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Abstract

It is well known that over the 18th century the calculus moved
away from its geometric origins; Euler, and later Lagrange, aspired
to transform it into a “purely analytical” discipline. In the 1780s,
the Portuguese mathematician José Anastácio da Cunha developed
an original version of the calculus whose interpretation in view of that
process presents challenges. Cunha was a strong admirer of Newton
(who famously favoured geometry over algebra) and criticized Euler’s
faith in analysis. However, the fundamental propositions of his calcu-
lus follow the analytical trend. This appears to have been possible due
to a nominalistic conception of variable that allowed him to deal with
expressions as names, rather than abstract quantities. Still, Cunha
tried to keep the definition of fluxion directly applicable to geomet-
rical magnitudes. According to a friend of Cunha’s, his calculus had
an algebraic (analytical) branch and a geometrical branch, and it was
because of this that his definition of fluxion appeared too complex to
some contemporaries.
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1 Geometry and analysis in 18th-century cal-
culus

When the calculus appeared at the end of the 17th century, it concerned
variable geometrical quantities associated with curves: abscissa, ordinate,
arc-length, and son on (Bos 1974, 5).

As the 18th century progressed, algebraic, or analytical, expressions,
which at first were tools for studying geometrical objects, gained ascendance.1
Between 1748 and 1770, Leonhard Euler published a set of treatises on the
calculus where, for the first time, this was presented as being primarily about
functions – “function of a variable quantity” being defined as an “analytical
expression composed in any way from that variable quantity and numbers
or constant quantities”; as examples, “a + 3z; az − 4zz; az + b

√
(aa − zz);

cz; &c. are functions of z”2. In the preface to his treatise on differential
calculus Euler states that in it “all is contained within the boundaries of
pure Analysis, so that no figure is necessary to explain all the rules of this
calculus”3.

This move away from geometry and towards analysis was not immediately
followed by every author. In particular, most textbook authors resisted or
ignored it. A clear example of survival of a geometrical version of the calculus
can be found in the section on the calculus in (Bézout 1767). This was
an extremely successful text, reprinted several times up to the end of the
18th century; it is quite relevant to us that this section on the calculus
was translated into Portuguese (Bézout 1774) and adopted as a textbook in
the newly founded Faculty of Mathematics of the University of Coimbra.4
In that textbook, the word “function” is first defined nearly 70 pages after
“differential”, as a mere detail in a section on multiple points of curves5 and

1(Bos 1974), already cited, covers this process from Leibniz to Euler; (Fraser 1987)
addresses Lagrange’s later, more radically algebraic, version of the calculus; (Fraser 1989)
identifies the common algebraic characteristics of Euler’s and Lagrange’s versions (which
were different in other aspects). (Jahnke 2003) gives a general view of the calculus in
the 18th century; (Domingues 2008, 53–59) presents a picture of the question of the
foundations of the calculus at about the same period as Cunha’s work.

2“Functio quantitatis variabilis, est expressio analytica quomodocunque composita ex
illa quantitate variabili, & numeris seu quantitatibus constantibus. [. . . ] Sic a + 3z;
az − 4zz; az + b

√
(aa− zz); cz; &c. sunt Functiones ipsius z.” (Euler 1748, 4)

3“Hic autem omnia ita intra Analyseos purae limites continentur, ut ne ulla quidem
figura opus fuerit, ad omnia huius calculi praecepta explicanda.” (Euler 1755, xx)

4On Bézout, see (Alfonsi 2011); on the adoption of several of Bézout’s textbooks in
Portugal, see (Saraiva 2015); and on Bézout’s calculus see, for example, (Blanco 2013;
Lamandé 1988).

5“[. . . ] F , F ′, &c., T denoting quantities composed as one may wish of x, y and con-
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for a second time at the beginning of the integral calculus: “We will call
function of a quantity, any expression for calculation where that quantity
enters, whatever way it enters”6. Geometrical applications occupy a major
portion of Bézout’s calculus (about two thirds of the differential calculus);
and several results are based on geometrical reasonings — for instance, the
determination of maxima and minima comes from the study of tangents that
are parallel to the axis of abscissas (Bézout 1774, 51, 55), while in (Euler
1755, 580–581) the condition dy

dx
= 0 comes from the Taylor series expansion

of y as function of x.
What has been said above applies directly to the Leibnizian calculus,

which was dominant in continental Europe. In Britain, Newton’s method of
fluxions prevailed. Although equivalent for many purposes, these two calculi
were conceptually distinct and followed different paths. Overall, it may be
said that the method of fluxions was more consistently geometric, lacking
an analytic version such as Euler’s. It is true that formal manipulation
of series was a fundamental component — so much so that Newton called it
“method of fluxions and of series”; however, after an analytical youth, Newton
came to see geometry as epistemologically superior to analysis. The objects
of the method were geometrical quantities generated by motion (fluents), a
fluxion being the velocity of a fluent’s generation, or flow. Moreover, after the
famous attack by Berkeley on the use of infinitely small quantities in 1734,
most British mathematicians adopted the stance that the method of fluxions
was a generalization of the ancient Greek geometers’ method of exhaustion
(Guicciardini 1989, 47–51).7 The analytic perspective only gained ground in
Britain in the 19th century.

It is a well known fact that the word “analysis” has multiple meanings.
It should be made explicit that the important distinction in this text is
that between analysis and geometry, rather than that between analysis and
synthesis. It is, in a sense, an ontological distinction, rather than a methodo-
logical distinction: we are interested in the nature of the fundamental objects
of the calculus, not in how the presentation of this subject is organized. We
will see arguments that are ontologically analytical because they consist of

stants, which, to abbreviate, are usually called functions of x, y and constants” (“[. . . ] F ,
F ′, &c., T marquant des quantités composées, comme on le voudra, de x, y & de con-
stantes, ce que, pour abréger, on appelle des fonctions de x, y & de constantes” (Bézout
1767, 78); cf. (Bézout 1774, 74)); that is, the word “function” appeared only as an “ab-
breviation”, it did not correspond to a fundamental concept.

6“Nous appellerons fonction d’une quantité, toute expression de calcul dans laquelle
cette quantité entrera, de quelque maniere qu’elle y entre d’ailleurs.” (Bézout 1767, 95);
cf. (Bézout 1774, 98–99).

7Guicciardini addresses the rare exceptions to this in a chapter called “The analytic
art (1755–85)” (1989, 82–91).

3



manipulations of analytical expressions and do not appeal to geometrical
properties, but are methodologically synthetical because they do not show
how a result can be obtained, only that it is true.

However, we should keep in mind that since the 17th century there was a
traditional association between the synthetic method and classical geometry,
as the paradigm of the synthetic method was Euclid’s Elements; while the
word “analysis” was often given as synonymous of “algebra”.

2 José Anastácio da Cunha, a heterodox math-
ematician

José Anastácio da Cunha (1744–1787) was certainly the most original Por-
tuguese mathematician of the 18th century.8

Cunha was initially educated at the Oratorian college of his hometown,
Lisbon, where he studied elementary mathematics reading works by Andreas
Tacquet, Tomás Vicente Tosca, and Alexis Claude Clairaut (Rodrigues et al.
2013, 55–56). In 1764 he joined the army and was stationed in the northern
border town of Valença. There he befriended several foreign officers who
worked for the Portuguese army. Among these were captain Richard Muller,
son of John Muller, the first director of the Royal Military Academy at
Woolwich, and colonel James Ferrier, a Scotsman. These two gave Cunha
access to British scientific books, including Simpson’s Algebra and Newton’s
Arithmetica Universalis and Principia Mathematica (Rodrigues et al. 2013,
56–57).

In 1773 Cunha was appointed professor at the newly founded Faculty of
Mathematics of the University of Coimbra — part of a major reformation
of the university ordered by the Marquis of Pombal, the all-powerful prime
minister who was a reformer aligned with the European enlightenment, but
also a ruthless autocrat. In Coimbra Cunha had access to advanced works
of continental European mathematics; his friend and biographer José Maria
de Sousa told a story of how Cunha borrowed Euler’s Integral Calculus from
his colleague José Monteiro da Rocha (1734–1819) to study it, and later
had to explain a particular passage in it to Monteiro da Rocha (Rodrigues
et al. 2013, 62–63). There is an inventory of Cunha’s personal library in
1778, when it was confiscated by the Inquisition, and it is possible to say

8(Queiró 1988) is a very good introduction to José Anastácio da Cunha in English,
but it is outdated in some aspects, particularly because several manuscripts by or about
Cunha have since been discovered. In English, see also (Oliveira 1988) and (Domingues
2014). (Ferraz et al. 1990) and (Ralha et al. 2006, I) contain important studies about
Cunha, mostly in Portuguese but also, in the former case, a few in French or English.
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that its mathematical section was modest, when compared with the literary
section: apart from some elementary books, we find several works by Newton
(eight volumes in total), d’Alembert’s Traité de l’équilibre, Bossut’s Traité de
hydrodynamique, and three unidentified works by Euler bound in one volume
(Giusti 1990, 35–37). But of course his readings were not limited to the
books he owned: besides borrowing books from Monteiro da Rocha, he could
use the University’s library.

Cunha’s position in the university only lasted five years, because a polit-
ical turn in the country (including the dismissal of Pombal) led to a persecu-
tion of free thinkers by the Inquisition (which, although much weakened, still
existed). Since Valença, Cunha had had opinions and behaviours that were
not in keeping with Roman Catholic orthodoxy of the time. He read, and
translated, authors such as Alexander Pope and Voltaire (besides writing his
own poetry, which was often also heterodox), and at least neglected religious
observance. He was arrested in July 1778 and found guilty of heresy and
apostasy.9

Cunha was detained in Lisbon, at the Oratorian house of Necessidades.
This was in the same building where the new Science Academy of Lis-
bon (Academia Real das Sciencias de Lisboa, founded in 1779) was based.
Although he was never admitted into the Academy, the Oratorian priest
Teodoro de Almeida, his friend and spiritual director, was a founding mem-
ber; thus, Cunha had close, albeit indirect contact with the Academy in
its early years (Estrada et al. 2006). During this time he kept working in
mathematics: he wrote a text entitled “Principios do Calculo Fluxionario”
(“Principles of fluxionary calculus”), which survives only in a fragmentary
state, with the date March 1780 (Cunha 2006b; Domingues et al. 2006).

Cunha was released in 1781, but forbidden from returning to Coimbra.
He was appointed director of studies of a school for poor boys in Lisbon,
but apparently by 1785 he had lost that position too. In his final two or
three years he depended on friends, as he was jobless and his health was frail
(Rodrigues et al. 2013, 71–72). He died on the 1st January 1787.

In 1785–86 he was involved in two polemics with other mathematicians.
The most important one was with his former university colleague José Mon-
teiro da Rocha. What is left of it are three letters, two by Cunha and one
by Monteiro da Rocha, which were published in the 1890s in the journal O
Instituto and reprinted in (Ferraz et al. 1990). In particular, the first one
(Cunha 1785), addressed to his friend João Manuel de Abreu, but which
appears to have circulated in manuscript copies, is an important source for
Cunha’s opinions on several issues in his final years. He was highly crit-

9His file at the Inquisition has been published as (Ferro 1987).
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ical of how mathematics was usually taught in Portugal and of the scientific
level of the Science Academy of Lisbon (where Monteiro da Rocha was the
foremost mathematician). He repeatedly praised Newton and d’Alembert10,
while presenting Monteiro da Rocha as as an ardent follower of Euler11, as if
projecting d’Alembert’s rivalry with Euler on to his own disagreements with
Monteiro da Rocha.

Around 1782, a book by Cunha, entitled Principios Mathematicos (Math-
ematical Principles), began being printed; according to João Manuel de Ab-
reu, who later translated the book into French, as each section of the book
was printed, it was used in the college where he worked at the time (Cunha
1790, French transl., iii). But the printing of the book was interrupted when
Cunha lost his position. Only three years after his death was it published
(Cunha 1790).

(Cunha 1790) is a relatively short book (little over 300 pages) that tries to
present in a logical order the main branches of pure mathematics, from ele-
mentary geometry to some calculus of variations. To cover so much ground,
it is naturally an extremely concise text. It also has a few peculiarities, both
in the organization of the subjects and in several definitions. As Grattan-
Guinness (1990, 59) put it: “Impressive but odd, powerful but cryptic, this
book [. . . ] ‘interesting’, but too off-beat to gain the attention that he de-
served”.

A French translation of (Cunha 1790), by his friend João Manuel de
Abreu, was published in 1811 (and reissued in 1816) but it did not have
much impact (Duarte and Silva 1990; Domingues 2014).

In the late 20th century Cunha’s book received some attention from his-
torians of mathematics, particularly for three originalities:

• in book 9 he defined “convergent series” as one that satisfies what would
later be called the Cauchy criterion, proceeding to actually prove the
convergence of some series using this definition;12

• also in book 9 he defined the power ab as 1 + bc + bbcc
2 + bbbccc

2×3 + &c.,
where c is such that a = 1 + c + cc

2 + ccc
2×3 + &c. (i. e., ab is defined via

10This happens not only in (Cunha 1785) but also in other texts: for example, in an
undated essay on the principles of mechanics (Cunha 1807) and in one of the fragments
comprising (Cunha 2006b).

11By the end of his life, Monteiro da Rocha owned most of Euler’s books, and drew
on his work about the orbits of comets; but there is no evidence, apart from Cunha’s
“accusation”, that Monteiro da Rocha was more Eulerian than the average mathematician
of his time (Domingues 2007, 97–100).

12Unfortunately, the French translation is faulty in these passages, and the French ver-
sion of this definition contains a fallacy. On Cunha’s convergence of series, see (Queiró
1988, 40–41), (Oliveira 1988), and (Giusti 1990, 42–45).
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the power series for eb log(a)) covering rational, real and even complex
exponents in the definition;

• in book 15 he defined “fluxion” in a way that has been described as
corresponding to the modern definition of differential.

Only the third will be directly relevant here. Although Cunha, naturally,
used power series in his calculus, he did not address their convergence in
that context. As far as I can tell, the word “convergent” does not appear
after book 9.

Notice that all these originalities are related to the issue of how to (prop-
erly) define particular concepts. Notice also that they are not merely de-
scriptive definitions (as often happened in the 18th century): they are actu-
ally used in proofs and in the development of theories (albeit short theories,
because of the concise nature of the book).

Another posthumous publication (Cunha 1807), about the principles of
mechanics, should be mentioned. According to Cunha, the first principles of
mechanics cannot be proven mathematically (unlike what many authors tried
to do in the 18th century). There are then two possibilities: in a physico-
mathematical work these first principles must be proven experimentally or
come from observation of nature; in a purely mathematical work they must
be taken as axioms. In the latter case, the author is, in theory, free to assume
the laws of mechanics at will, even that light propagates in a circular, rather
than straight, line: “mathematical truth consists solely in the legitimacy
with which theorems and solutions of problems are derived from definitions,
postulates, and axioms”13. It is true that, to avoid being criticized for lack
of usefulness, the mathematician should take as axioms factual truths taught
by nature. But that theoretical freedom was very unusual, to say the least,
in the 18th century.

3 Cunha’s fluxionary calculus: geometry or
analysis?

It is possible to glimpse the evolution of José Anastácio da Cunha’s personal
views on the foundations of the calculus, but it is not possible to have a full
picture.

13“A verdade mathematica não consiste senão na legitimidade com que os theoremas, e
as soluções dos problemas se derivam das definições, postulados e axiomas” (Ferraz et al.
1990, 340).
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In his essay on the principles of mechanics, whose date of composition is
not known, he spoke of ultimate ratios (Cunha 1807, 344–345) and used the
dot notation for fluxions.14 Thus, it seems that at some point Cunha was a
canonical follower of the Newtonian calculus of fluxions.15

A manuscript discovered in 2005 and published in (Ralha et al. 2006, II)
bears the title “Principles of the fluxionary calculus” and the date March 1780
(Cunha 2006b). But it is only a copy, by someone else, of very incomplete
fragments from at least two different versions of Cunha’s work (Domingues
et al. 2006, 265–266). In the first part (the one actually dated 1780), Cunha
gives a definition of fluxion very close to the one that later appeared in
(Cunha 1790),16 and uses the d notation; in another part, on higher-order
fluxions, he uses the dot notation; near the end, he refers to a definition of
limit (which is not extant) and says that “A is the limit of A+By + Cy2 +
Dy3 + &c. in regard to infinitesimal y”17. The word “infinitesimal” should
be understood in the non-Leibnizian sense of a variable (not a magnitude)
capable of assuming arbitrarily small (but finite) values; this is the sense
in which Cunha defined it in the first part of the manuscript and later in
(1790).18

Finally, it must be mentioned that João Manuel de Abreu reported that
among the manuscripts that Cunha had left, one had the title “Against the
doctrine of prime and ultimate ratios of nascent and evanescent quantities”19.
Neither the date nor the content of this text are known. But in (Cunha 2006b,
50–51) he distanced himself from the idea, used by Newton, of quantities
being generated by motion, which would entail the consideration of time in
geometry.

All this suggests that Cunha’s opinions moved from a canonical Newto-
nian calculus to a somewhat original take on d’Alembert’s proposal of us-
ing limits (not surprising, given that d’Alembert, according to himself, was
following Newton), and later developed into a more original version of the
calculus, using a peculiar definition of infinitesimal. The last one, the version

14The editor of the 1807 edition added footnotes with the Leibnizian d notation, and
the editor of the 1856 edition used only the d notation; the editors of the 1990 edition
copied the 1856 edition, but acknowledged this issue (Ferraz et al. 1990, 315).

15On Newtonian calculus, see (Guicciardini 1989; 2003, 74–85).
16But with all verbs in the indicative, rather than subjunctive mood (see section 5.4).
17“A he o limite de A + By + Cy2 + Dy3 + &c. a respeito de y infinitessimo” (Cunha

2006b, 54–55).
18On Cunha’s non-Leibnizian concept of infinitesimal, see (Domingues 2004, 23–26) and

page 17 below.
19“Contra a doutrina das razoens primeiras e ultimas das quantidades nascentes e fenes-

centes” (Ferraz et al. 1990, 355); also “Contre la méthode des premiers et derniers rapports
des quantités naissantes et évanouissantes de Newton” (Cunha 1790, Fr. transl., ii).
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that appeared in (Cunha 1790), is the only one that survives in a form that
we may call complete, and the only that will be considered henceforth.

We will see that Cunha used the Leibnizian notation dx, dΓx (and also∫
dxΓx) in (1790), but he kept the Newtonian word “fluxion” (as well as

“fluent”). In (2006b, 52–53) he had commented that those names might
appear improper, but added that “it matters little: in the definitions lies
everything”20.

Cunha’s definition of fluxion is the following:

“Some magnitude having been chosen, homogeneous to an argu-
ment x, to be called fluxion of that argument, and denoted by dx;
we will call fluxion of Γx, and will denote by dΓx, the magnitude
that would make dΓx

dx
constant and Γ (x+ dx)− Γx

dx
− dΓx

dx
in-

finitesimal or zero, if dx were infinitesimal and all that does not
depend on dx constant.”21

Speaking of this definition, Youschkevitch (1973, 19) said that “it was
Cunha who, for the first time, formulated a rigorous analytical definition
of the differential, taken up again and used later by the mathematicians of
the 19th century”22. Mawhin (1990, 100) was more specific, saying that it
“corresponds to the modern definition of differential of f at x as a linear
function h→ Ah such that f(x+ h)− f(x)−Ah = hB(h) where B(h)→ 0
when h→ 0”23; that is, dΓx is a linear function of dx (since dΓx

dx
is constant)

such that limdx→0
Γ(x+dx)−Γ(x)−dΓx

dx
= 0. Of course, this “correspondence”

must be taken with a grain of salt. Even apart from some linguistic or
conceptual differences (for instance, Cunha does not explicitly say that dΓx
is a function of dx, even though he spoke of functions), his definition is not
strictly equivalent, in the mathematical sense, to the modern one, nor could
it be without a modern theory of real functions; among other details, and
like all his contemporaries, he assumed that all functions were differentiable,
or considered only differentiable functions.

20“isso pouco importa: nas definições está tudo”
21“Escolhida qualquer grandeza, homogénea a uma raiz x, para se chamar fluxão dessa

raiz e denotada assim dx; chamar-se-á fluxão de Γx, e se denotará assim dΓx, a grandeza
que faria dΓx

dx constante e Γ(x+dx)−Γx
dx − dΓx

dx infinitésimo ou cifra, se dx fosse infinitésimo
e constante tudo o que não depende de dx” (Cunha 1790, 194).

22“C’est da Cunha qui a, pour la première fois, formulé une définition analytique
rigoureuse de la différentielle, reprise et utilisée plus tard par les mathématiciens du XIXe

siècle.”
23“correspond [. . . ] à la définition moderne de différentielle de f en x comme fonction

linéaire h→ Ah telle que f(x+ h)− f(x)−Ah = hB(h) où B(h)→ 0 lorsque h→ 0”
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A question that naturally arises is whether Cunha’s version of the calculus
was more geometrical or followed the analytical trend of the late 18th cen-
tury. Historians or mathematicians who have studied Cunha’s calculus have
focused mostly on how rigourous it was, and have not really addressed this
question. We will take a brief look at a couple of passing remarks, by Yousch-
kevitch and Gomes Teixeira, that apparently point in opposite directions,
simply to show that the classification of Cunha’s calculus as geometrical or
analytical is not immediate.

On the one hand, Youschkevitch, as quoted above, explicitly stated that
“Cunha [. . . ] formulated a rigorous analytical definition of the differential”.
It is far from straightforward that in this sentence the word “analytical” is
particularly meaningful or used in a sense similar to the one described in
section 1; however, it should be remarked that Youschkevitch immediately
pointed out that “a precise definition of the differential had already been
given, under a geometrical form, by Leibniz”24 (but also that this precise
geometrical definition by Leibniz, dependent on subtangents, was useless for
calculations).

On the other hand, Gomes Teixeira25, although praising the rigour of
Cunha’s fluxionary calculus, included too large a role for geometrical intuition
as one of its few flaws:

“It would suffice to introduce in the exposition the word limit,
which Anastácio da Cunha, bound to the Greek tradition, did
not want to employ, to make explicit some conditions included in
proofs, and to give a less intense role to geometrical intuition, in
order to reduce our geometer’s doctrine to the modern form.”26

Cunha’s personal opinions about Newton and Euler seem to suggest that
he favoured geometry over analysis (speaking of general approaches to math-
ematics, not limited to the calculus). Cunha repeatedly expressed his admir-
ation for Newton, while he disliked Euler, and in particular Euler’s faith in

24“une définition exacte de la différentielle avait déjà été donnée, sous une forme
géométrique, par Leibniz” (Youschkevitch 1973, 19).

25Francisco Gomes Teixeira (1851–1933) was, by far, the foremost Portuguese mathem-
atician of his time. An analyst at first, he then turned his attention to geometry and, in
his later years, to the history of mathematics in Portugal. His History of Mathematics in
Portugal (1934) is, regrettably, still the most recent general account of the subject; it is,
naturally, quite dated.

26“Bastaria introduzir na exposição a palavra limite, que Anastácio da Cunha, prêso
à tradição grega, não quis empregar, tornar explícitas algumas condições incluídas nas
demonstrações e dar à intuïção geométrica um papel menos intenso, para reduzir a doutrina
do nosso geómetra à forma moderna.” (Teixeira 1934, 257)
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analysis. In a letter included in the polemic against Monteiro da Rocha (see
page 5 above), he wrote, right after praising d’Alembert:

“But in Coimbra c’est tout une autre chose [it is completely dif-
ferent] Newton, d’Alembert, ne sont que de petits génies [are only
little geniuses]. Euler is the only god of mathematics, and Mon-
teiro [da Rocha] his prophet. And which author could our mas-
ters, nos sages maîtres [our wise masters], find more suitable to
the characters and interests but the one who established impli-
cit faith in matters of mathematics? I do not know if I have
ever told you that this author, when perplexed between manifest
truths and Algebra, which contradicts them, would close his eyes
and cry out as a faithful algebraist: Quidquid sit, calculo potius,
quam judicio nostro, est fidendum! [Whatever the question, we
should rely on calculation, better than on our judgement!]”27

Some of Cunha’s philosophical opinions, which will be the subject of the
next section, also suggest, at first sight, a preference for geometry.

But, as we will see in later sections, things are not so simple. In a sense,
both Youschkevitch and Gomes Teixeira were right: Cunha’s calculus had
an analytical part and a geometrical part. And Euler was probably a bigger
influence than Cunha himself would like to admit.28

27“Mas em Coimbra c’est tout une autre chose Newton, d’Alembert, ne sont que de petits
génies. Euler é o único Deus da Mathematica, e Monteiro o seu propheta. E que auctor
podiam os nossos mestres, nos sages maîtres, achar mais acommodado aos characteres
e interesses senão o que instituiu a fé implícita em pontos de Mathematica? Não sei se
algum dia lhe contei, que este auctor, quando se via perplexo entre verdades manifestas, e
a Algebra, que as contradiz, fechava os olhos, e exclamava como fiel algebrista: Quidquid
sit, calculo potius, quam judicio nostro, est fidendum!” (Cunha 1785, 367)
A sentence very close to the last one (“Quicquid autem sit hic calculo potius, quam

nostro iudicio est fidendum”) occurs in (Euler 1736, I, 108), in a discussion of a body
under a force of attraction inversely proportional to the distance: this body reaches the
centre of attraction with infinite speed but, contrary to what common judgement would
imagine, does not go beyond it, because if it did its speed would become imaginary.
However, the possibility should not be excluded that Cunha knew this sentence from a
satyrical pamphlet by Voltaire, part of a polemic against Maupertuis, who was supported
by Euler: a supposed “peace treatise” where Euler begged forgiveness to all logicians for
having written such a sentence (Voltaire 1877–1885, XXIII, 578).

28A similar conclusion was drawn already by Giusti (1990, 39), not about the calculus
but about (Cunha 1790) at large.
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4 Cunha’s mathematical ontology
One of the most marked characteristics in José Anastácio da Cunha’s Princi-
pios Mathematicos is the near absence of commentaries or explanatory notes.
A consequence is that no motivation is presented there for the frequently un-
usual and sometimes truly original paths that the text follows.

However, Cunha also left several shorter manuscripts on particular math-
ematical topics, and in those texts he did include several methodological
and philosophical reflexions, often very critical of the ways in which several
mathematical topics were usually developed in the 18th century.

Based on one of the few of those texts then known (his essay on the prin-
ciples of mechanics, already mentioned), Norberto Ferreira da Cunha noted
in (2001) Anastácio da Cunha’s nominalistic, or anti-essentialist, stance: he
rejected the real existence of universals (abstract ideas).29 But one of the
most clear passages in this respect can be found in another text, discovered
only in 2005, a prologue for a presentation of the principles of geometry30:

“[there is no reason to] seriously consider, analyse and combine be-
ings of reason, mere Aristotelian substantial forms, such as would
be, in the literal sense of almost every author, point, line, sur-
face, angle, ratio between two magnitudes, incomparable indivis-
ibles, infinitely large and infinitely small [quantities], fluxions,
prime and ultimate ratios, velocity, momentum, force, action, re-
action, collision, attraction, repulsion. It is not usually noticed
that such words are but descriptions of phenomena, abbreviations
of phrases, of arguments, sometimes intricate and even unfeasible;
and this negligence together with the unprofitable mistake or im-
prudence of taking them for names of substances, such as are
e. g. the words man, tree, flower, Sun, stars, etc. has been an
extremely plentiful source of logomachies and relevant errors”.31

29The word “essentialism” was proposed by Popper (1944, 94) to refer to the belief
in the actual existence of universals (or essences); the traditional term is “realism”, but
“essentialism” has gained some ground in the last decades. “Nominalism” is the traditional
name for the view that universals are merely names. Popper’s example is the following:
“The universal term ‘white’, for instance, seemed to [the nominalists] to be nothing but a
label attached to a set of many different things, snowflakes, table-cloths, and swans, for
instance. [. . . ] Essentialists deny that we first collect a group of single things and then
label them ‘white’; rather, they say, we call each single white thing ‘white’ on account of
a certain intrinsic property that they have in common—their ‘whiteness’” (Popper 1944,
94).

30Those principles of geometry were probably an early version of the first few “books”
of (Cunha 1790).

31“[Não há razão para] seriamente contemplar, analysar e combinar entes de razão,
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Cunha’s concern with proper definitions (pages 6–7 above) was, at least
in part, a consequence of his nominalism. For most mathematicians of the
18th century, definitions were merely descriptions of mathematical objects
that were assumed to exist a priori; they were intended to convey the gen-
eral meaning of a word, but did not need to exhaust that meaning [Ferraro
1999, 103–104; Petrie 2012, 282–285]. Not so for the nominalist Cunha: for
instance, in a manuscript (in English) on logarithms and powers, he com-
plained of authors who

“employ sophistry to prove what the narrowness of their definition
renders not only incapable of demonstration, but even unintelli-
gible. They define the power of a number to be what is form’d by
it continual multiplication. Admit this, and then I will ask you
what does a 1

2 or a 1
3 signify?” (Cunha 1778, 58).32

For Cunha, the word “power”, or the symbol ab, could mean only what its
definition said it meant; hence he sought to define power, in (Cunha 1778)
and in (Cunha 1790, 108–109), in ways not limited to integer exponents.33

We have seen in page 9 that when discussing the appropriateness of the names
“fluent and fluxion”, he concluded that “it matters little: in the definitions
lies everything”.

Another, but related, aspect of Cunha’s ontology is his physicalism. In
the same prologue to the principles of geometry, following a quotation from
Newton, Cunha concludes that “thus, in the opinion of Sir Isaac, geometry
is properly a part of physics. And in truth I do not know what else it might
be”34. Accordingly, Cunha defined the simpler objects of geometry (points,

meras formas substanciaes, aristotelicas, quaes seriam no sentido literal de quasi todos os
Autores o ponto, a linha, a superficie, o angulo, a razão de duas grandezas, os indivisiveis
incomparaveis, infinitamente grandes, e infinitamente pequenos, fluxões, razões, primeiras
e ultimas, velocidade, quantidade de movimento, força, acção, reacção, percussão, attracção,
repulsão. Geralmente n[ão] se custuma reparar que semelhantes palavras não são senão
[des]cripções de phenomenos, abreviaçoens de frases, de discursos, as vezes, entrincados, e
athe impraticaveis: e esta incuria junta com a mal succedida equivocação ou temeridade
de as tomar por nomes de substancias, como o são v. g. as palavras homem, arvore, flor,
Sol, Estrellas, &c. tem sido um manancial copiosissimo he Logomachias, e de relevantes
erros” (Cunha 2006a, II, 6–7)

32Although not using the word “definition”, Euler opens the chapter on powers of his
Elements of Algebra stating that “When a number is multiplied several times by itself,
the product is called a power” (“Wann eine Zahl mehrmalen mit sich selbsten multiplicirt
wird, so wird das Product eine [. . . ] Potenz [. . . ] genennet” (Euler 1770, I, 99)). Later he
concludes that a0 = 1, a−1 = 1

a , a
1
2 =
√
a, and so on (Euler 1770, I, 104–105, 116–117).

33There is more to these attempts than a philosophical standpoint on definitions: Cunha
also wished to present a proper proof of the binomial theorem.

34“Hé pois propriamente a geometria na opinião de Sir Isaac huma parte da physica. E
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lines, surfaces) as “bodies”: for instance, the first definition in Cunha (1790)
reads

“The Body, whose length is such that no remarkable error comes
from disregarding it, is called Point”35.

More complex objects (for instance, fluxion or velocity) are just names, words
that abbreviate more intricate phrases.36

Anti-essentialism, nominalism, or physicalism are not, of course, original-
ities of Cunha (although we will see that he drew some original consequences
from his nominalism). David Sepkoski (2005) identified nominalist and phys-
icalist conceptions in Barrow and Newton (and, as had been said, Newton
was one of Cunha’s mathematical heroes).

It is important to notice that the anti-essentialism of Barrow and Newton
is associated to their preference for geometry over algebra. Analytic/algebraic
methods and concepts, being more abstract, would be more palatable to
mathematicians with essentialist stances. Giovanni Ferraro, in a paper on
“analytical symbols and geometrical figures in eighteenth-century calculus”
(2001), used Aristotelian references to interpret the analytical definitions of
variable, in particular those of Euler and Lagrange. While for authors of
geometrical versions of the calculus a variable was literally a (geometrical)
quantity that varied, increasing or decreasing, for the great analysts Euler
and Lagrange a variable was “an indeterminate or universal quantity” (Euler)
or an “abstract quantity” (Lagrange); being “generated from particular geo-
metrical quantities by means of a process of abstraction [. . . ] the notion of
a variable concerned the essence of quantity” (Ferraro 2001, 541) (emphasis
in the original).

Actually, Cunha’s definition of variable may have have been inspired by
Euler’s, but with a crucial nominalistic twist: for Euler, to quote in full, “a
variable quantity is an indeterminate or universal quantity, which comprises
in itself absolutely all determinate values”37; for Cunha, “if an expression
can assume more than one value, while another can assume only one, the
latter will be called constant, and the former variable”38 — that is, Cunha’s
na verdade, não sei que outra cousa possa ser [. . . ]” (Cunha 2006a, 6–7).

35“O Corpo, cujo comprimento he tal, que de se naõ attender a elle, naõ resulta erro
notavel, chama-se Ponto” (Cunha 1790, 1).

36This distinction made here between simpler and more complex objects is somewhat
artificial: “point” is also an abbreviation, for the more intricate phrase “body whose length
is such, that no remarkable error comes from disregarding it”.

37“Quantitas variabilis est quantitas indeterminata seu universalis, quae omnes omnino
valores determinatos in se complectitur” (Euler 1748, I, 4).

38“Se huma expressaõ admittir mais de hum valor, quando outra expressaõ admitte hum
só, chamarse-ha esta constante, e aquella variavel” (Cunha 1790, 193).
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variable is an expression (rather than a quantity) that can assume, if not all
values like Euler’s, at least several.

Cunha’s definition seems more distant from the traditional geometrically-
inspired definitions (quantities that vary), of which he was very critical (no-
tice the opposition between the explanation by “common authors”, which
allegedly results in a contradiction, and the understanding of “the geometer”,
i. e. a proper mathematician):

“Common authors [say] that, e. g. in a given circle, the diameter
is constant and the chord is variable; and [the reader] understands
that the same magnitude is now the chord of 10° then of 11° etc.;
that is, one magnitude is and is not the same. — The geometer
understands by variability only what consists in the possibility of
denoting several magnitudes by a single expression.”39

5 The algebraic and the geometrical branches
in Cunha’s calculus

The question of whether Cunha’s calculus was more geometrical or more ana-
lytical received an answer over two hundred years ago, from João Manuel de
Abreu, a friend of Cunha’s and the translator of (Cunha 1790) into French.
He was not trying to answer this question. A review of the French edition
of (Cunha 1790) had appeared in the Edinburgh Review (anonymously but
almost certainly by the Scottish mathematician John Playfair) (Domingues
2014, 37–38). This review was globally positive, but criticised several as-
pects of Cunha’s book. Abreu published a reply (but in Portuguese, in a
Portuguese periodical published in London) (Abreu 1813–1814).40 In that
reply, addressing Playfair’s criticism that Cunha’s definition of fluxion was
“very difficult to be understood”, Abreu stated that

“[Anastácio da Cunha] divided his theory of fluxions into two
branches, an algebraic one, composed of proposition 1 of book
15, and of all propositions that depend on it; and a geometrical

39“Os autores vulgares [dizem] que, v. g. em hum circulo dado, o diametro hé constante
e a corda variavel; e fica entendendo que huma mesma grandeza hé ora corda de 10° ora
de 11° &c.a; isto hé, que huma mesma grandeza hé e não hé a mesma. — O geometra
não entende por variabilidade se não o que consiste na possibilidade de notar com huma
so expressão grandezas diversas.” (Cunha 2006b, 54–55)

40Playfair’s review and Abreu’s reply were reprinted as appendices in (Ferraz et al.
1990).

15



one, whose first proposition is Archimedes’ axiom, and which is
composed of propositions 13, 14, 15, 17, and 18, of book 15, and
39, 40, 41, of book 16, &c. In the first, algebraic, branch he fol-
lowed his ordinary method, always resorting to the fundamental
definition, or to theorems deduced from it; in the second, geo-
metrical, branch, he adopted the ancients’ method of proof, com-
monly called of exhaustion. Now, definition 4 of book 15 is com-
mon to both; thus, it must be more complex, and consequently
less intelligible than any definition of fluxion that comprehends
but one of the two branches.”41

These “branches” do not reflect the formal organization of (Cunha 1790),
nor are they ever mentioned in Cunha’s known writings. Rather, they reflect
Abreu’s classification of those propositions, a classification made about 25
years after Cunha’s death. But it is a classification that makes sense: as we
will see, the “algebraic” branch is composed of purely analytical propositions
(and will often be called in the following “analytical”, rather than “algeb-
raic”), while geometrical objects and arguments appear in the geometrical
branch. This classification even seems to reflect, if we restrict ourselves to
book 15, a subtle difference in language, namely in some verb moods (see
section 5.4).

5.1 The algebraic/analytical branch in book 15
(Cunha 1790) is organized in chapters called “books”, following the Euclidean
model. Book 15 is dedicated to the calculus, starting with fundamental
definitions. We have seen that, according to João Manuel de Abreu, definition
4, of fluxion, is common to both the algebraic (analytical) and the geometrical
branches. How can we classify the other definitions in book 15?

We have already seen definition 1, of constant and variable (pages 14–15
above). Its classification is not straightforward. It is not a typical analytical
definition (variable as an universal or abstract quantity), but it is even more

41“[Anastácio da Cunha] dividio a sua theorica das fluxoens em dous ramos, hum alge-
braico, que se compoem da proposiçaõ 1 do livro 15, e de todas as que della dependem;
outro geometrico, cuja proposiçaõ primeira he o axioma de Archimedes, e que se compoem
das proposiçoens 13, 14, 15, 17, e 18, liv. 15, e 39, 40, 41, liv. 16, &c. No primeiro ramo
algebraico seguio o seu methodo ordinario, recorrendo sempre á definiçaõ fundamental,
ou á theoremas deduzidos della; no segundo ramo Geometrico adoptou o methodo de de-
monstraçaõ dos antigos, chamado vulgarmente d’exhaustaõ. Ora a definiçaõ 4, liv. 15, he
comum a ambos; logo deve ser mais complicada, e por consequencia menos intelligivel que
qualquer definiçaõ de fluxaõ, que naõ comprehenda senaõ hum dos dous ramos.” (Abreu
1813–1814, 451–452)
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distant from traditional geometrical traditions (quantities that vary). It may
be a nominalistic adaptation of Euler’s analytical definition.42

A similar difficulty occurs with definition 2:

“A variable always capable of assuming a value greater than any
proposed magnitude will be called infinite; and a variable always
capable of assuming a value smaller than any proposed magnitude
will be called infinitesimal.”43

Throughout the 18th century there were plenty of discussions about the
nature of infinite and infinitesimal quantities, and whether they actually
existed or instead something like limits was more advisable. This definition
by Cunha, which must be read in conjunction with his definition 1, does
not correspond to any of the common solutions of the period: it introduces
infinitesimals, but as variables and hence expressions, not quantities.44

Like definition 1, definition 2 may best be classified as nominalistic. No-
tice that neither of them introduces new ontological categories, but only
names for certain types of expressions. However, being about expressions,
they are in a sense (albeit not the traditional one) in an analytical domain.

Definition 3 reinforces the analytical course: “If the value of an expression
A depends on another expression B, A will be called function of B”45. It is
significant that “function” is defined so early in Cunha’s calculus, suggesting
that this is a central object here, as it was in Euler’s; and indeed it is.

This is followed by definition 4, of fluxion, two definitions (of fluent as
antiderivative, and of higher-order fluxions) that are not important for our
purpose, some remarks on notation, and then propositions.

According to Abreu, propositions 1 to 12 are part of the algebraic branch.
Indeed, in these propositions Cunha presents fundamental results of the dif-
ferential calculus in a purely analytical context, without any geometrical

42On definitions 1 and 2, in their 18th-century context, see also (Domingues 2004).
43“A variavel que podér sempre admittir valor maior que qualquer grandeza que se

proponha chamarse-ha infinita; e a variavel que podér sempre admittir valor menor que
qualquer grandeza que se proponha, chamarse-ha infinitessima.” (Cunha 1790, 193)

44It is obvious that Cunha’s infinites and infinitesimals are potential, rather than actual.
This is consistent with all that we know about Cunha (“the attitude of considering only
potential infinites and infinitesimals permeates all the Principios” (Queiró 1988, 41)). But
there is more here than the classical opposition between potential and actual infinities:
in Cunha’s time, the usual route for those who rejected the actual infinite was to follow
the method of limits, as proposed by d’Alembert in the Encyclopédie (Domingues 2008,
57–59); Cunha apparently at some point used limits (see page 8), but later changed paths.

45“Se o valor de huma expressaõ A depender de outra expressaõ B, chamarse-ha A
funcçaõ de B” (Cunha 1790, 193)
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concepts or arguments. A simple example of the typical format of these pro-
positions is proposition 2, to the effect that d(xn) = nxn−1dx. Proposition 1
had established that a polynomial in an infinitesimal variable is itself infin-
itesimal; this is now used to verify that nxn−1dx satisfies the conditions in
the definition of fluxion (page 9 above):

“dx infinitesimal and what does not depend on dx constant make
nxn−1dx

dx
(= nxn−1) constant and (x+ dx)n − xn

dx
− nxn−1dx

dx(
= nn−1

2 xn−2dx+ nn−1
2 ×

n−2
3 xn−3dx2 + &c.

)
infinitesimal.”46

Another example, whose analytical character is very obvious, is proposi-
tion 8, where the fluxion of the logarithm is obtained differentiating term by
term the series of the exponential:

“Let x stand for any number and l indicate hyperbolic logarithms:
then dx = xdlx.
For dx = d

(
1 + lx+ 1

2(lx)2 + 1
6(lx)3 + 1

24(lx)4 + 1
120(lx)5 +&c.

)
=

dlx + 2
2(lx)dlx + 3

6(lx)2dlx + 4
24(lx)3dlx + 5

120(lx)4dlx + &c. =(
1 + lx+ 1

2(lx2) + 1
6(lx)3 + 1

24(lx)4 + &c.
)
dlx = xdlx.”47

In this case Bézout (1774, 23–26) is not explicitly geometrical, but neither
really analytical: the result equivalent to this is obtained going back to the
definition of logarithms as terms in an arithmetical progression in a corres-
pondence with a geometrical progression, establishing the relation ma(y′−y)

y
=

x′ − x between consecutive terms in these progressions48 and then imagin-
ing the differences y′ − y and x′ − x infinitely small. Other authors from
this period are more directly geometrical: (Cousin 1777, 29–30) uses the
logarithmic curve (defined by the property that, if the abscissas are in arith-
metical progression, then the ordinates are in geometrical progression); while
(Saladini 1775, II, 44–47) uses the characterization of the logarithm as the
area under a hyperbola.

46“dx infinitessimo, e o que de dx naõ depende, constante, fazem nxn−1dx
dx

[
= nxn−1]

constante e (x+dx)n−xn

dx − nxn−1dx
dx [= nn−2

2 xn−2dx+ nn−1
2 ×

n−2
3 xn−3dx2 + &c.] infinites-

simo.” (Cunha 1790, 195)
47“Represente x qualquer numero e indique l logarithmos hyperbolicos: será dx = xdlx.
Pois he dx = d

(
1 + lx+ 1

2 (lx)2 + 1
6 (lx)3 + 1

24 (lx)4 + 1
120 (lx)5 +&c.

)
= dlx+ 2

2 (lx)dlx+
3
6 (lx)2dlx+ 4

24 (lx)3dlx+ 5
120 (lx)4dlx+&c. =

(
1+lx+ 1

2 (lx2)+ 1
6 (lx)3 + 1

24 (lx)4 +&c.
)
dlx =

xdlx.” (Cunha 1790, 196)
48a is the first term in the geometrical progression and m is the quotient between the

difference between the two first terms in the arithmetical progression and the difference
between the two first terms in the geometrical progression.
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Figure 1: Diagram for propositions 13 and 14 of book 15 of (Cunha 1790).

5.2 The geometrical branch in book 15
According to João Manuel de Abreu, the geometric branch starts in propos-
ition 13, whose enunciation reads:

“Let AB stand for the abscissa and BC for the ordinate corres-
ponding to an arbitrary arc AC of a regular curve AD (that is, of
a curve whose ordinate is a function of the abscissa); let any other
ordinate DE be drawn and the parallelogram BF be completed:
if BE is fluxion of AB, BF will be fluxion of the area ACB.”49

There is here a surprisingly analytical detail: the explicit condition that the
ordinate be a function of the abscissa. However, the proof is geometrical:
Cunha assumes that the ordinate function is monotonic50 and trusts the
diagram (figure 1; notice oblique coordinates) to convince the reader that
area CDF is contained in the parallelogram with diagonal CD (not drawn):

“BF
BE

will be the perpendicular drawn from point C to line BE,
produced if need be; let BF

BE
+π be the perpendicular drawn from

point D to the same line AE; then CDF
BE

< π. AB constant
49“Represente AB a abscissa, e BC a ordenada correspondentes ao arco qualquer AC

de huma curva regular AD [isto he, de huma curva, cuja ordenada he funcçaõ da abscissa];
tire-se outra qualquer ordenada DE e complete-se o parallelogramo BF : se BE for fluxaõ
de AB, será BF fluxaõ da area ACB.” (Cunha 1790, 200)

50Or, at least, piecewise monotonic. In a proof included in a letter to João Manuel de
Abreu, Cunha wrote: “Let the ordinates always increase or always decrease from Γ0 to Γx
(for all cases may be reduced to this one) [. . . ]” (“Cresçam sempre ou diminuam sempre
as ordenadas desde Γ0 até Γx (pois a este caso de podem reduzir todos) [. . . ]” (Ferraz et
al. 1990, 363)).
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and BE infinitesimal would make BC constant, BF
BE

constant,
π infinitesimal and the area CDF infinitesimal; and therefore
BF
BE

constant and ADE−ACB
BE

− BF
BE

(= BCDE
BE

− BF
BE

= CDF
BE

< π)
infinitesimal. Therefore if BE is fluxion of AB, BF will be fluxion
of the area ACB.”51

(BF
BE

, that is, the area of parallelogram BF divided by the length of base
BE, is the height of parallelogram BF ; Cunha assumes that the curved
region CDF is contained in the parallelogram CD, so that the area of that
region divided by the length of base BE = CF is less than the height π of
parallelogram CD; it remains only to verify the conditions of the definition
of fluxion — page 9 above)

A modern reader might be tempted to see in this proposition a version of
the (first) fundamental theorem of the calculus.52 However, as was usual in
the 18th century, for Cunha the definite integral was not a central concept:
it has already been observed that “fluent” is defined as an antiderivative
(“every magnitude is called fluent of its fluxion”53). Therefore, proposition 13
is only the first geometrical application of the fluxionary calculus, equivalent
to deriving the area under the graph of a function.

The remaining propositions in the geometrical branch of book 15 are yet
geometrical applications of the calculus: the characteristic triangle, with the
tangent to the curve and the fluxion of the arc; and the fluxion of the volume
of a solid.

5.3 The following books of Principios Mathematicos
Book 16 is dedicated to trigonometry. The initial approach is geometrical,
sine, tangent, etc. being defined as lines. Cunha even waits thirteen pages
(and 28 propositions) until he assumes the radius of the circle to be 1; thus,

51“BF
BE será a perpendicular conduzida do ponto C á recta BE, produzida se necessario

for; seja BF
BE +π a perpendicular conduzida do ponto D á mesma recta AE; será CDF

BE < π.
AB constante e BE infinitessima fariam BC constante, BF

BE constante, π infinitessima e
a área CDF infinitessima; e logo BF

BE constante, e ADE−ACB
BE − BF

BE [= BCDE
BE − BF

BE =
CDF
BE < π] infinitessimo. Logo se for BE fluxaõ de AB, será BF fluxaõ da area ACB.”
(Cunha 1790, 200–201)

52This theorem was fundamental in the creation of the calculus, but by the middle of
the 18th century, with the integral seen almost always as an antiderivative, it had become
only a geometrical application of the calculus — for instance, in (Bézout 1767, 111–113).
It is absent from (Euler 1768–1770), because this treatise does not include geometrical
applications. It became fundamental again in the 19th century, when the definite integral
became a fundamental concept.

53“Toda a grandeza se chama fluente da sua fluxaõ [. . . ]” (Cunha 1790, 194).
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his versions of the basic trigonometric formulas must take the radius in ac-
count (for instance, sin(ζ + z) = sin ζ cos z+cos ζ sin z

r
). This is partly due to

some peculiarities in the organization of the subject. Euler had given in
[1748, I, 93–107; 1755, 164–177] a purely analytical calculus of trigonometric
functions, but he had done so assuming the reader to already know the basic
formulas of trigonometry (for example, sin.(y+z) = sin.y.cos.z+cos.y.sin.z
(Euler 1748, I, 94)), presumably from more elementary books, that certainly
used geometrical arguments. Cunha could have done something similar,
presenting a geometrical version of elementary trigonometry in an earlier
book of (1790) and then, after book 15, developing the fluxionary calcu-
lus of trigonometric functions in an analytical way. Instead, in his very
economical style, he concentrated all of trigonometry in book 16, organiz-
ing it in a peculiar order: it practically starts with the fluxion of the sine
(r d sen z = dz cos z), demonstrated with a geometrical argument and invok-
ing proposition 14 of book 15 (part of the geometrical branch); from there
he derives the power series for the sine and cosine, and it is from these that
comes the formula for the sine of the sum of two arcs. In spite of frequent
use of analytical arguments such as this, book 16 must be classified as geo-
metrical, because the basic definitions and some fundamental arguments are
geometrical.

In book 17 we find topics of elementary differential geometry of curves:
multiple points, asymptotes, radius of curvature. Naturally, it is geometrical.

The next three books, however, are purely analytical. In book 18 we find
several techniques of integration (such as partial fraction decomposition),
and L’Hôpital’s rule, which is proven using Taylor series expansions of the
numerator and of the denominator. Book 19 deals with differential equations,
in a purely analytical way, including Euler’s solution for linear differential
equations with constant coefficients (Baroni 2001, 34–35). Book 20 deals
with the calculus of finite differences.

Book 21, the last one, is a case apart. It is a miscellany, probably compiled
from several short manuscripts left by Cunha on diverse topics, by whoever
arranged for the final publication of (Cunha 1790). It was almost certainly
not revised by Cunha. It is here that we see what is possibly the only
case in (Cunha 1790) of a fundamental proposition of the calculus that, not
being about a geometrical object, resorts to a geometrical reasoning; but
the argument is so vague that it is not clear whether it is geometrical. The
proposition in question is proposition 12: “To find the maximum value of a
given function Γx”54. Cunha just: 1 - states that “the fluxions of any two
values of Γx that are each on each side of the maximum, will be opposite

54“Achar o maximo valor de huma funcçaõ proposta Γx” (Cunha 1790, 294)

21



[i. e., will have opposite signs]”55, but does not explain why (the relationship
between the sign of the fluxion and the increasing or decreasing property of
the function is not explained before), and 2 - invokes a scholium from book
17 according to which “experience has shown geometers that any variable
whose values have infinitesimal differences, when passing from positive to
negative becomes equal either to 0 or to 1

0”
56 — a version of the intermediate

value property, grounded on experience, for lack of a proof.

5.4 A linguistic distinction between the two branches
Let us recall Cunha’s definition of fluxion:

“Some magnitude having been chosen, homogeneous to an argu-
ment x, to be called fluxion of that argument, and denoted by dx;
we will call fluxion of Γx, and will denote by dΓx, the magnitude
that would make dΓx

dx
constant and Γ (x+ dx)− Γx

dx
− dΓx

dx
in-

finitesimal or zero, if dx were infinitesimal and all that does not
depend on dx constant.”

Are Cunha’s fluxions infinitesimal, using this word in the sense of defin-
ition 2 (p. 17 above)? The counterfactual clause “if dx were infinitesimal”
suggests that dx is not. Furthemore, if fluxions were infinitesimal, according
to definition 2 they would be variables, that is, expressions that can assume
multiple values; while the definition of fluxion says explicitly that a fluxion is
a magnitude — thus, presumably, having only one value. See the quotation
in pages 14–15 above, which shows his reservations about talking of variable
geometrical magnitudes.

Yet, going beyond the definition and looking at the language used in
propositions of book 15, we see a clear distinction in this respect between
the analytical branch and the geometrical branch, and in the former fluxions
seem to actually be infinitesimal.

In fact, in the analytical branch Cunha systematically uses phrases like
“dx infinitesimal and what does not depend on dx constant make [. . . ] nxn−1

constant and (x+dx)n−xn

dx
− nxn−1dx

dx
[. . . ] infinitesimal” (prop. 2, quoted above;

my emphasis), using the indicative mood, which indicates that fluxions are
infinitesimal.

55“As fluxoens de quaesquer dois valores de Γx, que estaõ, hum de huma parte, outro
de outra do maximo, seraõ contrarias”

56“A experiencia tem mostrado aos Geometras, que toda a variavel, entre cujos valores
ha differenças infinitessimas, ao passar de positiva para negativa, se acha igual, ou a 0, ou
a 1

0 .” (Cunha 1790, 247)
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On the other hand, in the geometrical branch, at least in book 15, we
find phrases such as “AB constant and BE infinitesimal would make [. . . ]
area CDF infinitesimal” (prop. 13, quoted above; my emphasis).57 In the
geometrical branch of book 15, fluxions are never said to actually be infin-
itesimal.

At first hand, this may seem inconsistent. However, in the analytical
branch x, dx, Γx, dΓx,. . . are expressions that stand for multiple magnitudes,
so that they can be infinitesimal in Cunha’s sense; apparently this did not
happen in the geometrical branch, perhaps because he did not see the phrase
“line BE” as representing several segments.

An actual inconsistency in (Cunha 1790) is that from book 16 onwards
these subtleties of language disappear, and we find phrases stating that geo-
metrical magnitudes are infinitesimal. For instance, in book 16: “let AD be
constant and DF infinitesimal; BEm

DF
will be infinitesimal”58. Maybe all this

concern with language might be difficult to maintain, and it was enforced
only in book 15. Or, perhaps, Cunha’s death in 1787 prevented him from
revising the text from book 16 onwards in order to introduce subjunctives
when speaking of magnitudes.

Still, it seems clear that in book 15 Cunha made an effort to use language
consistent with the following scheme:

• speaking of geometrical magnitudes, their fluxions are magnitudes, ho-
mogeneous to them, therefore not infinitesimal (although, in calculating
them, one operates as if they were infinitesimal);

• speaking of expressions that may represent several magnitudes (that
is, variables), their fluxions are naturally also variables, and are indeed
infinitesimal.

In practical terms, this linguistic distinction is inconsequential, but it
suggests that Cunha actually distinguished in his mind between the two
branches, and indicates that, at a theoretical level, the geometrical branch
took precedence — the definition of fluxion is worded in the manner of the
geometrical branch.

57The French translation appears to be faithful in this respect. The passages quoted
in these two paragraphs are rendered as “dx infinitième, et ce qui ne dépend pas de dx
constant, rendent [. . . ] nxn−1 constante et (x+dx)n−xn

dx − nxn−1dx
dx [. . . ] infinitième” and

“AB constante et BE infinitième rendroient [. . . ] l’aire CDF infinitième” (Cunha 1790,
Fr. tr., 198, 203), my emphases. Of course, the translator was the same João Manuel de
Abreu who wrote about the two branches.

58“Seja AD constante, e DF infinitessima; será BEm
DF [. . . ] infinitessimo” (Cunha 1790,

222)
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6 Final remarks
José Anastácio da Cunha’s personal and philosophical ideas, such as his
dislike of Euler and of Euler’s faith in algebra, his admiration for Newton, his
preference for a geometry grounded on physical bodies, his anti-essentialism,
all suggest at first sight that his version of the calculus should be geometrical,
not in line with the analytical trend of the late 18th century.

Also, an attentive reading of Cunha’s definition of fluxion brings out
geometrically-inclined characteristics: fluxions are defined as magnitudes,
and dx must be homogeneous to x (concern with homogeneity is a hallmark
of geometrical thinking).

And yet, we see that he developed the fundamental propositions of his ver-
sion of the calculus in an analytical way, thanks to an original, nominalistic,
conception of variable that allowed him to talk of functions and infinitesimals
as mere expressions, not, as he would put it, “beings of reason”. What Abreu
called the “geometrical branch” and what has been classified as geometrical
in subsection 5.3 are really geometrical applications, not results that might
instead be derived analytically.59

It is significant that Cunha felt that his definition of fluxion had to speak
of magnitudes and conform with homogeneity to accommodate geometrical
objects. Unlike Euler, he did not see variables as a more general kind of
magnitude. But in practice, apart from a convoluted definition, his calculus
was mainly analytical; certainly more analytical than the one adopted in the
University of Coimbra (Bézout 1774).

Actually, the conclusion must be drawn (or reinforced) that, despite his
dislike of Euler, Cunha was heavily influenced by him. He was always very
critical, but he managed to reconcile his anti-essentialism with the analytical
ways that were gaining ground in his time.
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