and the high augmentation

hyperparameter sets. The definition of these hyperparameters is listed below [40].

• Cls: Classification loss gains.

• Obj: Objectness loss gains.

• Scale: It is used to resize an image to match with grid size or optimise results.
• Mixup: Dictates the probability of the image suffering the mixup augmentation. Figure 16 shows

an example of mixup data augmentation.

• Copy-Paste: Dictates the probability of image suffering segment copy-paste augmentation. Figure

17 shows an example of copy-paste data augmentation.

Figure 16 - Image mixup. Retrieved from [40].

2D OBJECT DETECTION

 47

Figure 17 - Image copy-paste. Retrieved from [40].

Table 14 - Differences between default and high augmentation hyperparameters.

Parameter Default High augmentation

Cls 0.5 0.3

Obj 1.0 0.7

Scale 0.5 0.9

Mixup 0.0 0.1

Copy-Paste 0.0 0.1

A model with the weights of the baseline model with padding, the baseline model with the best results as

explained in section 3.4, and with the high augmentation hyperparameters was trained with the same

image size, batch size and number of epochs of the baseline model with padding of Table 13, and also

with the same model summary of Table 12. Results and comparisons to the baseline models can be

found in section 3.4.

3.4 RESULTS & DISCUSSION

The Weights and Biases [62] framework was used for model training, analysis of results and version

management of the different experiments. The following results were extracted with the help of this

framework.

The first experiment that took place was the comparison of the baseline models, the No Padding model

with bigger batch size but smaller image size, and the Padding model with smaller batch size but bigger

image size, introduced in section 3.3.3 and whose characteristics are summarized in Table 13. The

models were differentiated as having been trained with data whose images suffered padding

transformation or not. In image Figure 18, it is possible to see the results of this experiment. The graphic

suggests that the Padding model started with a slightly lower mAP of 47.4 compared with the other model

that started with a mAP of 50.6. These differences can be explained by the fact that the different models

2D OBJECT DETECTION

 48

used different pre-trained weights, as explained in section 3.3.3 whose characteristics are summarized

in Table 11. However, this disadvantage was quickly recovered along the training process since the

Padding model finished the 30 epochs with a mAP 86.2 and the No Padding model finished with a mAP

of 77.6.

Figure 18 - Baseline models mean AP results.

In ideal conditions, the training would continue for more epochs until a point the model had clearly

reached a plateau, or it started overfitting. However, as the graphic of Figure 18 suggests, both

models were still slightly improving between epochs. Furthermore, looking at the training and

validation losses shown in Figure 19, Figure 20 and Figure 21 is possible to see that as is the case

of the mAP they are also still slightly improving between epochs.

The graphics of Figure 19, Figure 20 and Figure 21 represent the bounding box regression loss

(box_loss), classification loss (cls_loss) and objectness loss (obj_loss), that is, the confidence of

object presence, which are the three components of the loss in YOLOv5. Looking at the loss graphics

slopes is possible affirm that the models are close to a scenario where they run out of learning

capacity reaching a plateau, or at least are close to a local minimum. The overfitting scenario was

not taken as a possibility as the validation and training losses seem to be stagnating at a similar

passe, and for this type of scenario the training loss would continue to improve while the validation

loss would stagnate or even increase.

2D OBJECT DETECTION

 49

Figure 19 - Baseline models training and validation bounding box regression losses.

.

Figure 20 - Baseline models training and validation classification losses.

Figure 21 - Baseline models training and validation objectness losses.

2D OBJECT DETECTION

 50

There are some interesting observations to withdraw from the loss and mAP graphics. First, the rapid

conversion of the models in Figure 18 can be explained, as already mentioned in section 3.3.3, by the

pre-trained weights on the MS-COCO dataset. Secondly, Figure 19, Figure 20 and Figure 21 show an

interesting scenario where the loss is higher when the model is being trained than when the model is

being evaluated. This is not the most recurrent scenario since the model performs worse in the data it is

trained on than with the validation data. This phenomenon is explained by the YOLOv5 team as the result

of augmentation during training and is absence during validation. The augmentation technique presents

a unique mosaic composed of the original image and three random images.

As already mentioned, the Padding baseline model was the best of the two trained ones. The weights of

this model were used to train a second model with high augmentation hyperparameters, as explained in

section 3.3.3. This experiment aimed to determine if the high augmentation hyperparameters could delay

the overfitting and consequent stagnation of the mAP. The results of the experiment can be seen in Figure

22. As the graphic indicates, there was a considerable loss in the mAP results in the first epochs of the

experiment. This drop can be explained by the fact that the baseline model weights were trained with a

different set of hyperparameters. Therefore, the differences in the hyperparameters, namely the

augmentation increase, most likely impacted the results. After the initial adaptation of the model, the

mAP results improved epoch by epoch, eventually surpassing the mAP achieved with the baseline models

with a final result of 86.6. However, it took many epochs to reach the mAP of the Padding baseline model,

a model which was still slowly improving at the end of the 30'th epoch and whose heights served as the

base for the high augmentation experience.

Figure 22 - Model with high augmentation hyperparameters.

2D OBJECT DETECTION

 51

Table 15 shows the final mAP for a 0.5 threshold of the High Augmentation model for the different classes

in the dataset. The class with the best results is the vehicle, followed by the pedestrian and the worst

performing class was the cyclist. Looking at Figure 11 and Figure 12, these results reflect the distribution

of the classes in the dataset.

Table 15 - mAP results for the different classes.

Class Intances mAP

Vehicle 81515 91.6

Pedestrian 42092 87.6

Cyclist 1190 80.6

Figure 23 shows the confusion matrix of the High Augmentation model. In the matrix is possible to see

that 89% of the Vehicle class entities were correctly labelled, and 11% were background false negatives

(FN), meaning that they were not detected. For the Pedestrian class, 85% of the pedestrians were correctly

labelled, and 15% were background FN. Finally, the Cyclist class was correctly predicted 73% of the time,

2% of the time was mistaken by a vehicle, 5% by a pedestrian, and 20% of the time was a background

FN. As for background false positives (FP), which are objects belonging to the background of an image

mistaken by an object class, 56% of the false positives were labelled as vehicles, 43% as pedestrians and

1% as cyclists.

Figure 23 - High Augmentation model confusion matrix.

2D OBJECT DETECTION

 52

Figure 24, Figure 25 and Figure 26 show graphics with the training and validation losses of the High

Augmentation model and the Padding baseline model. These graphics show that all three losses of the

High Augmentation model increased in the first epochs, likely due to the adaptation to the new

hyperparameters. However, after this period, the validation and training losses decreased again.

Comparing the losses of the Padding baseline model to the High Augmentation model is clear to see that

the classification and objectness losses decreased relative to the baseline model. This can be explained

by the lower values of the hyperparameters referent to the classification and objectness losses in the high

augmentation model, as explained in Table 14. On the other hand, the bounding box regression loss,

whose hyperparameters did not suffer any alterations, finished with a validation loss similar to the baseline

model and a training loss even slightly worst due to the higher training augmentation. Looking at the

slopes of the training and validation losses, the High augmentation model finished the 30’th epochs in a

state further away from a possible plateau, local minimum, or overfitting scenario than the baseline

models, even though this model started with the weights of the Padding baseline model that was already

close to a stage of plateau or local minimum.

These results suggest that the alteration to hyperparameters caused the model to improve, although

slightly, and did indeed allow for a more extended training session delaying the stagnation of the model

training. With hindsight, minor improvements in the High Augmentation model were expected as, looking

at the losses of the Padding baseline model, it had not yet reached the total learning capacity. For that

reason, increasing augmentation, which translates into more training data, was not yet necessary at the

stage of training the Padding baseline model was at the end on the 30’th epoch.

Figure 24 - High augmentation and baseline model training and validation classification losses.

2D OBJECT DETECTION

 53

Figure 25 - High augmentation and baseline model training and validation objectness losses.

Figure 26 - High augmentation and baseline model training and validation bounding box regression losses.

Even though it would be interesting to compare the obtained results to the Waymo’s detection challenge

leader board with would not be a fair comparison as the experiments of this dissertation were extracted

from a small subset of the Waymo’s dataset. Also, the leader board of the competition divides the mAP

results into easier labels and harder-to-detect labels, which they name Level 1 and Level 2 labels, and

the evaluation process uses different thresholds for the classes of the dataset, opposite to the experiments

done that used a 0.5 threshold for every class [33]. For these reasons and the limited time and

computational resources available for this dissertation, there is not much information that can be

extracted from comparisons.

Compared to the results of the first and second place of the competition, whose results can be seen in

Table 6, with mAPs between 70% and 80% for the different types of labels, it is possible to infer that the

2D OBJECT DETECTION

 54

results obtained in these experiments were good. However, it is essential to emphasize that these results

would not be maintained with the data on which the challenge models were tested. However, it is still a

solid solution that validates the potential of the YOLOv5 model. This validation is further emphasized by

the YOLOv5 team, which also tested in Waymo’s dataset, obtaining a mAP of 70.3 for Level1 labels and

64.1 for Level 2 labels.

4 2D OBJECT TRACKING

4.1 LITERATURE REVIEW

Object Tracking is the task of given an initial set of object detections, assigning them a unique ID, and

estimating their trajectory [2]. Unlike Object Detection algorithms, whose output is a collection of bounding

boxes, Object Tracking algorithms also associate a target ID to each box in order to distinguish intra-class

objects [63]. The reason for using Object Tracking instead of Object Detection is the need for a correlation

of tracked features between sequential video images. Otherwise, any occlusion will lead to losing track of

the targeted object. Occlusion occurs when multiple objects come so close that they either partially or

entirely appear to be merged [64].

Just like Object Detection, Object Tracking also benefited from the rapid increase in processing power

and availability of large amounts of quality data over the last few decades, which led to advancements in

the field. As a result of these advancements, Object Tracking has been widely applied in various fields,

such as healthcare, robot vision, security, anomaly detection and autonomous driving [65].

Object Tracking can be done with either of the following approaches: Single Object Tracking (SOT), and

Multiple Object Tracking (MOT).

SOT involves only a single object being tracked in a video or a set of frames. It creates bounding boxes

that are given to the tracker based on the first frame of the input image [63]. Similarly, MOT is when

various objects from one or more categories are being tracked simultaneously within the same video or

set of frames [33], [63].

MOT is of great importance in autonomous driving, where it is used to detect and predict the behaviour

of pedestrians or other vehicles. Hence, the algorithms are often benchmarked on autonomous driving

datasets like KITTI [31] tracking test.

To the detriment of SOT for autonomous driving, the preference for MOT comes down to the main difficulty

in tracking multiple targets simultaneously. Interactions between objects result in multiple occlusions that

reveal that SOT models usually struggle to distinguish between similar-looking intra-class objects. Because

of that, simply applying SOT models directly to multiple targets leads to poor results, often incurring target

drift and numerous ID switch errors [63].

There are also two ways of classifying a tracking algorithm depending on if they have access to future

frames when identifying an object in a particular frame. Batch-tracking algorithms use information from

future frames when deducing the identity of an object. Online tracking algorithms only use present and

prior frames to produce bounding boxes regarding the identity of an object in a particular frame. Real-

time problems requiring the tracking of objects do not have access to future video frames, which is why

online tracking methods are the only viable option for these situations [33], [66].

2D OBJECT TRACKING

 57

In this work, only MOT Online object trackers are considered, as they are the only viable solutions for

autonomous driving.

Object Tracking methods generally consist of two main components. A motion model that describes and

predicts the states of an object over time and an observation model that verifies predictions in each frame

depicting the appearance information of the tracked object [67].

Traditionally Object Tracking followed interest points through space and time by developing strong hand-

crafted features [67], [68]. Some milestones of this period include [69]–[76]. However, these techniques

were prone to noise and easily lost track during occlusion, which did not make them usable for real-life

applications [67]. For this reason, traditional approaches were abandoned, and with the rapid

development of DL networks, computing power and available data, the performance of object trackers

greatly increased [2])

DL methods are progressively used in most top-performing MOT algorithms. The strength of deep neural

networks resides in their ability to learn rich representations and extract complex and abstract features

from their input. CNNs currently constitute state-of-the-art in spatial pattern extraction [63].

Nowadays, the best-performing MOT methods usually follow the tracking-by-detection paradigm. Which

first detects objects in each frame and then associates them over time [77], [78].

This model type can even be separated into two categories based on whether they use one or two models

to detect and track objects. The main advantage of having separate models for detection and tracking is

the possibility of developing the most suitable model for each task separately without compromising. As

a result, these approaches have achieved the best performance on public datasets. However, they are

usually slow as the runtime is the sum of the two models [77], [78].

With the quick maturity of multi-task learning in deep learning, single-model detection and tracking have

attracted more research attention. These models usually achieve faster runtime. However, the accuracy

is usually lower than the two-step models [77].

Object Tracking has many types of errors. A metric should then be able to judge the tracker’s precision

in determining exact object location and reflect its ability to track object configurations through time

consistently [79].

A group of metrics has been established as a standard to provide a common experimental setup where

algorithms can be reasonably tested and compared. Multiple Object Tracking Precision (MOTP) and

Multiple Object Tracking Accuracy (MOTA) are novel metrics that intuitively express a tracker’s

characteristics and can be used in general performance evaluations [79].

2D OBJECT TRACKING

 58

The MOTA metric accounts for all object configuration errors. Namely false positives, mises and

mismatches over all frames. MOTA is given by the sum of the number of misses (𝑚
𝑡
), false positives

(𝑓𝑝𝑡
), and mismatches (𝑚𝑚𝑚𝑒𝑡) averaged by the number of ground truth boxes [63], [79].

𝑀𝑂𝑇𝐴 = 1 −
∑ (𝑚𝑡 + 𝑓𝑝𝑡

+ 𝑚𝑚𝑚𝑒𝑡)𝑡

∑ 𝑔𝑡𝑡

Equation 4 - Multiple Object Tracking Accuracy.

MOTP, on the other hand, is the metric that shows the ability of the tracker to estimate precise object

positions. It is given by the total position error for matched hypothesis pairs (𝑑𝑖,𝑡) over all frames averaged

by the total number of matches made between ground truth and the detection output (𝑐𝑡) [63], [79].

𝑀𝑂𝑇𝑃 =
∑ 𝑑𝑖,𝑡 𝑖,𝑡

∑ 𝑐𝑡𝑡

Equation 5 - Multiple Object Tracking Precision.

These two metrics complement each other, so they are usually used together when classifying an object

tracker.

As well as in Object Detection, standardized benchmarks help progress in Object Tracking models'

performance. In order to choose what models to explore in this dissertation, an analysis of public datasets

benchmarks was made. More specifically, MOTChallenge and Waymo Open Dataset – 2D Tracking

challenge results were studied. MOTChallenge is the most used benchmark for MOT. It provides a large

pedestrian dataset and uses MOTA as a primary score metric, but many other metrics are used [80]. In

addition, Waymo Open Perception Dataset was also used for comparing models since the Waymo Open

Dataset – 2D Tracking challenge has a public leader board where models are classified with MOTA and

MOTP metrics [33].

Waymo released a base model for the Waymo Open Dataset – 2D Tracking competition with the method

Tracktor [81] based on a Faster R-CNN object detector pre-trained on the MS-COCO dataset [29] and

then fine-tuned on Waymo Perception Dataset. When tracking vehicles, the resulting model achieved a

MOTA of 34.8 at LEVEL 1 labels and 28.3 at LEVEL 2 labels. The first place of the challenge developed

an efficient and pragmatic tracking-by-detection framework known as HorizonMOT. This framework is a

one-stage joint detection and tracking model that uses a single network developed on top of CenterNet

2D OBJECT TRACKING

 59

[45] that focuses on frame-to-frame prediction and association [34]. Typically, an association between

tracks and detections are done through the Hungarian algorithm that handles the association as an

assignment problem. Contrary to the norm, HorizonMOT has a three-stage data association scheme to

improve tracking performance. 2D tracking on HorizonMOT also relies on re-Identification (re-ID) features

extracted by a small independent network to complement bounding box overlap-based association metrics

that help to handle long-term occlusion or objects with large displacement [34]. HorizonMOT used pre-

trained weights on MS-COCO, and daytime, night-time, pedestrian, and cyclist expert models were fine-

tuned to handle the imbalanced training data problem. The outputs of all models were then merged by

the naive non-maxima suppression (NMS) algorithm [34]. HorizonMOT obtained a MOTA/L1 and

MOTA/L2 of 51.01 and 45.13, respectively and MOTP/L1 and MOTP/2 of 14.18 and 14.27, respectably

in the Waymo’s dataset [8] [9] [34]. An adaption of this solution would be a great case study, especially

using the NMS algorithm to merge expert models' results.

Other architectures besides those used in the Waymo challenge were explored. FairMOT, for instance, is

a great model for future experiments as it claims to outperform state-of-the-art models on public datasets

at 30 frames per second. FairMOT is a one-shot tracker that only uses one model for detecting and

tracking objects. Although this type of tracker usually has lower accuracies, this is not the case with

FairMOT, which was benchmarked in MOT15, MOT16, MOT17 and MOT20, beating all other state-of-the-

art methods in the MOTA metric [77]. On the other end, DeepSORT is a two-stage tracker and extension

of the SORT algorithm that is one of the most widely used object-tracking architectures [82]. DeepSORT

model implementations present respectable benchmarks on public datasets [80], [82]. Nonetheless,

what makes this model interesting is the possibility of pairing the YOLOv5 model developed in section 3.3

as a base detection model to a tracking algorithm, a combination that shows promising results [83]. This

paring is especially interesting as it would save time and computation resources in the training process.

By exploring this possibility, a variation of DeepSORT stood out as a good model choice to train and

benchmark in sections 4.3 and 4.4, as there is an implementation that facilitates the use of YOLOv5

models for detection [84]. This implementation feeds the detections generated by YOLOv5 to StrongSORT

[85], which combines motion and appearance information based on a re-ID CNN to track objects [84].

StrongSORT revisits the classic DeepSORT tracker, updating the outdated techniques that cause it to

underperform compared with state-of-the-art methods [85]. DeepSORT, in short, is a framework

composed of two branches: the appearance branch and the motion branch. The appearance branch

applies the deep appearance descriptor to the detections in each frame to extract their appearance

features. The motion branch uses the Kalman filter algorithm to predict the objects' positions in the

2D OBJECT TRACKING

 60

current frame. Then, the spatio-temporal dissimilarity between objects being tracked and detections are

calculated and used to filter unlikely associations [85].

StrongSort upgrades the appearance feature extractor in the appearance branch, replacing the simple

CNN with Bag of Tricks (BoT) [86] and an improved ResNet50-TP [87], making it capable of extracting

more discriminative features of the instances being tracked and performing association. The feature bank

was also replaced with the feature updating strategy Exponential Moving Average (EMA), which enhances

the matching quality and reduces the time consumption. In addition, the Enhanced Correlation Coefficient

Maximization (ECC) was adopted for camera motion compensation in the motion branch [88]. NSA

Kalman algorithm [89] was also used as a detriment of the vanilla algorithm since it proposes a formula

to calculate the noise covariance adaptively. Other alterations came from solving the assignment problem

with appearance and motion information and replacing the matching cascade with vanilla global linear

assignment [85]. Figure 27 summarizes the framework differences between DeepSORT and StrongSORT

[85].

Figure 27 - Framework comparison between DeepSORT and StrongSORT.

2D OBJECT TRACKING

 61

The authors of StrongSORT also proposed two algorithms, AFLink and GSI, that can be plugged into

various trackers. Their introduction to StrongSORT resulted in StrongSORT++, which presents even better

results in MOT17 and MOT20. However, StrongSORT++ will not be used in sections 4.3 and 4.4 as there

was not a stable version of StrongSORT++ with YOLOv5 when the experiments of section 4.3 were

conducted . In addition, StrongSORT++ post-processing steps can impact tracking speeds for real-time

tracking necessary for the experiments and results of sections 5.2 and 5.3 [85].

The re-ID CNN, named OSNet [90], used in the StrongSORT implementation with YOLOv5 replaces the

ResNet50-TP model, as illustrated in Figure 28 [84]. This alteration raises a problem for the experiments

of 4.3 and 4.4 since the OSNet model, responsible for associating images of the same object taken on

different occasions or cameras, is only trained for people re-ID, which means the model will not be equally

suitable for the re-ID of other classes [90].

.

Figure 28 - StrongSORT with YOLOv5 implementation framework.

There are few available results of the used StrongSORT with YOLOv5 implementation on public datasets.

The only available results that allow for any correlation between this implementation and other models

are the MOT16 evaluation performed on the train split. Important to clarify that this is not an issue, as

the training dataset is never used for training. The results were also obtained with a limited detector

YOLOv5m which negatively impacts results [84]. Figure 15 shows the results of the models referred in

this section on the MOT16 [84].

2D OBJECT TRACKING

 62

Table 16 -Trackers evaluation on MOT16. FPS column refers to frames per second.

 MOTA FPS

DeepSORT 78.0 13.5

StrongSORT 78.3 7.5

FairMOT 73.7 25.9

StrongSORT + YOLOv5

+ OSNet

60.1 10.2

4.2 MATERIALS

Similarly, to Object Detection, Object Tracking is also one of the essential prerequisites to autonomous

navigation, as it allows the prediction of trajectories and future behaviour. Therefore, the object tracker

model also must be reliable and accurate. Furthermore, object tracking, as for Object Detection, requires

tracking results in a timeframe under one second with accurate results, operating strictly on the input

image.

4.2.1 WAYMO 2D TRACKING CHALLENGE

The Waymo 2D Tracking challenge consists of given a camera image, producing a set of 2D boxes and

the correspondence between boxes across frames [33]. The dataset used for this challenge was Waymo

Perception Open Dataset. The input data was restricted to camera images, and a causal system was

enforced where for a frame, only sensor data up to that point could be used. The classes included in the

challenge (vehicle, pedestrian, and cyclist) are annotated with tight-fitting 2D bounding boxes based on

the camera images [91]. This challenge used as the primary metric MOTA, and the second metric is

MOTP [33]. As already has been mentioned in 4.1, some of the solutions that resulted from this challenge

were studied.

4.2.2 DATASET

For the case of the chosen object tracker, the development and testing process turned out to be more

complex than the one in section 3.3, as the used tracker is composed of independent components. The

solution to this problem was to use different datasets for training and testing the different components of

the tracker.

2D OBJECT TRACKING

 63

Waymo’s dataset described in section 3.2.2 was used for training and testing the tracker's object detector

component, YOLOv5. As said in 3.2.2, Waymo’s dataset is one of the largest high-quality datasets for

autonomous driving. Therefore, this dataset was a logical choice as all the work put into training in section

3.3.3 could be translated to the base detector for the object trackers being developed in 4.3, saving

computational time and resources [33].

The Omni-Scale network (OSNet) deep-learning re-ID CNN is used in StrongSORT with YOLOv5

implementation, as explained in 4.1. The Torchreid framework [92] is used to implement this component,

which provides a list of image and video datasets compatible for training. Torchreid builds each dataset

on top of base classes, which provide basic functions for sampling, reading and pre-processing images

[92]. A list of trained re-ID models was made available by the authors of Torchreid. The models’ mAP

results were compared in three different datasets, Market-1501 [93], DukeMTMC-reID [94] and MSMT17

[95], and the results were considered when choosing the best model for the trackers described in section

4.3.

Market-1501 is a high-quality dataset for person re-ID. This dataset contains 1,501 identities collected by

six cameras with 32,668 annotated bounding boxes, plus a distractor set of over 500K irrelevant images

and 3,368 query images. This dataset employed a Deformable Part Model detector to draw bounding

boxes. All the data was collected in an open environment where at least two cameras captured images of

each annotated identity, and each identity had multiple images under the same camera [93].

DukeMTMC-reID is a dataset for person re-ID with more than 2 million frames taken from 1080p, 60fps

video recorded by eight static cameras observing more than 2,700 identities over 85 minutes. All identity

has a single-frame bounding box, and ground-plane world coordinates across all cameras in which it

appears [94], [96].

MSMT17 person re-ID dataset is composed of 180 hours of video taken by fifteen cameras, twelve outdoor

and three indoor cameras. The videos cover a long period of time with complex scenes and backgrounds

and weather and lighting variations. The dataset contains 4,101 identities and 126,441 bounding boxes

drawn with the help of a more reliable bounding box detector Faster RCNN, to the detriment of outdated

detectors like Deformable Part Model [95].

Finally, the MOT16 dataset [97] was selected as the dataset to evaluate the developed object trackers.

The main reasons for this choice are that it allows for comparisons of results of other trackers that can

be seen in 4.1. Furthermore, there is already compatibility in testing the used StrongSORT with YOLOv5

implementation in this dataset, allowing the choice of what classes from the MSCOCO dataset should be

tested, which is important to match the capabilities of the object detector used by the tracker [84]. In

2D OBJECT TRACKING

 64

addition, this dataset has an image size of 1280, coinciding with Waymo's dataset's image size after the

padding pre-processing method explained in section 3.3.3 [29]. MOT16 is composed of fourteen

sequences that differ between them according to if it is a moving or static camera, according to the

viewpoint, and can differ in weather or illumination conditions. Table 17 shows the dataset annotation

types and their distribution within the dataset [97].

Table 17 - MOT16 types of annotations.

Pedestrian 292733

Person on vehicle 2430

Car 8818

Bicycle 26046

Motorbike 2550

Non-motorized vehicle 11

Static person 27966

Distractor 8238

Occluder on the ground 73319

Occluder full 33473

Reflection 948

Total 476532

4.3 METHODS

This section describes the approaches to develop and test a StrongSORT object tracker model.

The container described in the section 3.3 was also used for development and testing of the object

tracker.

The data extracted from Waymo’s dataset described in sections 3.3.1 and 3.3.2 was indirectly used in

the development of the object tracker in the sense that the object detector trained with this data would

be the base detector for the object tracker. For this reason, all data analyses and pre-processing done

previously continues to be relevant in this section and to the results of 4.4. One of the things to consider

relative to Waymo’s dataset is that it is has data of three different classes vehicles, pedestrians, and

cyclists. This information is relevant because these are the classes that will be detected and then tracked

by the object tracker.

2D OBJECT TRACKING

 65

The used implementation of StrongSORT with YOLOv5 uses OSNet [90] model with the help of the

Torchreid framework [92], wich is trained exclusively on person re-ID data. For this reason, it was

necessary to resort to all person re-ID datasets as the likes of Market-1501, DukeMTMC-reID and

MSMT17, although it is not the ideal type of data considering the classes that the object detector was

trained to detect.

MOT16 [97] was chosen as the dataset to evaluate the tracker. This dataset is relevant because there

are public results of the models referred to in section 4.1 and results from the tracker implementation

used, which allows for meaningful analysis and conclusion of the obtained results. A second reason for

the use of this dataset for evaluation is, as already mentioned in section 4.2.2, that the used StrongSORT

with YOLOv5 implementation allows choosing what classes from MSCOCO dataset [29] should be

tracked. This feature helps match the objects tracked to the capabilities of the object detector used by

the tracker. In this case, the object detector can detect pedestrians, vehicles, and cyclists.

On the other hand, MOT16 has all annotation types present in Table 17. MOT16 has more classes than

Waymo’s datasets, and another issue is that the Waymo dataset and MOT16 seem to have different

definitions to represent the same objects. For example, a Car and Non-motorized vehicle in the MOT16

dataset would be simply labelled as a vehicle in the Waymo dataset. Other problems with the differences

in labelling are the bicycle in MOT16 and cyclist in Waymo, or person on a vehicle on MOT16 and

Pedestrian in Waymo dataset, that there is no clear answer if a person on a vehicle will be classified as a

pedestrian and vehicle or simply a vehicle. For this reason, it makes sense to evaluate the StrongSORT

implementation with not only YOLOv5 weights trained in Waymo’s dataset but also with provided weights

of the YOLOv5 team in MS-COCO dataset since these are the recommended YOLOv5 weights of the

authors of the StrongSORT with YOLOv5 implementation [84].

A CONDA [48] environment was created where all the package requirements necessary for executing the

StrongSORT with YOLO5 implementation were installed. During the development of the object tracker,

the repository of the used implementation underwent significant changes while it was being studied. The

tracker passed from DeepSORT to StrongSORT, which implicated a new environment configuration.

During this transition, some problems arise in the form of conflict errors between packages that lead to

the creation of a new environment for the new repository version.

After the environment set-up, a script that uses several images of the Waymo dataset to generate a video

from the images in temporal order was created. The results of the StrongSort tracker, with the best

detection model of YOLOv5 from section 3.4, on the generated video, can be seen in section 4.4.

2D OBJECT TRACKING

 66

Though the results were satisfactory, it was not a clear way of classifying the developed trackers. For that,

capabilities within the used repository were used to classify and compare trackers on the MOT16 dataset,

which results can be seen in section 4.4.

One thing considered before the model evaluation was the list of pre-trained models made available by

the authors of the Torchreid framework [92]. The authors of the framework performed different

experiments on the different OSNet models.

OSNet achieves state-of-the-art performance, outperforming re-ID models with a far larger number of

parameters, in datasets like Market-1501 [93], DukeMTMC-reID [94] and MSMT17 [95]. Table 18

summarizes the OSNet model characteristics and mean AP results on the different datasets [98].

Table 18 - OSNet model characeristics.

In order to improve domain generalisation across datasets and better cope with cross-dataset

discrepancies, the Torchreid team incorporated instance normalisation into OSNet. This variant of OSNet

is called OSNet-AIN. OSNet-AIN has a remarkable generalisation ability, having good performances on

unseen target domains and maintaining strong source domain performance, requiring neither the target

domain data nor per-domain training [98].

The fact that the experiments of section 4.4 aim to evaluate the tracker capability of different classes not

only classes referent to people. For this reason, an OSNet-AIN model trained by the Torchreid team on

MSMT17 [95] dataset and tested on Market-1501 [93] and DukeMTMC-reID [94] datasets seems to be

the most capable available model for tracking objects it was not trained for. Therefore, this was the chosen

model to incorporate into the StrongSORT framework and perform the experiments of section 3.4.

 Param (10^6) GFLOPs Market-1501 DukeMTMC-reID MSMT17

OSNet 2.2 0.98 86.7 76.6 55.1

2D OBJECT TRACKING

 67

4.4 RESULTS & DISCUSSION

Figure 29 and Figure 30 are examples of the tracking results obtained by a StrongSORT tracker in images

from the same scene extracted from the Waymo’s Perception dataset, with a YOLOv5 detector trained in

this dataset and a OSNET AIN trained in MSMt17 dataset. In the bounding boxes present in the figures it

is possible to see the tracking id assigned to the object, the class, and the confidence in the detection.

As can be seen in the figures, at first glance, the developed tracker with the YOLOv5 Padding baseline

model seems to be attempting to track all objects detected, even those that are not people.

Figure 29 - Tracking results example 1.

Figure 30 - Tracking results example 2.

2D OBJECT TRACKING

 68

As explained in section 4.2.2, the developed trackers were evaluated using the MOT16 dataset. The

results of the trackers evaluation were obtained in the hardware described in section 3.3, and since the

OSNET feature extractor used is only trained for recognising features of people, only the Pedestrian

class was evaluated.

The first evaluated trackers used the recommended combination of YOLO weights by the authors of the

used repository. The YOLO weights were trained in the CrowdHuman dataset [99], with data on human

instances. Two different OSNET models were combined with this YOLO detector: the OSNET weights

trained in the DukeMTMC-reID, and OSNET AIN trained in the MSMt17 dataset. The evaluation of these

trackers for the Pedestrian class with a threshold of 0.5 can be seen in Table 19.

Table 19 - Object trackers with YOLOv5 detector trained on CrowdHuman.

 MOTA MOTP

OSNET 60.10 79.53

OSNET AIN 59.91 79.38

It was expected that the OSNET AIN model would improve the MOTA and MOTP metrics as it is a more

capable model than the OSnet in generalizing feature extraction. Also, it was trained in MSM17, a larger

dataset that presents a larger variety of data, as explained in section 4.2.2. However, as seen in Table

19, this was not the case. Instead, the slight drop in performance can be a result of the fact that a

significant portion of MOT16 data comes from a stationary camera on a pedestrian street, at night, with

an elevated viewpoint scenario which is closer to the type of data present in DukeMTMC-reID dataset.

Finally, the baseline YOLOv5 model trained with data that suffered padding described in sections 3.3.3

and 3.4 was also evaluated with the two OSNET models already mentioned in this section. The results of

these combinations can be seen in Table 20.

Table 20 - Object trackers with YOLOv5 detector trained in Waymo detector.

 MOTA MOTP

OSNET 42.55 80.20

OSNET AIN 42.48 80.26

Table 20 suggests that the MOTA metric is much lower for the trackers using the YOLO model trained in

Waymo’s dataset. This phenomenon is probably caused by the fact that the data the detector was trained

2D OBJECT TRACKING

 69

for was not people but pedestrians. The MOT16 dataset has data in different scenarios where people's

instances are not pedestrian. These differences hurt the capacity of the model to detect and, by

repercussion, track a large number of instances. Therefore, MOTA, the metric that evaluates the number

of errors that occur during tracking, is expected to decrease using the YOLO model trained in Waymo's

dataset. On the other hand, the MOTP metric that evaluates the tracking precision had a slight

improvement relative to the models that use the default YOLO model. One explanation for this result is

that a lower number of instances are being correctly tracked, and the ones being tracked are likely the

easier ones to localise.

Comparing the obtained results to Table 16, the evaluated object trackers have lower MOTA scores than

other state-of-the-art trackers. However, these results must be scrutinised as the used detectors were

trained on different datasets, which limits the obtainable results.

MULTI-ACCESS EDGE COMPUTING (MEC)

 70

5 MULTI-ACCESS EDGE

COMPUTING (MEC)

5.1 LITERATURE REVIEW

Multi-access Edge Computing (MEC) provides computing at the network's edge by placing MEC hosts

nodes as close as possible to the end user [100]. Standardized APIs allow applications and content

providers to take advantage of computing capabilities at the edge of the network and to receive information

about the status of the network and its users [16], [100]. The main differentiators of a MEC environment

are extreme user proximity, ultra-low latency, high bandwidth, real-time access to radio network and

context information, and location awareness. On top of a secure environment, it offers to provide and

consume services [16]. Figure 31 shows a simplified view of the environment offered to MEC applications

(MEC app). A Client app running on a User Equipment (UE) may request computing services from a MEC

app running on a MEC host, usually deployed on the edge of the network. On the other hand, this MEC

app may also require services provided by the MEC platform (represented by the red boxes "MEC

services"), which may be discovered via a standardized Restful API, Mp1.

Figure 31 - ETSI MEC environment. Retrieved from [16]

MEC is compatible with any application with the advantage that if the application is designed to run on

MEC, it can give additional information on expected latency, throughput and available MEC services. This

means edge applications can benefit from low latency and high throughput in a controllable way [16].

MEC applications must, however, meet certain criteria. They run on a virtualized environment, such as a

virtual machine or container. MEC applications must support a DNS-based solution, and a domain name

is needed so that a client application can gain access in order to redirect traffic. If a service is required to

MULTI-ACCESS EDGE COMPUTING (MEC)

 72

be available regardless of whether a local MEC system is available, then a back-end service hosted in the

cloud will be required as a fall-back. User context transfer data is also a sensitive matter as it may not be

allowed to transfer data from one jurisdiction to another for legal reasons. Lastly, these applications need

to be aware of resource requirements (like CPU, storage, and network resources), latency tolerance and

if it provides or requires one or more services [16].

MULTI-ACCESS EDGE COMPUTING (MEC)

 73

5.2 SIMPLIFIED ARCHITECTURE

The goal of this section is to develop an edge network. Figure 32 illustrates how an edge server may

provide services to connected vehicles. The vehicles send images to the MEC host to detect and track

detected objects. Next, the applications will process the received images by running the AI models and

will return the results to the vehicles.

Figure 32 - Edge Computing application architecture

Due to the inaccessibility of an actual edge network to experiment on, a simulated environment was

considered. Simu5G [101] emerged as a solution to this problem, as it allows for network simulations

where 4G and 5G coexist and benchmark solutions. Furthermore, Simu5G includes a model of ETSI MEC

that allows for rapid prototyping of MEC applications in credible and controllable 5G mobile network

scenarios. In addition, Simu5G provides MEC services able to produce real information from mobile

networks and offer them through ETSI compliant APIs.

Simu5G can simulate communications in vehicular networks with the help of two simulation tools: Veins

[102] and SUMO [103]. Simu5G also requires the installation of OMNeT++ [104] simulation framework

and INET-Framework [105].

Due to time constraints, it was not possible to successfully integrate all these tools and it was decided to

employ the simplified scenario that can be seen in Figure 33. This scenario contains an external

application that emulates the behaviour of an application inside the User equipment (UE) that sends an

image through the network. This application is connected to the simulator. Inside the simulator, a gNB

MULTI-ACCESS EDGE COMPUTING (MEC)

 74

entity communicates with the UE and MEC system using the New Radio protocol stack, allowing packets

to flow between the UE and the MEC system [106]. The MEC app is also running as an external application

to the simulated Simu5G environment, as is the case for the UE app, communicating with the simulated

environment with the help of an interface, and is responsible for executing AI models to detect and track

incoming images from the UEs.

Figure 33 - Simulated Edge Computing network environment.

5.3 RESULTS

The real value of edge AI computing comes from collecting and processing data and making predictions

and decisions in real-time.

The average execution time of the detection and tracking models was calculated in the hardware

described in section 3.3, the results can be seen in Table 21 , where it is also possible to see what each

execution time translates to the distance travelled by a vehicle moving at 100km/h. As can be deduced

by the distances travelled, the execution times of the detection and tracking models turned out to be

higher than what is required for real-time detection and tracking for autonomous driving. However, these

results can be mitigated by more powerful hardware and custom accelerator AI chips for DL applications

that allow for faster execution times relative to traditional chip architectures.

Table 21 - Detection and tracking average execution times.

 Execution time (ms) Distance traveled by a vehicle

with a 100 km/h velocity (m)

YOLOv5 20.6 0.57

StrongSORT 58.0 1.61

YOLOV5 + StrongSORT 78.6 2.18

MULTI-ACCESS EDGE COMPUTING (MEC)

 75

The EC network simulation environment was developed in a virtual machine with low computation power.

For this reason, the execution times of the detection and tracking models in the simulation environment

are exponentially higher. The fact that these limitations exist in terms of computational power means that

it is impossible to draw valid conclusions from the execution times of the models.

Low latency for automotive safety is a must. However, the response time for sending an image with

resolutions of 1280×1920 pixels, the resolution used for the developed detectors and trackers of sections

3.3.3 and 4.3, through the simulated network with a distance of only 50m between the UE and the MEC

system and executing the AI models were abnormally high, surpassing 12 seconds. This phenomenon is

possibly a result of packets being sent too fast, resulting in too much traffic into the test bed shown in

Figure 33 where Simu5G was used in emulation mode, and making it unable to run in real time. Real-

time emulation is only possible when the complexity of the simulation is such that simulation time can

run in parallel with wall-clock time [101]. One possible solution to this problem in a future iteration of this

experiment is not using external applications and simulating the whole environment.

However, it was still possible to evaluate, in an isolated manner, the time it took to uplink, transfer the

image from the UE to the MEC system, and downlink, transfer the image with the detection from the MEC

system to the UE. The uplink and downlink times were similar and amounted to 38.64 ms. Looking at

the example used previously in this section for AI models execution time, for a vehicle moving at 100

km/h, this time amounts to a total of 1.07m travelled which is too big of a distance waiting for information

in an autonomous driving scenario.

Although further experiments have to be conducted to test the viability of sending frames to be processed

in a MEC system, evaluating the benefits and flaws of the integration of MEC in autonomous driving is

still possible.

MEC-based Vehicle to Infrastructure (V2I) Data Offloading faces many challenges. For example, the high

mobility of vehicles makes handover management complex. In addition, edge server resources need to

be managed so that the vehicle is constantly connected to a server that can guarantee the quality of

service required by the client application. Finally, the fact that different vehicle users can access edge

servers makes it imperative to have robust protection mechanisms for security and privacy [108]. For

these reasons, relying on the edge server application for detection and tracking of results increases

potential points of failure, making it more dangerous than running these models locally.

However, an edge server running this type of application can still have a meaningful impact on road

safety. An edge server can analyse and process data in real-time and alert vehicles of possible danger.

Edge servers can also collect information like vehicle location and speed and collect weather and road

MULTI-ACCESS EDGE COMPUTING (MEC)

 76

conditions, allowing the server to possibly make decisions to control the traffic flow and provide vehicles

with optimal routes [108].

CONCLUSION

 77

6 CONCLUSION

CONCLUSION

 78

This work aimed to investigate Artificial Intelligence techniques to detect and track objects and test them

in an MEC environment. This study is divided into three components: object detection, object tracking

and evaluation of the feasibility of processing data in MEC servers. Several architectures,

hyperparameters, pre-processing techniques, and evaluating metrics were studied for object detection

and tracking. In addition, the MEC fundamentals and architectures and simulation tools for these

environments were also studied.

For Object detection, the YOLOv5X model was used, which was trained in the Waymo Perception dataset

with labelled data of vehicles, pedestrians, and cyclists. One of the most challenging parts of this work

was analysing and pre-processing Waymo’s dataset data. The main difficulties came from the fact that

the dataset proved too large for the available hardware, and the way the data is stored in public

repositories forced a considerable number of data transformation and filtering operations, so the final

dataset was in the correct format for training a YOLOv5 model. Another issue encountered was the

hardware limitations and the fact that the computation resources were being shared with other colleagues,

which limited the amount of training available to the developed models.

Looking at the results, the strategy of increasing the image size throw padding and lowering the batch

size proved to be a winning one as the baseline model trained on a lower image size achieved a mAP on

the used subset of Waymo’s dataset of 77.6, and the model with a larger image size and data that

suffered padding achieved a mAP on the same subset of data of 86.2. Also, the increase of the

augmentation hyperparameters caused a slight improvement to the best mAP of the baseline models with

a mAP of 86.6. In addiction, by analysis of the training loss and validation loss, the alterations in

hyperparameters resulted in a decrease in the objectness losses and classification losses and seem to

have delayed the improvement stagnation of the model during training. As explained in section 3.4,

although there is not a fair comparison between the developed models and the results of the leader board

of the Waymo 2D Detection Challenge, these experiments showed promising results on the subset of data

used.

For Object tracking, StrongSORT was used. The StrongSORT model is composed of an object detector

and a CNN used for feature recognition. StrongSORT uses the YOLOv5 model for object detection and

the OSNET model for feature recognition. Some combinations of feature recognition CNNs and object

detectors trained in different datasets were combined and evaluated with StrongSORT in the MOT16

dataset. Though, the classes being tracked were restricted to tracking people, given that the only publicly

available OSNET feature extractor models are exclusively trained in people re-ID datasets.

CONCLUSION

 79

Although it was not an evaluation, the results of tracking images from the Waymo’s Perception dataset

showed that the trackers with a YOLOv5 detector trained in this dataset, even though they have a feature

extractor only trained for people, still attempted to track the other classes present in the dataset.

The evaluation of the developed trackers was done in MOT16, and the results on the MOTA metric were

lower than other state-of-the-art architectures on the same dataset. Some possible explanations and

comparisons between the evaluated trackers are given in section 4.4, but the main reason for these

results comes down to the fact that both OSNET and YOLO models used did not train in the MOT16

dataset, which negatively impacts the results.

Relative to MEC, a simulated environment was created for experimentation purposes. Although further

experiments have to be conducted, our preliminary results show that, if a vehicle is dependent on

detections and tracking results calculated by an edge server to make decisions, the EC turns to a liability

instead of an advantage. Despite this, implementing this type of system can still help, for instance, improve

road safety if it is used to improve information dissemination between the vehicles by informing possible

road situations like accidents, road obstructions and traffic state.

Although this dissertation helped summarize progress and withdraw interesting conclusions in the object

detection, object tracking and EC fields, there are still many exciting paths to develop this work further.

One thing to explore is the hyperparameter evolution available in YOLOv5. This technique is a method of

hyperparameter optimization using a Genetic Algorithm (GA) that has the potential to improve further the

results of the object detectors, which was not explored due to available limited computing power.

During the development of this work, multiple different implementations of YOLO were released at a rapid

pace. Some of the most interesting implementations are YOLOX, PP-YOLOE, YOLO6 and YOLO7. All of

these show promising results on the MS-COCO dataset and are worth exploring and comparing to YOLOv5

in a future iteration of this work.

In the Waymo 2D detection challenge, the solution of the second-place team was studied. This team used

both one-stage and two-stage detectors and had expert models for different classes and times of the day.

This team used this variety of models to fuse detections to improve results. A similar strategy can be

pursued in a future iteration of this work.

Relatively to the tracking part of this work, in a future iteration, the implementation of a StrongSORT

tracker with a CNN responsible for feature extraction not exclusively trained in people data would lead to

better results for autonomous driving. Ideally, the CNN would be trained in the same classes as the object

tracker used, and the evaluation process would be conducted in the same dataset where the object

detector and feature extractor were trained. Another case of study would be to conduct experiments on

CONCLUSION

 80

the FairMOT model so comparisons between one-stage and two-stage trackers relative to precision and

execution time could be withdrawn.

Finally, regarding the MEC part of this study, more experiments could be conducted to test the limits of

the network and the MEC system capabilities by congesting the network with multiple users and requests

to access the existing MEC applications. Moreover, another case study is to use GatcomSUMO and

OpenStreetMap to develop experiments on real-world scenarios. These real-world scenarios could help

determine how extensive and capable a MEC system would need to be to serve vehicular applications

such as the ones studied. Ultimately the same experiments could be made on a real edge network to

evaluate if this work's findings hold up in a real-work scenario.

Autonomous driving has the potential to save millions of lives and advance our society by turning road

driving safer and more fluid. Artificial intelligence will be essential to this future by allowing a vehicle to

have the road awareness of a human and a machine's reaction times and precision. Edge computing can

play an active role in this feature by offering powerful hardware at a lower latency which is essential to a

critical application like the ones needed for autonomous driving.

REFERENCES

 81

REFERENCES

[1] Z. Zou, Z. Shi, Y. Guo, J. Ye, and S. Member, “Object Detection in 20 Years: A Survey,” May 2019.

[2] S. K. Pal, A. Pramanik, J. Maiti, and P. Mitra, “Deep learning in multi-object detection and tracking:

state of the art”, doi: 10.1007/s10489-021-02293-7.

[3] “J3016_202104: Taxonomy and Definitions for Terms Related to Driving Automation Systems for

On-Road Motor Vehicles - SAE International,” 2021.

[4] P. Soviany and R. Ionescu, “Optimizing the Trade-off between Single-Stage and Two-Stage Deep

Object Detectors using Image Difficulty Prediction”.

[5] “LIDAR vs. Camera — Which Is The Best for Self-Driving Cars? | by Vincent Tabora | 0xMachina

| Medium.” https://medium.com/0xmachina/lidar-vs-camera-which-is-the-best-for-self-driving-

cars-9335b684f8d (accessed Oct. 20, 2021).

[6] “Autonomous Vehicles Drive AI Advances for Edge Computing - 3D InCites.”

https://www.3dincites.com/2021/07/autonomous-vehicles-drive-ai-advances-for-edge-

computing/ (accessed Oct. 20, 2021).

[7] “AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What’s the Difference? | IBM.”

https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks

(accessed Aug. 18, 2022).

[8] B. Mahesh, “Machine Learning Algorithms-A Review,” 2019, doi: 10.21275/ART20203995.

[9] S. Kaur and S. Jindal, “A Survey on Machine Learning Algorithms,” pp. 6–14, 2016.

[10] A. Abraham, “Artificial Neural Networks,” Handbook of measuring system design, Jul. 15, 2005.

[11] P. P. Shinde and S. Shah, “A Review of Machine Learning and Deep Learning Applications,”

Proceedings - 2018 4th International Conference on Computing, Communication Control and

Automation, ICCUBEA 2018, Jul. 2018, doi: 10.1109/ICCUBEA.2018.8697857.

[12] N. O’ Mahony et al., “Deep Learning vs. Traditional Computer Vision”.

[13] D. Shen, G. Wu, and H.-I. Suk, “Deep Learning in Medical Image Analysis,” 2017, doi:

10.1146/annurev-bioeng-071516.

[14] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A Survey of Deep Learning Techniques

for Autonomous Driving,” 2020.

[15] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge computing: A survey,” Future

Generation Computer Systems, vol. 97, pp. 219–235, Aug. 2019, doi:

10.1016/J.FUTURE.2019.02.050.

[16] D. Sabella et al., “Developing Software for Multi-Access Edge Computing,” 2019.

REFERENCES

 83

[17] P. Viola and M. Jones, “Fast and Robust Classification using Asymmetric AdaBoost and a Detector

Cascade,” vol. 14, 2001.

[18] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Proceedings -

2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR

2005, vol. I, pp. 886–893, 2005, doi: 10.1109/CVPR.2005.177.

[19] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively trained, multiscale,

deformable part model,” 26th IEEE Conference on Computer Vision and Pattern Recognition,

CVPR, 2008, doi: 10.1109/CVPR.2008.4587597.

[20] C. B. Murthy, M. F. Hashmi, N. D. Bokde, and Z. W. Geem, “Investigations of Object Detection in

Images/Videos Using Various Deep Learning Techniques and Embedded Platforms—A

Comprehensive Review,” Applied Sciences 2020, Vol. 10, Page 3280, vol. 10, no. 9, p. 3280,

May 2020, doi: 10.3390/APP10093280.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional

Neural Networks”.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep Convolutional Networks for

Visual Recognition; Spatial Pyramid Pooling in Deep Convolutional Networks for Visual

Recognition,” IEEE Trans Pattern Anal Mach Intell, vol. 37, 2015, doi:

10.1109/TPAMI.2015.2389824.

[23] C.-Y. Wang, A. Bochkovskiy, and H.-Y. Liao, “YOLOv4: Optimal Speed and Accuracy of Object

Detection,” Apr. 2020.

[24] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with

Region Proposal Networks,” IEEE Trans Pattern Anal Mach Intell, vol. 39, 2017, doi:

10.1109/TPAMI.2016.2577031.

[25] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object

Detection”.

[26] W. Liu et al., SSD: Single Shot MultiBox Detector, vol. 9905 LNCS. Springer, Cham, 2016. doi:

10.1007/978-3-319-46448-0_2.

[27] D. Thuan, “Evolution of YOLO Algorithm and YOLOV5: The state-of-the-art object detection

algorithm,” 2021.

[28] R. Simhambhatla, K. Okiah, S. Kuchkula, and R. Slater, “Self-Driving Cars: Evaluation of Deep

Learning Techniques for Object Detection in Different Driving Conditions,” SMU Data Science

Review, vol. 2, no. 1, May 2019.

REFERENCES

 84

[29] T. Y. Lin et al., “Microsoft COCO: Common Objects in Context,” Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 8693 LNCS, no. PART 5, pp. 740–755, May 2014, doi: 10.1007/978-3-319-

10602-1_48.

[30] J. Mao et al., “One Million Scenes for Autonomous Driving: ONCE Dataset,” Jun. 2021.

[31] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The KITTI dataset:,”

http://dx.doi.org/10.1177/0278364913491297, vol. 32, no. 11, pp. 1231–1237, Aug. 2013,

doi: 10.1177/0278364913491297.

[32] H. Caesar et al., “nuScenes: A Multimodal Dataset for Autonomous Driving.” pp. 11621–11631,

2020.

[33] P. Sun et al., “Scalability in Perception for Autonomous Driving: Waymo Open Dataset”.

[34] Y. Wang et al., “1st Place Solutions for Waymo Open Dataset Challenges -- 2D and 3D Tracking,”

Jun. 2020.

[35] S. Chen et al., “2nd Place Solution for Waymo Open Dataset Challenge -- 2D Object Detection,”

Jun. 2020.

[36] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer, “SqueezeDet: Unified, Small, Low Power Fully

Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving”.

[37] Y. You et al., “Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving,”

Jun. 2019.

[38] P. Li, X. Chen, and S. Shen, “Stereo R-CNN Based 3D Object Detection for Autonomous Driving.”

pp. 7644–7652, 2019.

[39] T. Wei, Q. Lei, H. Zhong, and Y. Cao, “Apply and Optimize 2D Object Detection in Assembling

Components,” 2021 International Conference on Electronic Information Engineering and

Computer Science, EIECS 2021, pp. 763–768, Sep. 2021, doi:

10.1109/EIECS53707.2021.9588066.

[40] G. Jocher et al., “ultralytics/yolov5: v6.0 - YOLOv5n ‘Nano’ models, Roboflow integration,

TensorFlow export, OpenCV DNN support.” Oct. 12, 2021. doi: 10.5281/ZENODO.5563715.

[41] M. A. Duran-Vega, M. Gonzalez-Mendoza, L. Chang, and C. D. Suarez-Ramirez, “TYolov5: A

Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun

Detection in Video,” Nov. 2021.

[42] S. Jin and L. Sun, “Application of Enhanced Feature Fusion Applied to YOLOv5 for Ship Detection,”

pp. 7242–7246, Dec. 2021, doi: 10.1109/CCDC52312.2021.9602100.

REFERENCES

 85

[43] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” 2019.

[44] Z. Cai and N. Vasconcelos, “Cascade R-CNN: Delving Into High Quality Object Detection.” pp.

6154–6162, 2018.

[45] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as Points,” Apr. 2019.

[46] G. Lewis, “Object Detection for Autonomous Vehicles”.

[47] “2D Detection – Waymo.” https://waymo.com/open/challenges/2020/2d-detection/#

(accessed Dec. 02, 2021).

[48] “Anaconda Software Distribution.” Anaconda Inc., 2020.

[49] “Waymo Open Dataset Tutorial.ipynb - Colaboratory.”

https://colab.research.google.com/github/waymo-research/waymo-open-

dataset/blob/r1.0/tutorial/tutorial.ipynb (accessed Jan. 22, 2022).

[50] “GitHub - jupyter/jupyter: Jupyter metapackage for installation, docs and chat.”

https://github.com/jupyter/jupyter (accessed Jul. 21, 2022).

[51] “Download – Waymo.” https://waymo.com/intl/en_us/dataset-download-terms/ (accessed May

10, 2022).

[52] “waymo-research/waymo-open-dataset: Waymo Open Dataset.” https://github.com/waymo-

research/waymo-open-dataset (accessed May 09, 2022).

[53] “TFRecord e tf.train.Example | TensorFlow Core.”

https://www.tensorflow.org/tutorials/load_data/tfrecord (accessed May 10, 2022).

[54] “Tar - GNU Project - Free Software Foundation.” https://www.gnu.org/software/tar/ (accessed

Jul. 21, 2022).

[55] “gsutil Error: serviceexception 401 anonymous caller does not have storage objects list - cpming.”

https://blog.cpming.top/p/gsutil-serviceexception-401-anonymous-caller (accessed May 06,

2022).

[56] G. Bradski, “The OpenCV Library.” 2000.

[57] “How to Train YOLOv5 On a Custom Dataset.” https://blog.roboflow.com/how-to-train-yolov5-on-

a-custom-dataset/ (accessed Jan. 22, 2022).

[58] P. Umesh, “Image Processing in Python,” CSI Communications, vol. 23, 2012.

[59] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel Programming with CUDA,”

Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008, doi: 10.1145/1365490.1365500.

[60] M. Claesen and B. de Moor, “Hyperparameter Search in Machine Learning,” Feb. 2015, doi:

10.48550/arxiv.1502.02127.

REFERENCES

 86

[61] M. Mitchell, An introduction to genetic algorithms. 1996.

[62] L. Biewald, “Experiment Tracking with Weights and Biases,” 2020. https://www.wandb.com/

(accessed Jul. 25, 2022).

[63] G. Ciaparrone, F. Luque Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, and F. Herrera, “Deep

learning in video multi-object tracking: A survey,” Neurocomputing, vol. 381, pp. 61–88, Mar.

2020, doi: 10.1016/J.NEUCOM.2019.11.023.

[64] Y. Z. Cheong and W. J. Chew, “The Application of Image Processing to Solve Occlusion Issue in

Object Tracking”, doi: 10.1051/matecconf/201815203001.

[65] A. Dutta et al., “Vision Tracking: A Survey of the State-of-the-Art,” SN Computer Science 2020 1:1,

vol. 1, no. 1, pp. 1–19, Jan. 2020, doi: 10.1007/S42979-019-0059-Z.

[66] Y. Xiang, A. Alahi, and S. Savarese, “Learning to Track: Online Multi-Object Tracking by Decision

Making”.

[67] P. Li, D. Wang, L. Wang, and H. Lu, “Deep visual tracking: Review and experimental comparison,”

Pattern Recognit, vol. 76, pp. 323–338, Apr. 2018, doi: 10.1016/J.PATCOG.2017.11.007.

[68] X. Zhou, V. Koltun, and P. Krähenbühl, “Tracking Objects as Points”.

[69] D. A. Ross et al., “Incremental Learning for Robust Visual Tracking,” International Journal of

Computer Vision 2007 77:1, vol. 77, no. 1, pp. 125–141, Aug. 2007, doi: 10.1007/S11263-

007-0075-7.

[70] B. Babenko, M. H. Yang, and S. Belongie, “Robust object tracking with online multiple instance

learning,” IEEE Trans Pattern Anal Mach Intell, vol. 33, no. 8, pp. 1619–1632, 2011, doi:

10.1109/TPAMI.2010.226.

[71] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,” IEEE Trans Pattern Anal

Mach Intell, vol. 34, no. 7, pp. 1409–1422, 2012, doi: 10.1109/TPAMI.2011.239.

[72] C. Bao, Y. Wu, H. Ling, and H. Ji, “Real time robust L1 tracker using accelerated proximal gradient

approach,” Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pp. 1830–1837, 2012, doi: 10.1109/CVPR.2012.6247881.

[73] Y. Wu, J. Lim, and M. H. Yang, “Online object tracking: A benchmark,” Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2411–2418,

2013, doi: 10.1109/CVPR.2013.312.

[74] W. Zhong, H. Lu, and M. H. Yang, “Robust object tracking via sparse collaborative appearance

model,” IEEE Transactions on Image Processing, vol. 23, no. 5, pp. 2356–2368, 2014, doi:

10.1109/TIP.2014.2313227.

REFERENCES

 87

[75] S. Hare et al., “Struck: Structured Output Tracking with Kernels,” IEEE Trans Pattern Anal Mach

Intell, vol. 38, no. 10, pp. 2096–2109, Oct. 2016, doi: 10.1109/TPAMI.2015.2509974.

[76] X. Jia, H. Lu, and M. H. Yang, “Visual Tracking via Coarse and Fine Structural Local Sparse

Appearance Models,” IEEE Transactions on Image Processing, vol. 25, no. 10, pp. 4555–4564,

Oct. 2016, doi: 10.1109/TIP.2016.2592701.

[77] Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “FairMOT: On the Fairness of Detection and

Re-identification in Multiple Object Tracking,” Int J Comput Vis, vol. 129, no. 11, pp. 3069–3087,

Nov. 2021, doi: 10.1007/S11263-021-01513-4/FIGURES/5.

[78] Z. Wang, L. Zheng, Y. Liu, Y. Li, and S. Wang, “Towards Real-Time Multi-Object Tracking,” Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 12356 LNCS, pp. 107–122, Sep. 2019, doi: 10.1007/978-3-030-

58621-8_7.

[79] K. Bernardin, A. Elbs, and R. Stiefelhagen, “Multiple Object Tracking Performance Metrics and

Evaluation in a Smart Room Environment”.

[80] P. Dendorfer et al., “MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking,”

Int J Comput Vis, vol. 129, no. 4, pp. 845–881, Apr. 2021, doi: 10.1007/S11263-020-01393-

0/FIGURES/13.

[81] C. Kim, F. Li, and J. M. Rehg, “Multi-object Tracking with Neural Gating Using Bilinear LSTM.” pp.

200–215, 2018.

[82] N. Wojke, A. Bewley, and D. Paulus, “Simple Online and Realtime Tracking with a Deep

Association Metric,” Proceedings - International Conference on Image Processing, ICIP, vol. 2017-

September, pp. 3645–3649, Mar. 2017, doi: 10.1109/ICIP.2017.8296962.

[83] C. Labit-Bonis, J. Thomas, and F. Lerasle, “Visual and automatic bus passenger counting based

on a deep tracking-by-detection system,” Oct. 2021.

[84] M. Broström, “Real-time multi-camera multi-object tracker using YOLOv5 and StrongSORT with

OSNet.” 2022. Accessed: Sep. 13, 2022. [Online]. Available: https://github.com/mikel-

brostrom/Yolov5_StrongSORT_OSNet

[85] Y. Du, Y. Song, B. Yang, and Y. Zhao, “StrongSORT: Make DeepSORT Great Again,” Feb. 2022,

doi: 10.48550/arxiv.2202.13514.

[86] H. Luo et al., “A Strong Baseline and Batch Normalization Neck for Deep Person Re-identification,”

IEEE Trans Multimedia, vol. 22, no. 10, pp. 2597–2609, Jun. 2019, doi:

10.1109/tmm.2019.2958756.

REFERENCES

 88

[87] J. Gao and R. Nevatia, “Revisiting Temporal Modeling for Video-based Person ReID,” May 2018,

doi: 10.48550/arxiv.1805.02104.

[88] G. Evangelidis and E. Psarakis, “Parametric Image Alignment Using Enhanced Correlation

Coefficient Maximization,” IEEE Trans Pattern Anal Mach Intell, vol. 30, no. 10, pp. 1858–1865,

2008, Accessed: Sep. 14, 2022. [Online]. Available: https://hal.inria.fr/hal-00864385

[89] Y. Du, J. Wan, Y. Zhao, B. Zhang, Z. Tong, and J. Dong, “GIAOTracker: A comprehensive

framework for MCMOT with global information and optimizing strategies in VisDrone 2021,” Feb.

2022, doi: 10.48550/arxiv.2202.11983.

[90] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Omni-Scale Feature Learning for Person Re-

Identification,” Proceedings of the IEEE International Conference on Computer Vision, vol. 2019-

October, pp. 3701–3711, May 2019, doi: 10.48550/arxiv.1905.00953.

[91] S. Chen et al., “2nd Place Solution for Waymo Open Dataset Challenge-2D Object Detection”.

[92] K. Zhou and T. Xiang, “Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch,”

Oct. 2019, doi: 10.48550/arxiv.1910.10093.

[93] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scalable Person Re-identification: A

Benchmark,” Proceedings of the IEEE International Conference on Computer Vision, vol. 2015

International …, pp. 1116–1124, Feb. 2015, Accessed: Sep. 16, 2022. [Online]. Available:

http://www.liangzheng.com.cn.

[94] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi, “Performance Measures and a Data

Set for Multi-Target, Multi-Camera Tracking,” Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9914

LNCS, pp. 17–35, Sep. 2016, doi: 10.48550/arxiv.1609.01775.

[95] L. Wei, S. Zhang, W. Gao, and Q. Tian, “Person Transfer GAN to Bridge Domain Gap for Person

Re-Identification,” Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pp. 79–88, Nov. 2017, doi: 10.48550/arxiv.1711.08565.

[96] Z. Zheng, L. Zheng, and Y. Yang, “Unlabeled Samples Generated by GAN Improve the Person Re-

identification Baseline in vitro,” Proceedings of the IEEE International Conference on Computer

Vision, vol. 2017-October, pp. 3774–3782, Jan. 2017, doi: 10.48550/arxiv.1701.07717.

[97] A. Milan, L. Leal-Taixé, T. Taixé, I. Reid, S. Roth, and K. Schindler, “MOT16: A Benchmark for

Multi-Object Tracking,” Mar. 2016, doi: 10.48550/arxiv.1603.00831.

REFERENCES

 89

[98] K. Zhou, Y. Yang, A. Cavallaro, and T. Xiang, “Learning Generalisable Omni-Scale Representations

for Person Re-Identification,” IEEE Trans Pattern Anal Mach Intell, vol. 44, no. 9, pp. 5056–5069,

Oct. 2019, doi: 10.48550/arxiv.1910.06827.

[99] S. Shao et al., “CrowdHuman: A Benchmark for Detecting Human in a Crowd,” Apr. 2018, doi:

10.48550/arxiv.1805.00123.

[100] A. Noferi, G. Nardini, G. Stea, and A. Virdis, “Deployment and configuration of MEC apps with

Simu5G,” Sep. 2021, doi: 10.48550/arxiv.2109.12048.

[101] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, “SiMu5G–An OMNeT++ library for end-

to-end performance evaluation of 5G networks,” IEEE Access, vol. 8, pp. 181176–181191, 2020,

doi: 10.1109/ACCESS.2020.3028550.

[102] C. Sommer, R. German, and F. Dressler, “Bidirectionally coupled network and road simulation for

improved IVC analysis,” IEEE Trans Mob Comput, vol. 10, no. 1, pp. 3–15, Jan. 2011, doi:

10.1109/TMC.2010.133.

[103] P. A. Lopez et al., “Microscopic Traffic Simulation using SUMO,” IEEE Conference on Intelligent

Transportation Systems, Proceedings, ITSC, vol. 2018-November, pp. 2575–2582, Dec. 2018,

doi: 10.1109/ITSC.2018.8569938.

[104] A. Varga, “OMNeT++,” Modeling and Tools for Network Simulation, pp. 35–59, 2010, doi:

10.1007/978-3-642-12331-3_3/COVER.

[105] “INET Framework - INET Framework.” Accessed: Oct. 06, 2022. [Online]. Available:

https://inet.omnetpp.org/

[106] A. Noferi, G. Nardini, G. Stea, and A. Virdis, “Rapid prototyping and performance evaluation of

MEC-based applications,” Mar. 2022, doi: 10.48550/arxiv.2203.13511.

[107] G. Nardini, G. Stea, A. Virdis, D. Sabella, and P. Thakkar, “Using Simu5G as a realtime network

emulator to test MEC apps in an end-to-end 5G testbed,” IEEE International Symposium on

Personal, Indoor and Mobile Radio Communications, PIMRC, vol. 2020-August, Aug. 2020, doi:

10.1109/PIMRC48278.2020.9217177.

[108] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular Edge Computing and Networking:

A Survey,” Mobile Networks and Applications 2020 26:3, vol. 26, no. 3, pp. 1145–1168, Jul.

2020, doi: 10.1007/S11036-020-01624-1.

