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Abstract: Neurodevelopmental disorders (NDDs) arise from the disruption of highly coordinated
mechanisms underlying brain development, which results in impaired sensory, motor and/or cogni-
tive functions. Although rodent models have offered very relevant insights to the field, the translation
of findings to clinics, particularly regarding therapeutic approaches for these diseases, remains chal-
lenging. Part of the explanation for this failure may be the genetic differences—some targets not being
conserved between species—and, most importantly, the differences in regulation of gene expression.
This prompts the use of human-derived models to study NDDS. The generation of human induced
pluripotent stem cells (hIPSCs) added a new suitable alternative to overcome species limitations,
allowing for the study of human neuronal development while maintaining the genetic background of
the donor patient. Several hIPSC models of NDDs already proved their worth by mimicking several
pathological phenotypes found in humans. In this review, we highlight the utility of hIPSCs to pave
new paths for NDD research and development of new therapeutic tools, summarize the challenges
and advances of hIPSC-culture and neuronal differentiation protocols and discuss the best way to
take advantage of these models, illustrating this with examples of success for some NDDs.

Keywords: neurodevelopment; hIPSCs; NDDs; stem cells; disease modeling; differentiation; genomic
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1. Neurodevelopmental Disorders (NDDs)

Neurodevelopmental disorders (NDDs) are a group of disorders with childhood
onset [1], typically associated with the disruption of the tightly controlled and essential neu-
ronal development processes (proliferation, differentiation, migration, circuit integration,
myelination, synapse formation and pruning), leading to an inability to achieve mature
healthy cognitive, emotional and motor skills throughout childhood and adulthood [2].
Globally, it is estimated that the prevalence of NDDs in people under 18 years of age ranges
from 15% to 20%, a fluctuation caused by the multitude of estimation procedures used
in different countries and that is thought to be below their real value [3,4]. Our current
knowledge of the molecular pathways mediating NDDs did not allow us to find curative
approaches for NDDs yet, but only (in some specific cases) to attenuate the associated symp-
tomatology and/or minimize functional limitations. An early (often molecular) diagnosis of
NDDs is vital to provide adequate patient management and medical assistance, easing their
day-to-day life, which often represents a challenge. Different types of mutations within a
vast array of genes are the root of NDDs, ranging from chromosomal rearrangements, copy
number variations and small indels to point mutations. However, phenotype–genotype
correlation studies revealed that patients with overlapping genetic etiology may show
different clinical profiles with varying degrees of severity [5,6], hampering the diagnostic
process. Based on the currently available data, NDDs are mainly considered multifactorial
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and/or polygenic disorders, rather than purely monogenic, although less frequent forms
are caused by sporadic de novo variants (e.g., Rett syndrome). Essentially, the phenotypic
outcome observed in NDD patients can be explained through two general principles: gene
vulnerability, which reflects the capacity of a gene to endure disruptive variants, and muta-
tional load. Some genes show a lower tolerance to mutations (i.e., they are more vulnerable),
as is the case of some NDD-associated haploinsufficient genes. Mutations in one of these
genes are rare but are associated with high disease risk and penetrance, likely inducing
a disease phenotype even in the absence of additional mutations and therefore leading
to monogenic NDDs; often resulting from de novo mutational events, they are therefore
associated with sporadic cases of NDDs, where no family history of a previous disease
exists [7]. Events in nonvulnerable genes are more common and tend to be transmitted in
families for generations [8]. These single genetic variants often do not cause the disease
per se, they rather lead to a disease phenotype due to additive effects, contributing to
polygenic NDDs [8–10], in which the resulting phenotype will depend on the sum of the
effects of the single mutations (an increase in the number of mutations being positively
correlated with the quantity and severity of symptoms [11]), but also on the interaction
between the affected genes [12]. Additionally, some cases fall into a third scenario: the
two-hit model [13]. Here, high mutational loads are caused by a combination of germline
and somatic events, in which inherited mutations generate vulnerable backgrounds that,
combined with a somatic event during development, will culminate in a disease pheno-
type. These two variants can occur in different gene loci, which increases the likelihood of
developing a NDD phenotype [14], partly explaining the great phenotypic heterogeneity
observed in NDDs.

NDDs comprise autism spectrum disorders (ASD), intellectual disability (ID), attention
deficit hyperactivity disorder (ADHD), communication disorders (CD), neurodevelopmen-
tal motor disorders (Tic’s, Tourette’s, stereotypic disorders) and specific learning disorders
(difficulties in writing, reading, mathematics) [1]. As there is a great overlap between them
and childhood mental health disorders, their diagnosis is based on behavioral phenotypes
specified in the statistical manual of mental disorders (DSM). In this review, we will focus
mainly on ASD and ID. ASD is characterized by deficits in social communication and
interaction accompanied by repetitive patterns of behavior, interests or activities [1]. In
some cases, ASD patients are also diagnosed with ID, an umbrella term for NDDs featuring
deficits in general mental abilities (reasoning, problem solving, abstract thinking) acquired
during development (in contrast to dementia, in which cognitive deficits appear later),
with an IQ below 70 and a significant impact on daily living. Overall, NDDs translate to
patients’ daily lives, as they lack their personal independence and have impaired social
interactions [1], and they may also negatively impact the wellbeing of families. Another
condition that may co-exist (or not) with ASD is ADHD [15]. ADHD patients show im-
paired levels of attention, disorganization and/or hyperactivity–impulsivity that often
persist into adulthood culminating in social and academic life impairments [1].

Despite their heterogeneous etiology, NDDs often present overlapping clinical mani-
festations such as impaired cognition, learning and intellectual disabilities and dysfunction
of psychomotor skills [8,16]. Several studies suggest that different NDDs might share
key molecular pathways, explaining the diffuse phenotypic boundaries among different
NDDs [17,18] as well as their comorbidity. In addition, genetic epidemiology studies re-
vealed an overlap between the genes responsible for increasing the risk of or effectively
causing different NDDs [8]. Taken together, recent studies revealed that both rare and
common variants driving NDDs affect genes that are linked to a few converging conserved
pathways, causing a perturbation in brain function during development at the cellular,
circuit and whole brain levels (Reviewed in [19]). Due to a multimodal approach combining
the use of animal models with genetic, molecular, electrophysiological and neuroimaging
tools, significant advances were made in the field of NDDs. The ever-increasing power
of next-generation sequencing tools allowed for the identification of different genetic mu-
tations in a very large number of genes in NDD patients [20]. The creation of genetically
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modified animal models in which the equivalent of these mutations are introduced allows
for a better understanding of their role in the pathogenesis of NDDs and allows for analysis
at different stages of neurodevelopment, thus contributing to the formulation of better
hypotheses on the onset, progression and therapeutic targets of these disorders (reviewed
in [21]). In order to be effective in addition to this concept validity, animal models should
present face validity, resembling as much as possible the patients’ symptoms. This is often
challenging since, although brain disorder-related genes are frequently conserved among
species, their precise function and relevance may vary, introducing confounding informa-
tion upon translation to humans. As a complement to rodents, the most extensively used
animal models, an increasing number of alternative models such as Drosophila melanogaster,
Caenorhabditis elegans (C. elegans), zebrafish (Danio rerio) and non-human primates may also
be useful, as summarized in Table 1.

Table 1. Comparison between the different animal models available to study NDDs and their degree
of similarity to humans.

Animal Model Animal Advantages Disadvantages References

Drosophila melanogaster
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Overall, animal models have been highly relevant for increasing our knowledge about
the mechanisms underlying NDDs through the study of behavioral phenotypes, neuronal
morphology, gene expression and brain networks at different stages of development, allow-
ing for the identification of novel biomarkers and the in vivo testing of innovative treatment
strategies. The study of the genes identified to date as involved in NDD pathogenesis have
provided essential clues on the pathways mediating these disorders, belonging to four
main categories: regulation of protein synthesis, transcriptional and epigenetic regulation,
synaptic signaling and embryonically expressed genes [34–36] (Figure 1).
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Figure 1. NDD-causing gene variants are often responsible for homeostatic imbalances in protein
synthesis early in development, in many cases specifically through impairment of phosphatidyli-
nositol 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathway [37–40]. mTOR is a
serine/threonine kinase composed by two complexes (mTORC1 and mTORC2) responsible for cel-
lular metabolism. Hyperactivation of mTOR due to variants affecting negative regulators of the
PI3K-mTOR growth factor pathway (such as hamartin (TSC1), tuberin (TSC2) and PTEN) has already
been reported in NDD-dominant patients with ASD, ID and epilepsy [41,42]. Other NDD-causing
genes belong to the transcriptional regulators and chromatin remodelers category [43], which is the
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case of methyl CpG binding protein 2 (MECP2), chromodomain helicase DNA binding (CHD) [44,45],
AT-rich interactive domain-containing protein 1B (ARID1B) [46] and SET-domain containing 5
(SETD5) [47]. Due to the multiplicity of targets, dysregulation of these epigenetic effectors might medi-
ate several disease phenotypes [44,45,47–68]. Among the embryonically expressed genes shown to be
altered in NDDs, T-box brain transcription factor 1 (TBR1) [48–52], dual specificity tyrosine phospho-
rylation regulated kinase 1A (DYRK1A) [53–61] and phosphate and tensin homolog (PTEN) [62–66]
are the ones in which gene variants are most commonly reported. Another key contributor for brain
function and homeostasis is synaptic signaling, responsible for the communication between cells
forming neuronal circuits. Loss-of-function mutations in neurexin 1 (NRXN1) [69–79], in neuroligins
(NLGN) such as NLGN3 and NLGN4 genes [67,68,80–85] and in SH3 and multiple ankyrin repeat
domain (SHANK) proteins encoding genes SHANK1, SHANK2 and SHANK3 have been widely
associated with ASD and ID [86–89].

Overall, these animal models highlight the relevance of a correct genetic dosage and
function for a healthy neuronal development and give some insight on NDD-associated
mechanisms. However, discrepancies between the observed phenotypes and what is seen in
patients, along with the failure of many clinical trials in the neurology and neuropsychiatric
fields based on animal model data, raise questions about the transability of animal model
discoveries to clinics. Although some gross neuronal structure and function as well as neo-
cortical developmental processes remained similar among mammals, allowing researchers
to extrapolate the conclusions obtained from animal models to humans, at some point in
evolution, humans and rodents diverged, with humans acquiring a significantly increased
cortical expansion [90] and brain circuitry complexity. As so, the best “model” to tackle
NDDs are human patients themselves, although this path is hindered by the difficulty to
obtain post-mortem fetal and adult brains for analysis as well as by some ethical concerns.
Important gene expression studies brought useful information about NDD pathology, using
tissues [91,92] and blood samples from patients [93,94]. Recently, human pluripotent stem
cells (hPSCs) appeared as a suitable alternative to model human disease and to develop
new treatments, maintaining the patient genetic background and excluding the species
limitation [95]. Due to their pluripotency, hPSCs maintain the capacity to differentiate into
any human cell population [96], allowing for the generation of disease-relevant cell types,
tissues or organoids, for further study of the cellular and molecular events underlying
neurodevelopment and the screening of new therapeutical compounds. Thus, the use of
hPSCs to model NDDs is highly valuable due to their capacity to recapitulate the genetic,
morphological and molecular phenotypes found in patients early in development, such
as neural progenitor proliferation and differentiation, but perhaps not so useful to assess
neuronal function and plasticity, which is only achieved in more mature stages and/or in
the context of functional neuronal circuits within living animals. In this review, we will
tackle the different steps involved in hIPSC generation and differentiation while highlight-
ing the advantages and setbacks of the different methodologies available. In addition, we
will provide examples of recent contributions of hIPSC-based studies for the NDD field,
through the use of gene editing techniques and a multiplicity of approaches to the analysis
of the neurodevelopmental processes as well as drug screenings.

2. Modeling NDDs with Human Induced Pluripotent Stem Cells (hIPSCs)
2.1. Human Induced Pluripotent Stem Cells (hIPSCs)

Adult neural stem cells (NSCs) were the first multipotent cells to be successfully
generated from hippocampal and subventricular zone (SVZ) biopsies, challenging the old
model that suggested the adult brain was unable to regenerate and form new neurons [97].
However, they did not represent a promising cellular model due to the difficulty in ob-
taining donor tissue, loss of differentiation capacity after few passages, low graft survival
and high heterogeneity, which hampers the interpretation of the results and reproducibil-
ity of experiments [69,98]. In the meantime, mesenchymal stem cells (MSCs) appeared
as suitable substitutes for NSCs (for transplantation purposes) due to their self-renewal
capacities and ability to differentiate into cells from three different lineages: osteocytes,



Cells 2023, 12, 538 6 of 52

adipocytes and chondrocytes. Although these cells revealed promising results for disease
modulation [70] and cell therapy [71], their differentiation potential is dependent on the
tissue of origin [72,73], they are sensitive to the age of the donor, and they show impaired
neuroectodermal differentiation impairment [74]. Finally, a new promising category of
cells named human-derived pluripotent stem cells (hPSCs) opened new venues to model
human disorders, especially those related with neurodevelopment. hPSCs, which comprise
embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have extensive
capacity of self-renewal and differentiation into any adult cell type derived from the three
primary germ layers—ectoderm, mesoderm and endoderm [75,76]. These cells widened
the tools available to study human disorders, especially NDDs, and increased the capacity
of research teams to perform high-throughput screening (HTS) due their self-renewal at-
tributes. In addition, they are powerful tools for cell therapy, achieved by transplanting the
specific-tissue cells obtained from the differentiated cell type of interest into patients [77].
Before 2007, the only hPSCs available were ESCs, which are derived from the inner cell
mass of pre-implantation embryos (morula- or blastocyte-stage) [78] and are characterized
by the expression of a range of pluripotency markers (OCT4, SOX2, NANOG, SSEA-3 and
SSEA4) and high levels of telomerase [79]; however, donor cells do not come from the
recipient patient [99]. With the discovery of iPSCs, generated by reprogramming somatic
cells using four well-defined pluripotency-associated factors [100] (OCT4, SOX2, cMYC,
KLF4) [100], this drawback was surpassed, while maintaining the immortality and multi-
lineage differentiation potential, the main advantages of hESCs. A big advantage of these
cells over hESCs is the maintenance of the genetic background of the donor, allowing for
the study of neuropsychiatric conditions that arise from a single mutation with high pene-
trance and, most importantly, disorders generated by a combination of multiple genetic
insults. Additionally, when thinking of cell-based therapies, these cells can be produced in
a patient-specific manner, granting their transplantation without immunological rejection
by the host. As the donor cells used to reprogram iPSCs contain the donor’s DNA infor-
mation, informed and voluntary consent from the patients is needed [101]. In addition, as
happens with all cell culture-based approaches, the cells cultured in vitro are not in the
same environment as in living organisms, and culture conditions still need to be improved
to obtain fully optimized and enriched neuronal populations.

When starting an iPSC culture in a new lab, there are some points to consider: (i) so-
matic cell isolation, selecting the type of cell to collect and providing the documents
necessary to cover all ethical concerns; (ii) optimization of iPSC generation steps, from
the safety of the reprogramming strategy used, to ensure high quality iPSC clones, to the
appearance of potential undesired genetic modifications; (iii) iPSC differentiation, selecting
the most adequate controls and performing different quality and functionality evaluations;
(iv) the end goal, applying the best re-programming and differentiation strategies to ob-
tain quality cells with adjusted safety, according to the end procedure (transplantation to
humans for cell therapy; to mice, to obtain chimeras; or for disease-mechanism or drug
discovery basic research) in which they will be applied. All these relevant considerations
will be tackled throughout this review with continuous highlight of the main pros and cons
of the different alternative techniques used in each stage of the re-programming and iPSC
differentiation process in different cell types, along with some possible solutions for the
problems that may appear. In addition, we will present different experimental designs
available to program research studies with high quality, along with different cell integrity
and quality control techniques to ensure the excellence of the obtained cells.

2.2. Current Methodological Approaches to Differentiate Neuronal Cells from
hIPSCs—An Overview
2.2.1. Source Cells—Selection

Modeling NDDs using iPSCs requires great expertise to achieve the discovery of
cellular phenotypes. The first critical step to start working with iPSCs to decipher NDDs
is verifying whether the disease of interest has a known and well-defined biomarker that
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will bring clinical validity to the model, minimizing the variation of the experimental
system. Then, the human IPSCs (hIPSCs) may be obtained from ready-to-use pluripotent
stem cell repositories (WiCell Research Institute, Human Induced Pluripotent Stem Cell
Initiative (HipSci), European Bank for Induced Pluripotent Stem Cells (EBiSC); profoundly
reviewed in [102]), which provide readily available hIPSCs mimicking several NDDs and
their corresponding controls (reviewed in [103], Table 2), with the advantage of having some
literature support, or patient somatic cells reprogramming. Following the second option,
the next step is the selection of the initial study sample from which the hIPSCs will be
obtained, involving the collection of the samples, which may be [104]: urine (>30 mL), which
is easy to obtain in a non-invasive manner but prone to failure due to the low percentage of
transformable cells; blood (5–10 mL in ethylenediaminetetraacetic (EDTA) tubes), which
requires trained staff for the collection; skin, to obtain fibroblasts, which requires minor
surgery/biopsy; hair and saliva, which can be used but should be avoided, as they are more
expensive and unreliable for hIPSC generation. As discussed before, informed consent
needs to be obtained and signed by the donors (and/or persons in charge of the donors,
in the case of NDDs). Equally important is the choice of good case/control matched
pairs, which should be defined from the beginning, to allow for a deep characterization
of the cell lines and for the creation of multiple cell replicates as well as to establish and
optimize the protocols. The case should be a patient with a representative phenotype of the
disease of interest while the control should be a sex-matched healthy family member or a
genetically engineered line in which the disease-causing genetic variant is connected to its
wild-type (WT) form, creating an isogenic control. Sex and age should not be confounding
factors triggering differences in cell phenotype, even if it is expected that the genetic
effects overcome the impact of sex differences, and the age of the somatic cells is thought
to be mostly irrelevant, considering that cells are going to be reprogrammed to a stem
cell-like state [105,106]. During the reprogramming process, hIPSCs reset their telomeres
length (known to shrink throughout life), which is determinant for their proliferation and
self-renewal properties [107]. Good practices suggest the differentiation of 2–3 different
hIPSCs lines for each individual per experiment to obtain robust results. Although the
genetic heterogeneity may be advantageous for the study of NDDs, capturing the true
genetic complexity of the patient population, it may present a challenge when it comes
to comparing results, bringing the need to use larger sample sizes, which sometimes is
difficult. To overcome these issues, it is advisable to select some material from patients
carrying the same mutation and displaying similar phenotypes, avoiding genetic variants
that are present in healthy subjects (reviewed in [103]).

2.2.2. Somatic Cell Reprogramming into hIPSCs

There are two major categories of somatic cell reprogramming: (i) direct reprogram-
ming, where the direct conversion of the (differentiation) donor somatic cell to the desired
cell population is achieved, without transition to a pluripotent state; (ii) reprogramming to
pluripotency, in which differentiated somatic cells are first reprogrammed into hIPSCs and
are then further differentiated into the cellular population of interest [108]. Cells obtained
by direct reprogramming of somatic cells retain the molecular age of the original cell and
are less abundantly differentiated, while the generation of iPSCs prior to cell differentiation
erases the epigenetic memory of the donor cell and generates cells that can be differentiated
into several lineages following a more “natural” developmental process. The process of
reprogramming to pluripotency includes the expression of genes that were developmen-
tally silenced (encoding the proteins known as the Yamanaka factors: OCT4, SOX2, KLF4
and C-MYC) [100], which are mostly found within heterochromatin regions, through the
expression of transcription factors, miRNAs and other molecules delivered using different
tools. However, over the years, new protocols using a reduced number of transcription fac-
tors have been tested and showed promising results, overcoming the limitations presented
by some of the initial ones [109–112]. Several gene delivery strategies (reviewed in [113])
have been developed thus far for hIPSC generation such as viral integrating transfection
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(retro- and lentiviruses), non-integrative viruses (Adenovirus [114], Adeno-associated virus
(AAV) [115], Sendai virus (SeV) [116]) and non-integrative non-viral DNA approaches
(direct introduction of recombinant proteins combined with protein transduction domains
(PTDs) [117,118], synthetic mRNA transfections [119], plasmid transfection, mini-circle
DNA vectors [120], episomal vectors [121], transposons [122], and liposomal magnetofec-
tion [123]). Although the classical viral integrative methods are more efficient and robust,
they induce permanent genomic modifications due to viral integration into the host genome,
increasing the risk of mutagenesis and tumorigenesis in the resulting hIPSCs [124,125],
of critical relevance particularly when considering transplantation applications. Another
drawback of these methods is the possible reduction of the differentiation capacity, due to
unpredictable silencing/activation of some transgenes [126,127]. With the development
of new non-viral integration-free techniques, most of these issues were solved, but the
efficiency of the reprogramming decreased considerably, not suiting efficient scientific
investigations or clinical applications. As so, the next step in this field is to improve these
systems to make them robust, highly efficient and easily reproducible, in order to generate
clinical-grade hIPSCs [128]. The advantages and disadvantages of each of these strategies
are summarized in Table 2.

Table 2. Summary of cell reprogramming methods used for iPSC generation. Green—high re-
programming efficiency; yellow—moderate reprogramming efficiency; red—low reprogramming
efficiency.

Reprogramming
Method Delivery Type Efficiency Advantages Disadvantages

Retro- and
lentivirus

Integrative
transfection

Viral

Stable transgene expression
[113]

Integration into the genome
Increased risk of mutagenesis and

tumorigenesis
[113]

Adenovirus

Non-
integrative

transfec-
tion

No integration
Well-defined biology Not all cell types respond equally

Genetic stability Possibility of genome integration

Easy large-scale production
Transient expression due to rapid

clearance from dividing cells
[129–133]

Safe to use in clinical trials
[134]

AAV

Absence of immune/toxic reactions
Require a helper virus to replicate

Decreased titer production
Stable transgene expression Limited packaging capacity
Safe to use in clinical trials

[135,136]
Possibility of genome integration

[134,136,137]
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Table 2. Cont.

Reprogramming
Method Delivery Type Efficiency Advantages Disadvantages

SeV

No integration

Non-pathogenic to humans Difficult to remove from the
generated hIPSCs

Cytoplasmic replicative cycle Cytotoxicity
Non-

integrative
transfection

Low propensity for
genomic/epigenetic aberrations Difficult to work with

High and fast protein expression Enhanced fusogenicity and
immunogenicity

High transduction efficiency Sensitivity to transgenic sequences
[138,139]

Fast cellular uptake

Low capacity to cross the
cell membrane

Lack of nuclear localization
Challenging production of pure

proteins
Poor solubility and stability

Sequestration of the transduced
reprogramming proteins

[117,118,140–142]
Ideal transgene expression

[116,138,143–147]

Recombinant
proteins

Protein

Low capacity to cross the
cell membrane

Lack of nuclear localization

No Integration Challenging production of
pure proteins

Virus free
[118] Poor solubility and stability

Sequestration of the transduced
reprogramming proteins

[117,118,140–142]

mRNA
transfections

mRNA

No integration
Difficult to work withVirus free

Low reprogramming time Triggers immune system response

Safe and high transduction
[119,148–150]

Need for feeder cells and
animal-derived molecules

[151–160]

Plasmid
transfection

DNA

Transient expression of
reprogramming factors

Virus free Variation of transfection efficiency
between cells

No vulnerability to exonucleases
[161] Large size

Lack of self-replication requiring
multiple transfections

[161,162]

Mini-circle
vectors

No integration
Virus free

High transgene expression Lack of self-replication capacity
Easy to synthetize and deliver Decreased expression time

Small size Require multiple transfections
[113,163–165]

Less prone to transcriptional
silencing

Controlled concentration and
application time

[120,166,167]
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Table 2. Cont.

Reprogramming
Method Delivery Type Efficiency Advantages Disadvantages

Episomal
vectors

No integration

Low efficiency
[121,137]

Virus free
Single transfection
Long-term, stable

transgene expression
Fast protein expression

Absence of genome manipulation
Lack of regulatory constraints in the

target gene
[121,137]

Transposons

Stable integration

Possible reintroduction in
the genome

[168]

Virus free
Carry large cargoes

Single transfection with long-term,
strong gene expression

Inexpensive
Easy to work with

Removal of transgene cassette
without induction of genetic

mutations
Low immunogenicity

[137,169,170]

Liposomal
magnetofection

No integration

Low efficiency
[171]

Virus free
Single transfection with low

immunogenicity
[171,172]

Another important factor to carefully address is the culture media in which hIPSCs are
maintained, which differ according to the final use of these cells (reviewed in [173]). hIPSCs
used for research are usually generated and maintained on feeder cells, while hIPSCs
destined for clinical use should be kept in feeder-free (Ff) and xeno-free (free of foreign
species) (Xf) culture conditions [174]. In addition, supplementation of the reprogramming
culture media with antioxidants may be useful to reduce the appearance of genomic
aberrations in hIPSCs [175].

Before proceeding to differentiation of hIPSCs into the target cell population, the
quality of the cells obtained should be ensured. To do so, immunohistochemistry and
gene expression profiling should be performed to assess the expression of well-defined
pluripotency markers (e.g., SOX2, OCT4, TRA1-60, TRA1-81, NANOG) and their ability to
generate cells from the three germ lines (endoderm, mesoderm and ectoderm). High-quality
hIPSCs clones are expected to present clearly defined margins, with several pluripotency
markers on their surface. In addition, no miscellaneous differentiated cells should be
growing in the culture. Then, to assess the potential of the resulting cells to differentiate
into the three germ layers, two strategies can be used: (i) histological analysis of the tissue
composition of the tumor (teratoma) that grows upon injection of the obtained hIPSCs into
a mouse; (ii) using specific defined media, promote the differentiation of the cells into the
different germ layers [176].

2.2.3. hIPSCs Differentiation into Neuronal Populations

Due to the temporal expression of specific transcription factors during development,
different neurons are characterized by multiple population-specific features essential for
their function, such as the expression of a variety of molecules that ensure their synaptic
specificity, the development of specific morphologies, generation of electrical or chemical
synapses to deliver and receive several neurotransmitters, which allow for communication
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with other neurons, and secretion of specific molecules. A big advantage of hIPSCs is their
capacity to generate nearly every neuronal population that exists [177]. This is achieved
by the supplementation of the hIPSC culture medium with the appropriate differentiation
and growth factors, at specific timepoints of development and in specific combinations
and concentrations, according to the desired neuronal population. hIPSCs are maintained
in the appropriate neural maintenance medium throughout the quality tests and during
experimentation. Due to the recent progress in the field, it is now possible to identify
programming factors in a more effective way through the use of several techniques, such as
single-cell RNA sequencing (sc-RNAseq), in multiple steps of development and trajectory
inference. Currently, there are already several protocols available to differentiate hIPSCs
into almost all neuronal cell types, such as motor [178–182], striatal [183], cortical [184–186]
excitatory [187] and GABAergic [188], dopaminergic [189–193] and serotoninergic [194,195],
and peripheral sensory neurons [196,197].

Finally, quality and functionality of the cells obtained should be evaluated. Primarily,
analysis of biomarkers specific to neuronal differentiation such as NeuN, which is expressed
in newborn neurons, along with neuronal cytoskeletal proteins such as Nestin, Tuj1, MAP2,
Syn1 and specific subtype markers, should be performed using immunohistochemistry or
Western blotting. Then, it is mandatory to verify the absence of human infectious agents
and mycoplasma and to perform a molecular karyotype of the cells, to clarify whether
some chromosome rearrangements happened during the reprogramming or differentiation
steps. In addition, to clarify the functionality of the cells obtained, their ability to generate
electrophysiological properties should be measured, using microelectrode arrays (MEAs)
and/or patch-clamp electrophysiology. After all these quality measurements, the last
step before starting to answer the scientific questions is to thoroughly authenticate and
characterize the cell model established. One of the main drawbacks of the differentiation
process is its low efficiency, with a percentage of cells displaying the desired identity ranging
from low (<10%) [178] to moderate (60%) [179], which may be the result of ignoring the
natural path of neuronal development by supplementing terminal transcription factors to
hIPSCs. Additionally, a recent work highlighted the possibility that the number of passages
may affect the differentiation of hIPSCs into the desired neuronal subtype, suggesting that
lower passage numbers may be better for the differentiation into some populations [198].
In addition, neuronal differentiation is a highly complex process that usually results in
a mixed neuronal population, even under tightly controlled experimental conditions,
raising questions about the suitability of the available protocols to produce reliable disease
phenotypes and, consequently, the correlation of the data obtained with the clinic [199].
This suggests that an exhaustive identity analysis should be performed to clearly pinpoint
the neuronal populations present in culture as summarized in Figure 2.
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identification and drug screenings, for transplantation into rodent models or, ultimately, for cell-
based therapies. 

Figure 2. hIPSC generation and applications. Sample collection of somatic cells can only be per-
formed after the patient signs the informed consent. Reprogramming of healthy/disease cells into
hIPSCs happens through the delivery of pluripotency-associated transcription factors. After hIPSC
generation, these may be genetically modified using CRISPR/Cas9 to generate healthy/disease
isogenic cells. Before differentiation into neuronal cultures, quality control techniques should be
applied to ensure the pluripotency and genomic integrity of the obtained cells. Next, different
neuronal populations may be obtained through the addition of differentiation and growth factors to
the culture medium. Again, quality of the cells and their functional properties should be assessed
throughout this step. Finally, hIPSCs may be used for mechanistic studies, target identification and
drug screenings, for transplantation into rodent models or, ultimately, for cell-based therapies.
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2.2.4. Experimental Design

Several experimental designs were developed over the years to successfully use hIPSCs
for disease modeling, such as: matched pairs, family and isogenic designs. Currently,
the most powerful design used for hIPSCs [200] is the matched pairs design in which
confounding variables (sex, age, genetic background) are resolved at the design stage
instead of during the analysis by matching the cases and the controls based on one or
more factors. This strategy is advantageous mainly in small sample size experiments,
where matching is more efficient than controlling for each confounding factor, and it
decreases the associated cost. As a subdivision of this strategy, is the family design in
which the genetic background is the controlled factor. This design is preferentially used
in genomic studies to evaluate genetic transmission through generations, allowing for
the correlation between genetic background and phenotypes observed in hIPSCs [201].
It allows for great control of the genetic background, responsible for a big proportion of
hIPSC heterogeneity, with special relevance to use in experiments with small sample size.
Comparing hIPSCs originating from family members with different ages (parents and
children) could represent a challenge if the age of the somatic cells persists as epigenetic
memory. However, it was already shown that after reprogramming, the cell resets into a
stem-cell state, mostly eliminating this confounding effect [105,106]. Finally, the isogenic
design is a powerful strategy that requires the use of isogenic controls, where the disease-
causing genetic variants present in the donor cells are corrected, which has increased value
to identify functional effects of genetic and epigenetic variations in the same cell line. When
investigating the role of single mutations, the comparison between isogenic cells overcomes,
at least partially, the variability produced by the genetic background [202], highlighting
their utility.

2.2.5. Gene-Editing Techniques Applicable to hIPSCs

Traditional methods such as homologous recombination (HR) and endogenous repair
of double-stranded DNA breaks (DSB) have opened new venues to generate sophisticated
gene-editing tools. In HR, the foreign genetic material is introduced in the host genome
resulting in a deletion (to generate knock-out animals or cells), gene addition (to generate
knock-in animals or cells) or a genetic mutation that will allow for the study of the function
of the gene of interest or its role in disease [203,204]. HR-based techniques applicable to
hIPSCs include electroporation, nucleofection or chemical-based transfection of linearized
plasmid linear DNA constructs, forming homology regions of less than 2 kb, designed to
disrupt or delete exons from the target gene. However, introduction of genetic changes
by HR was proven to be inefficient in hPSCs [205] due to low cell-survival [206] and to
human DNA repair processes [207]. Curiously, it was discovered that DBSs significantly
improve the efficiency of HR in human cells [208]. In response to a DBS, the cell activates
repair mechanisms through non-homologous end joining (NHEJ) or homology-directed
repair (HDR), allowing for the manipulation of the genome. Through NHEJ, the cell repairs
nucleotide mismatches or strand breaks in the absence of a homologous template, resulting
in the insertion or deletion of nucleotides, originating in a functional knock-out. Contrarily,
in HDR, a partially homologous DNA sequence is used as a template to proceed with the
repair of the DNA, or an exogenous homologous repair template allows for the insertion of
specific DNA sequences [208].

Further studies were conducted in an attempt to optimize the use of these techniques,
using designer nucleases. This opened the door to the most customized and widely
used gene-editing tools: the zinc-finger nuclease (ZFN), the transcription activator-like
effector nucleases (TALENs) [209] and the clustered regularly interspaced short palindromic
repeats (CRISPR)-based techniques [210]. Their combination with hIPSC cultures has been
very powerfully exploited for the efficient generation of hIPSC lines differing only in
the presence or not of the candidate disease-causing gene variant—isogenic lines. With
these advances, the manipulation of single-nucleotide mutations that recapitulate common
disease-associated variants was finally possible [211,212] (reviewed in [213]).
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Briefly, ZFNs, fusion proteins with several tandem Zinc-finger DNA binding domains
coupled to an endonuclease catalytic domain (recognizing specific nucleotide triplets), al-
lowed for the first corrections of genetic mutations in patient-derived hIPSCs [214,215] and
for insertion of disease-relevant genomic variations in control hIPSCs [216], but also for the
production of cell type-specific reporter systems to investigate disease mechanisms [217].
However, they are difficult to engineer, and their design and application remain technically
challenging. Further advances in gene-editing tools were accomplished with the generation
of TALENs, which are composed of a TALE DNA binding domain fused to an unspecific
FokI nuclease. They were also applied to induce disease-causing mutations in healthy hIP-
SCs [218,219] or to correct disease-causing mutations in patient-derived hIPSCs [218,219],
but also to produce specific reporter system for stem cell-based research [220–222]. How-
ever, studies suggest that low binding affinity leads to reduced TALEN activity, while strong
affinities diminish its specificity. In addition, although not initially expected, as the design
strategy used for TALENs includes a pair of sequences spanning around 45–60 nucleotides,
off-target activity was reported [223]. CRISPR/CRISPR-associated protein 9 (Cas9) is a
nuclease-based system used to induce target mutations and gene insertions [210]. Specifi-
cally, Cas9 functions as a nuclease targeting a specific genomic locus through the action of
a guide RNA (gRNA), causing DBS, which activates an endogenous DNA repair response
(NHEJ) [224]. However, when using Cas9, especially in common alleles with small effect
size, the possibility of off-target events should be considered. CRISPR/Cas9 modulation
of gene expression happens in the promoter/enhancer, including the entire range of alter-
native splicing isoforms. In hIPSCs, CRISPR/Cas9 can be used to insert patient-specific
mutations in control hIPSCs or to repair them in patient-derived hIPSCs, generating iso-
genic control lines [224]. The generation of these isogenic lines allows for the creation of
well-controlled and -defined systems to robustly dissect the effect of genetic risk variants
associated with the disease under study. Finally, CRISPR/Cas9 can also be used to target
several genes in a single experiment, using CRISPR knock-out (CRISPR KO) and knock-in
(CRISPR KI) strategies quicker than with other techniques [225]. However, although they
represent valuable assets to understand pathological mechanisms underlying several disor-
ders, few studies use these techniques, as protocols still need to be optimized, especially
when focusing on hIPSCs. Finally, recent advances allowed for the combination of CRISPR-
based tools with single-cell sequencing for detection of analytical readouts, to conduct
large-scale genetic screens, such as Perturb-seq, CRISPR-seq, CRISPR-droplet sequencing
(CROP-seq) and expanded CRISPR-compatible cellular indexing of transcriptomes and
epitopes by sequencing (ECCITE-seq) [226–229].

In addition, several techniques may be useful to detect the inserted or deleted nu-
cleotides as a measure of gene-editing cleavage activity, such as the Surveyor assay, digital
droplet PCR (ddPCR), Sanger and NGS sequencing or Tracking Indels by Decomposition
(TIDE). After successful delivery of the nucleases to the hIPSCs, the final step is the selec-
tion of the gene-edited hIPSCs from the mixed-genotype culture that is generated. The
use of fluorescent reporters along with fluorescent activated cell sorting (FACS) or elec-
trophoresis of mRNA isolated from different clones, selecting positive clones, followed by
Sanger sequencing for genome confirmation may be useful methods to conduct this selec-
tion [230]. Finally, to clarify disease mechanisms or to identify potential therapeutic targets,
genomic variation analysis (WGS, DNA methylation, ATAC-Seq, GWAS + QTL) along with
transcriptomics (scRNA-Seq, RNA-seq, TAP-Seq) and proteomics/cellular architecture
analysis (Quantitative Mass Spectrometry (qMS), ELISA, High Throughput Imaging) are
key techniques to evaluate functional genome variation.

2.2.6. Quality vs. Quantity, Cost-Associated, Time Needed

The differentiation capacity of hIPSCs into different neuronal cell types or tissues
to model different NDDs, mimicking disease phenotypes and granting access to several
neurodevelopmental mechanisms, is one of their major advantages [231]. However, the
establishment and maintenance of hIPSC lines is time-consuming, taking several weeks to
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obtain the cells of interest, and has a high associated cost, due to the amount of reagents
needed and the application of gene-editing techniques. As so, the refinement of the
differentiation protocols is vital, to allow for more specific and reliable research work.
However, thus far, most protocols face several problems leading to low and variable
efficiency, such as the varying differentiation capacities of different hIPSC lines, incomplete
reporting of the protocol steps and limitations and lack of standardized reagents. The latter
weaknesses are easily solved by the use of high-quality control cells and suitable protocols
and reagents, along with transparent reporting thoroughly describing all the reagents, steps,
problems with respective solutions and tips to improve the culturing and differentiation
process [232,233]. Thus, the problem with the varying differentiation capacity of different
cell lines has been addressed by upgrading currently available protocols, increasing their
efficiency and enhancing the availability of improved stem cells generated from enhanced
somatic reprogramming and cell culture [234]. A major recent advance was the avoidance of
generating embryoid bodies in order to directly and efficiently generate neural progenitor
cells (NPCs) along with the expansion of nanospheres, further generating a variety of
neuronal populations [235,236].

Overall, optimized and shorter protocols should be developed to decrease the cost
and time associated with the use of hIPSCs for research as well as to improve the quality
and reliability of the cells obtained.

2.2.7. Genetic/Epigenetic Instability

Although hIPSCs represent a sophisticated new approach to mimicking human dis-
ease, they should maintain their genome integrity for appropriate reprogramming and
differentiation, which sometimes is challenging, considering the cellular processes altered
upon initiation of these procedures, the prolonged time they spend in culture and the envi-
ronmental stressors they are constantly exposed to. The appearance of genetic aberrations
in hIPSCs is a major concern, as they may be implicated in tumorigenesis (if transplan-
tation is the goal) and in the development of several defects, emphasizing the need to
comprehend and control their underlying molecular processes. These genomic aberra-
tions range from point mutations to subchromosomal and chromosomal defects. De novo
single-nucleotide variations (SNVs) and copy-number variations (CNVs) were previously
identified in patient-derived hIPSCs [237,238]. Another widely reported anomaly is aneu-
ploidy, where there is a variation in the number of chromosomes, the most common being
an additional copy of chromosome 8 [239,240]. These chromosomal aberrations appear as
mosaicism in the cellular culture, and their proportion increases with passage number [241].
Another key factor is aging-related mutagenesis of the cells, as replication stress has been
associated with the appearance of variations in chromosomal DNA [242]. The increased
use of non-integrative vectors also reduced the possibility of this potential for instability.
Along the years, several techniques have been developed to allow for the detection of
such genomic alterations, such as comparative genomic hybridization (CGH) array, single
nucleotide polymorphism (SNP) array and high-throughput sequencing.

Since their discovery, genetic instability in hIPSC cells has been well documented, but
epigenetic aberrations have been much less explored. It has been reported that hIPSCs have
different propensities for differentiation [243] due to aberrant DNA methylation, in which
methyl groups are added to the fifth carbon of the cytosine residues. This modification is
considered stable in somatic cells and is mostly linked to genetic repression, maintaining
heterochromatic memory and gene silencing [244]. However, in hIPSCs, DNA methylation
aberrations appear in both gene promoters and non-coding regions or as residual signa-
tures from the source somatic cells as part of their epigenetic memory [245–249]. Although
some DNA methylation changes may appear in culture over time, the reprogramming
stage is considered their main cause, due to the several epigenetic alterations driven by
the induction of expression of the pluripotency-inducing genes, leading to transcriptional
changes. Thus, DNA methylation analysis to clarify its distribution, specificity and sta-
bility may be advantageous and can be performed through several techniques such as
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whole-genome bisulfite sequencing (WGBS), methylation arrays and bisulfite sequencing
(reviewed in [244]). Nevertheless, this epigenetic aberration may constitute an important
challenge for neurodevelopmental studies, as the possibility of occurrence of DNA methy-
lation variations in neurodevelopment-related promoters may alter the differentiation
capacity of hIPSCs into different neuronal lineages. Another widely described epigenomic
alteration is loss of parental imprinting (LOI). Parental imprinting is an epigenetic process,
where differentially methylated regions (DMRs) are induced at specific loci of parents’
gametocyte genomes, leading to the expression of only one copy of the target gene in a
parent-specific way [250]. This is a highly stable process throughout life and across different
tissues, and its dysregulation leads to the appearance of neurodevelopmental disorders
such as Prader–Willi and Angelman syndromes [251–253]. Several studies revealed a high
incidence of LOIs in hIPSCs, leading to the expression of imprinted genes from both alleles
instead of one, accompanied with altered DNA methylation in imprinting DMRs [254–257],
which persists after the differentiation stage, affecting hIPSCs growth and integrity. The
most reliable method to identify LOIs is allelic expression quantification (high throughput
RNA sequencing, SNP arrays (DNA and RNA) and Sanger sequencing), as RNA analysis
is highly sensitive and is almost not affected by secondary events. For the study of human
neurodevelopment, it is of major importance that parental imprinting remains intact in
hIPSCs, as LOI in specific imprinted regions biases the differentiation process towards
particular cell types. For example, in Prader–Willi syndrome the necdin (NDN) gene,
responsible for the differentiation of forebrain GABAergic neurons [258], is not expressed,
leading to irregular GABAergic signaling [259]. However, abnormal imprinting may affect
several genes associated with the same locus [250,260], becoming unclear how individual
genes contribute to the disease phenotype. Finally, several studies revealed that different
hIPSC lines have different states of X chromosome inactivation (XCI) [261,262], an epige-
netic process responsible for the compensation of the gene expression of both female XX
chromosomes to match the dosage of a single male X chromosome [263]. This mechanism
happens randomly in the female embryo, with silencing of either the male or female X
chromosome, during embryogenesis. XCI is triggered by transcription factors followed by
the removal of active histone marks (histone acetylation) and accumulation of repressive
histone marks in the inactive X (Xi) chromosome by the action of the long non-coding
RNA (lncRNA) X inactive specific transcript (XIST) [264,265]. In humans, the lack of XIST
RNA is linked to variations in the transcriptional profile, such as increased upregulation of
cancer-related genes, and reduced developmental potential, raising several concerns about
the use of hIPSCs in translational medicine. Downregulation of XIST expression tends to
happen in some hIPSC cultures [266,267]. Additionally, XCI “erosion” was observed in
hIPSCs cultured for long periods, leading to the reactivation of some genes, a phenomenon
that remains after differentiation and hampers the modeling of X-linked disorders [268].
Evaluation of the XCI state is possible but requires a combination of different measures to be
accurate, such as RNA fluorescent in situ hybridization (RNA-FISH), high throughput RNA
sequencing (RNAseq), sc-RNAseq and immunostainings [269,270]. Overall, along with the
fact that hIPSCs XCI do not recapitulate the random XCI that happens in developmental
stages, the above-mentioned information suggests the possibility of an inappropriate XCI,
raising some concerns regarding the use of hIPSCs derived from females for the study of
neurodevelopmental disorders.

2.2.8. hIPSC-Derived 3D Brain Organoids

Although traditional 2D hIPSC cultures represent a great model to mimic NDDs,
allowing for the generation of several neuronal populations [271–277] and uncovering
several developmental mechanisms underlying these disorders, they fail to reproduce
what happens in mature neurons, lacking synaptic maturity and the interaction between
different cell populations in surrounding areas [278]. For these reasons, and although they
are clearly valuable to evaluate the therapeutic capacity of several compounds through
drug screenings, the translation of the findings to clinics may remain inefficient. In an
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attempt to overcome these limitations and to further advance hIPSCs disease modeling, the
development of hIPSCs-derived organoids emerged [279,280]. Organoids, 3D multicellular
aggregates derived from stem cells, have the capacity to differentiate and self-organize into
a variety of brain regions [278,281,282] or whole-brain-like structures [283]. This technique
was inspired by the generation of embryoid bodies (EBs) from ESCs, which are aggregates
of PSCs generated due to the detachment of ESCs from the culture plate in the presence of
neural induction medium, generating neural tube-like rosettes [282]. For organoid genera-
tion, these neural tube-like rosettes are embedded in hydrogels mimicking the extracellular
matrix and are placed in a spinning bioreactor, stimulating differentiation by enhancing
oxygen and nutrient uptake and by decreasing apoptosis [282]. Cerebral organoids express
several markers of cell types originating from multiple brain regions such as forebrain,
midbrain and hindbrain neurons [282,284], which become more expressed as pluripotency
marker expression decreases during organoid development, suggesting that these models
impressively recapitulate human neurodevelopment [282]. In addition, immunohistochem-
ical staining revealed the presence of glial entities as well as cells resembling astrocytic and
oligodendrocytic morphologies [285] in addition to neurons, highlighting the complexity
of these models. The combination of specified neuronal organoids is highly relevant for
the study of fundamental features of brain development and disease, allowing for the
comprehension of the interaction of neuronal populations from areas of interest in a dish.
Although they may improve the possibilities for evaluation of neuronal electrophysiological
properties in comparison with hIPSC experiments, by allowing for the analysis of complex
3D neuronal interactions [286,287]. They are still time-consuming models, as 2D neuron cul-
tures require only few weeks to reach electrophysiological properties, while 3D organoids
require several months to obtain similar features [288]. Another major limitation of brain
organoids is the lack of a vascular system, the absence of which leads to impaired cell
viability and architecture in older and larger organoids, as the culture in bioreactors is not
enough to make the oxygen and nutrients reach the core. One way to overcome this issue
is the culture of organoid slices, which may improve nutrient supply and consequently cell
survival and maturation [289]. Another alternative is the transplantation of brain organoids
to an adult mouse brain, where these have access to the host vascular system, nourishing
the organoid with their blood flow and originating healthy mature neurons [286]. Yet, it
would be interesting to develop new strategies in the future to find new approaches that
better resemble the brain environment without use of invasive methodologies in mice,
such as by preparing a co-culture with organoids and endothelial precursors or by taking
advantage of organoids derived from other human organs that already possess a vascular
system. Overall, the above-mentioned constraints should be addressed to generate safer
and more reliable brain organoids for biomedical research. However, organoids are still a
sophisticated model to address the biological basis of neuropsychiatric disorders, especially
NDDs, due to their potential for resemblance with the human brain but also with their
development process (reviewed in [290]).

2.3. hIPSC Models for the Study of NDDs

Using hIPSCs derived from NDD patients allows for the study of several disease-
relevant phenotypes such as neuronal differentiation, morphology, electrophysiological
properties and gene expression, examples of which will be discussed below.

2.3.1. hIPSC Models of Autism Spectrum Disorders (ASD)

ASD is a heterogenous group of genetic neurodevelopmental disorders characterized
by impairments in communication, social interaction, and stereotypic repetitive behaviors.

As discussed above, dysregulation of the synaptic function is thought to be one of
the main mechanisms underlying ASD-related phenotypes. NPCs derived from ASD
patients revealed increased cell proliferation mediated by the dysregulation of the β-
catenin/BRN2 transcriptional cascade, as well as abnormal neurogenesis and reduced
synaptogenesis leading to functional abnormalities in neuronal networks [291]. Likewise,
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in hIPSCs-derived neurons from ASD patients, a decrease in synaptic PSD-95 clusters [292]
was described, along with impaired neurite outgrowth [292]. Defects in synaptic con-
nectivity were also described, comprising deficits in AMPA/NMDA current ratio [293],
decreased glutamate release, decreased number of excitatory synapses, and a decreased
expression of synaptic proteins [294]. In addition, a study using hIPSCs from a patient
carrying a heterozygous deletion of SHANK2 and hIPSCs engineered using shRNA to
silence SHANK3, both risk genes for ASD, revealed a reduced growth area and increased
soma size in these neurons [295–297]. However, when control and labeled SHANK2 mutant
hIPSCs were cocultured, increased dendritic length and complexity, synaptic number, and
frequency of spontaneous excitatory postsynaptic currents (sEPSC) were observed. These
anomalies were further confirmed in a gene-edited hIPSC cell line carrying a homozygous
SHANK2 knockout, but were rescued by SHANK2 gene dosage correction [298]. Another
gene whose deletion is commonly associated with NDDs, especially ASD, is NRXN1A.
Differentiation of cortical neuron-like cells from hIPSCs originated from patients carry-
ing a NRXN1A deletion revealed increased calcium signaling sensitive to voltage-gated
sodium and calcium blockers [299], as well as larger sodium currents, higher AP amplitude
and accelerated depolarization time in comparison with control cells [300]. In addition,
pathogenic variants in NLGN4, another relevant gene, were associated with impaired ability
to form synapses derived from patient hIPSCs [301]. Finally, the role of genetic variants in
Down syndrome cell adhesion molecule (DSCAM), an ASD-related gene involved in the
development of human nervous system, was investigated in neurons derived from hIPSCs
carrying a heterozygous point mutation in this gene. This revealed that DSCAM mRNA
levels and density in dendrites were decreased in ASD hIPSCs in comparison with controls.
In addition, genes involved in synaptic function, such as those encoding NMDA receptor
subunits, were downregulated in ASD neurons, which goes along with the decrease found
in NMDA receptor-mediated currents. The same was observed in hIPSC-derived neurons
after shRNA-mediated DSCAM knockdown but was rescued after shRNA-induced overex-
pression of DSCAM [302]. Overall, these results suggest that mutations in genes involved in
synaptic function may underlie ASD phenotypes through NMDA function dysregulation.

Nevertheless, the excitatory circuitry is not the only one affected in ASD. Neurons
derived from ASD hIPSCs revealed decreased GABA levels and GABA receptor expres-
sion [291]. ASD patient-derived forebrain organoids revealed an accelerated cell cycle
accompanied by overproduction of the transcriptional repressor FOXG1, triggering in-
creased production of GABAergic interneurons in comparison with glutamatergic neurons,
suggesting an imbalance in the differentiation process that may be relevant in mediating
ASD phenotypes [201]. To clarify the implications of penetrant and weak polygenic risk
variants for ASD, glutamatergic neurons derived from hiPSCs from 25 individuals from
12 families carrying heterozygous de novo or rare-inherited damaging ASD variants were
generated. Using MEAs and patch-clamp recordings, a spontaneous network hyperactivity
was revealed in neurons lacking one copy of the contactin 5 (CNTN5) gene, a common
ASD risk factor, bearing a rare missense variant in the euchromatin histone lysine methyl-
transferase 2 (EHMT2) gene, suggesting the involvement of both types of abnormalities in
ASD-related phenotypes [303]. Neurons derived from hIPSCs from a patient with a func-
tional deletion of TSC2, a gene involved in ASD, revealed neuronal hyperactivity linked
with neuronal network dysfunction, with low synchronization of neuronal bursting and
decreased spatial connectivity. The observed deficits were attributed to an elevation in the
expression of genes associated with GABA and glutamate signaling and to imbalances in
inhibitory/excitatory circuitry [304]. Additionally, Martin and colleagues explored the role
of TSC1 in ASD-evoked neurodevelopmental alterations. They generated NPCs derived
from a patient with a heterozygous pathogenic variant in exon 15 of TSC1 and generated
isogenic controls (heterozygous, null and corrected wildtype (WT)) using CRISPR/Cas9.
TSC1-mutated hIPSCs revealed an enlarged cell size, enhanced proliferation and altered
neurite outgrowth [305]. Although less addressed, epigenetics may play a major role in
the pathogenesis of ASD, especially through altered microRNA (miRNA) function. It was
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previously shown that miR-92a plays an important role in neuronal neurite outgrowth, neu-
ronal differentiation and GABAergic neuronal maturation [306]. Considering this, studies
focusing on miR-92a-2-5p, which shares the same seed sequence as miR-92a, using NPCs
derived from ASD-hIPSCs, revealed increased levels of miR-92a-2-5p concomitant with
decreased proliferation, with a delay in S phase progression, early differentiation deficits
and reduced number of inhibitory neurons [307]. In addition, inhibition of this miRNA
rescued the proliferation and differentiation deficits found in ASD NPCs, suggesting that
miR-92a-2-5p may be a regulator of these processes, especially in inhibitory neurons. A
summary of the phenotypes described in humans, rodents and hIPSCs can be found in
Table 3.
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ASD Premature spine maturation Downregulation of
NMDAR subunits

Excessive glutamatergic transmission
Reduced NMDAR currents

ASD
Decreased growth cone

size
Increased soma size

Developmental delay Reduced social interaction and
vocalizations

Increased neuronal
proliferation

SHANK2 deletion
[297,298,330] ASD Stereotypic behavior Decreased apoptosis

ID Altered spine volume

Increased dendritic length,
dendrite complexity,
synapse number and
frequency of sEPSCs
Decreased NMDAR

function

Juvenile impaired social interaction
Enhanced self-grooming

Anxiety-like behavior
Social dominance behavior

Motor abnormalities
SHANK3 mutant
(R11117X, Q321R,

c.1527G > A,
c.2497delG, C.5008A >

T, ctMUT,
RS9616915SNP, exon
(e)4-9, e14-16, S685)

[331–345]

Abnormal development of sleep and
arousal mechanisms

Altered spinogenesis of
pyramidal cortical

neurons

Reduced cell soma size
Striatal synaptic transmission defects,
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PFC synaptic defects

Decreased neuronal excitability
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Developmental delay Reduced complexity of dendritic tree,
spines and excitatory synapses

Language delay Repetitive grooming
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Altered SHANK3
methylation pattern Altered light sensitivity
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neuronal development

NPCs early differentiation Impaired mature
neuronal function

SHANK3 deletion
[346–360]

Increased cortical pyramidal
neurons firing

Reduced neuronal soma
size, growth cone area,

neurite length and
branch numbers

Abnormal striatal circuitry development Defects in E/I
synaptic transmission

Reduced social memory—CA1 neurons
Glutamatergic but not GABAergic

activity altered in CA3 at birth
Decreased cortical interneurons activity

Reduced cortical PV+ mRNA and
protein levels
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ASD

Immature neurons
Over-grooming Altered differentiation

Developmental delay Altered social response Reduced neuronal activity
Facial abnormalities Cognitive deficits Reduced number of APs

NRXN1 deletion
[75,77,304,361–368] ASD Aggressive behavior in males Decreased neurite number

Severe breathing problems Sex-dependent altered novelty response Decreased neuronal length

Decrease synaptic strength in spiny
projection neurons pathway

Increased cortical calcium
signaling, sodium

currents, AP amplitude
Reduction in neurotransmitter release in

spiny neurons
Increased depolarization

time

ASD Sociability deficits Decreased E/I ration

Reduced ultrasonic vocalization Decreased E/I network
response

NLGN4 deletion
[67,369–373] Increased stereotypies Decreased miniature

EPSCs and IPSCs

Cognitive dysfunction
Decreased number of

GABAergic and
glutamatergic vesicles

Altered GABAergic
hippocampal function

Impaired synaptic
formation in NPCs

TSC1/TSC2 loss of
function

[374]
- -

Microcephaly Impaired memory and UV vocalization

Short stature
Abnormal facial features Social deficits

Increased cell size, NPC
proliferation and neurite

outgrowth

ID Seizures Impaired neuronal
differentiation

Seizures Increased cell size E/I ratio imbalance
TSC2 deletion

[304,361,375–378] Memory deficits Increased PV levels Neuronal hyperactivity

Hypoconnected neural networks
At P7, Pax2+ cells increased and

delayed maturation into
PV+ interneurons

Neuronal network
dysfunction

Decreased AP after hyperpolarization

Reduced
synchronization of

neuronal bursting and
spatial connectivity

Abnormal LTP Decreased expression of
synaptic markers

ASD

Hyperactivity, social and cognitive
deficits

TSC1 mutant
(R336W, T360N, T393I,

S403L and H732Y)
[379]

Altered brain anatomy -

Reduced cortical thickness

Reduced cortical synaptic density and
neurite outgrowth -

SETD5 deletion
[380,381] ASD

Decreased network activity and
synchrony

Enhanced LTP -
Abnormal expression of postsynaptic

density proteins
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2.3.2. hIPSC Models of Rett Syndrome (RTT)

RTT is a NDD that mainly affects females and is caused by mutations in the X-linked
gene MECP2. This disease is characterized by breathing and sleep problems, movement
disorders, language and learning impairments and repetitive stereotyped movements.

The study of glutamatergic and GABAergic neurons derived from RTT syndrome
patient hIPSCs carrying a variety of pathogenic variants in MECP2, revealed decreased
calcium signaling, along with electrophysiological impairments characterized by reduced
sEPSC and spontaneous inhibitory postsynaptic currents (sIPSC) as well as morphological
deficits, with establishment of fewer synaptic contacts and reduced cell soma size, den-
dritic branching, spine density and impaired neuronal maturation [382–389], as shown in
post-mortem studies of patients brains. Another curious observation was the heterogenous
profile of X chromosome inactivation, as some hIPSCs maintained X chromosome inactiva-
tion while others did not [382], suggesting the possibility of an epigenetic alteration in this
hIPSC line.

Recent studies addressed the role of the severity of MECP2 mutation on the phenotypes
observed in RTT hIPSCs. For that, excitatory neurons were differentiated from hIPSCs
obtained from patients carrying mutations associated with phenotypes ranging from mild
to severe RTT and patients carrying MECP2 null mutations, and the respective isogenic
controls. Overall, mild RTT neurons displayed core phenotypes such as increased input
resistance, impaired voltage-gated Na+ and K+ currents and reduced dendritic complexity,
while MECP2-null neurons revealed all of the above plus depolarized resting membrane
potential, reduced cell capacitance along with decreased soma area and dendritic length,
and deficits in excitatory synapse transmission. This study suggests that MECP2 dosage
and/or variant type impact the phenotypes observed in RTT [317,318].

Using RTT 3D brain organoids, deficits in neuronal migration and maturation, such
as reduced neurite outgrowth and fewer synapses and reduced neuronal migration, were
described [319]. In cerebral cortex–ganglionic eminence (GE)-combined organoids, in
which excitatory and inhibitory neurons fully integrate, a neural network dysfunction was
observed, caused by GE-derived interneurons malfunction, in brain organoids derived from
RTT hIPSCs. These phenotypes were rescued by the treatment with the neuroregulatory
drug Pifithrin-α [320]. In addition, RTT hIPSCs-derived organoids showed an increased
number of vasoactive intestinal peptide (VIP)+ and calbindin 2 (CALB2)+ interneurons and
decreased percentage of parvalbumin (PV)+/somatostatin (SST)+ and calbindin 1 (CALB1)+
in comparison with controls, suggesting an imbalance in interneuron subtypes in RTT [320].
The decrease in SST interneurons-mediated inhibition caused by an increased number of
VIP interneurons may mediate the loss of low-frequency oscillations in RTT-combined
organoids, while the decrease in the percentage of PV interneurons may contribute to
the loss of gamma oscillations. Additional staining analysis revealed an increase in the
density of excitatory puncta in MECP2-mutant organoids, without changes in inhibitory
synapses [320]. Overall, these data highlight the imbalance in cortical excitatory/inhibitory
circuitry present in RTT, which appears to have a major contribution in inhibitory in-
terneurons. Another study using dorsal and ventral forebrain organoids obtained from
RTT patient hIPSCs and controls revealed premature development of deep-cortical layer
associated with decreased expression of progenitor and proliferative cells and defective
function of RTT neurons in RTT dorsal forebrain organoids [321]. Fusion of both ventral
and dorsal forebrain organoids demonstrated impairments in interneurons migration [321]
in early stages of neuronal development. Levels of Nkx2.1, a marker of medial ganglionic
eminence (MGE) neurons, which is the origin site of SST+ and PV+ interneurons, were
highly decreased in ventral RTT organoids upon ventral patterning of hIPSCs, increasing
the evidence for a disruption in interneurons development in RTT. In addition to MECP2,
mutations in FOXG1 may also lead to RTT-like phenotypes. A study using neurons derived
from FOXG1-mutant patient hIPSCs revealed an increase in orphan glutamate receptor
δ-1 subunit (GLUD1), which is responsible for synaptic differentiation and the shift in the
balance of excitatory toward inhibitory synapses and in inhibitory markers (GAD67, GABA



Cells 2023, 12, 538 23 of 52

AR-α1) and for a decrease in excitatory markers (VGLUT1, GluA1, GluN1, PSD95) [322].
A summary of the phenotypes described in humans, rodents and hIPSCs can be found in
Table 4.

Table 4. Described MECP2 mutations in human, rodent and hIPSCs phenotypes.
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Rett Syndrome

Decreased Ca2+ signaling
Decreased sEPSCs and sIPSCs

Impaired spatial, contextual fear
and social memory Decreased synaptic contacts

Anxiety Decreased cell soma size,
dendritic branching, spine density

Increased vocalizations Impaired neuronal maturation

Microcephaly Hypoactivity Increased VIP+ and CB2+
interneurons

Impaired development Stereotypies Decreased PV+, SST+ and CB1+
interneurons

Mild ID Reduced brain volume Loss of low frequency and gamma
oscillations

MECP2 mutant
(R168X,

p24hospho(Thr308-Ser421),
tm1.1Jae, tm1.1Bird, A140V,

1lox, 308) [323–328,390]

Seizures Seizures Decreased density of excitatory
puncta

Stereotypic behavior Motor abnormalities Premature development of
deep-cortical layer

Anxiety Breathing abnormalities Expression of progenitor
and proliferative cells

Breathing problems Impaired growth maturation Defective forebrain neuronal
function

Motor abnormalities Reduced cortical spontaneous
activity of pyramidal neurons Interneurons migration deficits

Reduced miniature EPSCs
amplitude, without changes in

miniature IPSCs
Decreased Nkx2.1 levels

Lower dendritic spine density in
CA1 neurons, at P7, abolished at

P15
Increased input resistance

Deficits in LTP and LTD Impaired voltage-gated Na+/K+
currents

Decreased dendritic complexity

Gait and posture abnormalities
Breathing difficulties

Microcephaly

Seizures Decreased soma area, dendritic
length

Stereotypic behaviors Decreased neurite outgrowth

ID Hypoactivity Reduced depolarized resting
membrane potential

ASD E/I imbalance Reduced cell capacitance
MECP2 deletion

[331–335,391–393] Epilepsy Reduced excitatory networks Deficits in excitatory synapse
transmission

Motor abnormalities Reduced cortical basal dendritic
length Decreased excitatory markers

Delayed cortical neuronal
maturation Decreased neuronal migration

Reduced cortical neurons soma
and nuclei size

Network dysfunction caused by
GE-derived interneurons

malfunction

Premature synaptogenesis Increased inhibitory synapses and
markers

Elevated cortical PV expression
Abnormal excitatory inputs

converging onto PV+ interneurons

FOXG1 mutant
[322]

Altered craniofacial
structure Altered craniofacial structure -

2.3.3. hIPSC Models of Down Syndrome

Down syndrome is caused by the presence of an extra copy of chromosome 21 and
is mainly characterized by physical phenotypes (short stature, small, low-set ears, flat
nasal bridge, small mouth), along with cognitive and learning deficits, ID, heart congenital
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defects, leukemia, gastrointestinal structure defects and hearing and vision problems. The
mechanisms underlying these cognitive deficits can be addressed using hIPSCs-derived
neurons and/or glial cells.

Morphometric analysis of DS hIPSC-derived cortical interneurons showed that GABAer-
gic interneurons were smaller and had fewer neuronal processes than controls. In addition,
the proportion of calretinin (CR)+ over CB+ neurons was reduced, which was associated
with a decreased migration capacity [336–338]. DS progenitor cells generated fewer COUP-
TFII+ progenitors, a marker of caudal ganglionic eminence (CGE) neurons (interneurons
progenitor cells), and these showed a reduced proliferation [337,339]. Additionally, Wnt
signaling was reduced in DS hIPSCs, and its activation restored the COUP-TFII+ progenitor
population [337]. Along with migration impairment, DS hIPSCs also showed abnormal
neuronal differentiation, which appeared to be dependent on DYRK1A expression [340]. DS
hIPSCs also revealed decreased mitochondrial membrane potential along with an increased
number and abnormal morphology of mitochondria [339]. Moreover, hIPSCs derived
from DS patients showed an exacerbated production of OLIG2+ ventral forebrain NPCs.
OLIG2 directly upregulates interneuron lineage-determining transcription factors favoring
the production of GABAergic interneurons, overproducing them, as observed in brain
organoids derived from DS hIPSCs [341]. Consistently, OLIG2 knockdown by shRNA
restored its expression in DS NPCs and the normal production of GABAergic interneurons
in brain organoids [341], suggesting a role for OLIG2 in DS neuropathology. A summary of
the phenotypes described in humans, rodents and hIPSCs can be found in Table 5.

Table 5. Described DS human, rodent and hIPSCs phenotypes.
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Smaller cerebellum 

 
  Larger hippocampus 
  Altered vocalizations 

 Corpus callosum under-
development/absence 
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impairments 
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tures Anxiety-like behavior 

ARID1B deletion 
[308–314] Microcephaly Cortical E/I imbalance 
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tic density and transmission 

 ID Decreased number of cortical 
GABAergic interneurons 

Down Syndrome

Short stature
Decreased brain size Reduced brain organoid size

Decreased white matter volume Reduced GABAergic interneurons

Hippocampal and neocortical size Cognitive deficits (learning,
memory and executive function)

Reduced CR+/CB+ interneurons
ratio

Characteristic face phenotype
Alzheimer’s disease-like

histopathology

Increased number of inhibitory
neurons in the forebrain

Reduced COUP-TFII+ progenitors
and proliferation

ID Dendritic spine defects Increased OLIG2+ ventral
forebrain progenitors

Cognitive deficits (learning,
memory and executive function)

Decreased GABA-mediated
inhibition

Reduced interneuron
lineage-determining transcription

factors
Chromosome

21 trisomy
[336,341,394–411]

Decreased excitatory and
inhibitory neurons

Decreased GABA synthesis
enzymes in hippocampal and
cortical inhibitory synapses

Increased GABAergic
interneurons production

Decreased number of forebrain
neurons Altered dendritic length Decreased GABAergic interneuron

neurogenesis and proliferation

Decreased CB+ and PV+ neurons Altered CA1 pyramidal neuron
function Decreased synaptic activity

Decreased CB+ and PV+ size
neurons Decreased LTP Decreased migration capacity

Dendritic spine defects Decreased neurogenesis and
proliferation

Abnormal neuronal differentiation
dependent on DYRK1A

Altered neuronal migration and
differentiation Oxidative stress Decreased mitochondrial

membrane potential
Oxidative stress Increased mitochondria number

Decreased neurogenesis and
proliferation

Abnormal mitochondria
morphology

2.4. Tackling Molecular Pathways Affected in NDDs Using hIPSCs
2.4.1. High-Throughput Screenings Using hIPSCs (HTS)

The unlimited self-renewal capacity of hIPSCs makes them unique models for large-
scale genetic screens. Genetic manipulation of hIPSCs including chemical and RNA interfer-
ence (RNAi) screens, such as gain- and loss-of-function (GOF, LOF) studies, give valuable
information about novel regulators of neurodevelopment and allow for testing of candidate
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therapeutic targets and agents. In chemical screenings, there is the identification of molec-
ular targets of compounds being tested to promote hIPSC differentiation into different
lineages. Additionally, the evaluation of multiple cellular phenotypes may be performed si-
multaneously and in an unbiased manner using high-content imaging-based assays, which
adds relevant additional information. Although this is often challenging, it allows for the
discovery of novel genes and signaling pathways involved in the differentiation process,
as well as of compounds targeting these pathways, and their organization into chemical
libraries in an arrayed form. The main limitation of this type of screening is the reduced
number of genes that can be targeted. RNAi screenings appeared first and revolutionized
the field of gene regulation, by allowing for gene silencing by double-stranded DNA, in
a vast diversity of models, ranging from simple organisms such as D. melanogaster or C.
elegans to more complex ones such as rodents. Two different approaches are possible with
this technique: small-interfering RNA (siRNA)-based or short hairpin RNA (shRNA)-based
stable gene knockdown. siRNA transfection can temporarily downregulate the target gene
in cells of interest, which may be improved using retro- and lentiviruses to allow for shRNA
integration into the genome and maintenance of prolonged expression. Typically, siRNA
libraries are composed of chemically synthetized nucleotide siRNAs presented in an array
format. HTS readouts may vary from protein expression to morphological alterations and
are mainly based on fluorescence through the use of different techniques, among which
include the use of fluorescent proteins as biosensors of multiple molecular mechanisms,
immunofluorescence, protein redistribution assays, reporter genes, protein-fragmentation
complementation assays (PCA), coupled fluorophores for Forster resonance energy transfer
(FRET)-based assays, and reactive fluorophore-binding peptide tags to label intracellular
proteins or HaloTag® technology-based assays.

2.4.2. Molecular Pathways Affected in NDDs—Insight from hIPSC-Based Studies
Autism Spectrum Disorders (ASD)

Transcriptomic analysis of hIPSC-derived neuronal lineages from ASD patients re-
vealed dysregulation of genes involved in protein synthesis in ASD NPCs, while in neurons,
there was dysregulation of synapse/neurotransmission and translation. Further proteomic
analysis of NPCs revealed a potential link between the pathways altered in NPCs and
neurons [342]. A study using ASD hIPSCs and their derived NPCs and neuronal cells
suggests that the first pathological mechanisms triggering ASD are developed in early
stages of neuronal development, as substantially more genes were differentially expressed
in NPCs than in hIPSCs, whereas gene set variation analysis revealed that the activity of
known ASD-related pathways in NPCs and neuronal cells is significantly different from
hIPSCs [343].

SHANK3 is a PSD component of glutamatergic synapses that plays a key role in
the adult brain, mediating excitatory transmission and leading to deficits in corticostri-
atal circuits [344], and it is one of the most studied ASD-associated risk genes. A study
using hIPSCs used shRNA to silence SHANK3 and to evaluate its neurodevelopmental
role in ASD phenotypes. SHANK3 deficiency led to impaired morphology early in de-
velopment with reducing dendritic arborization, soma size and the growth cone area of
glutamatergic, GABAergic and dopaminergic neurons [296]. Additionally, SHANK3 knock-
down altered the transcriptomic profile throughout development, with particular impact
on PI3K-associated pathways [296], increasing the evidence that links the mTOR/PI3K
cascade to ASD phenotypes. Another gene commonly associated with ASD is SHANK2.
A study using hIPSCs from a patient carrying a heterozygous deletion of SHANK2 iden-
tified ERK1/2 pathway dysregulation in both young and mature neurons, accompanied
by reduced apoptosis and increased cell proliferation [297]. Similarly, a heterozygous
single-nucleotide variant (SNV) in the DSCAM gene also caused ERK1/2 pathway dys-
regulation, with significantly low levels of p27hospho-ERK1/2 in neurons derived from
DSCAM-mutated hIPSCs [302], while heterozygous mutation in exon 15 of TSC1 led to
mTOR and ERK1/2 activation, along with the differential expression of genes known to be
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linked with ASD, epilepsy and ID [305]. Overall, these data suggest a role for the ERK1/2
and mTOR pathways in the development of ASD-related phenotypes. NRXN1 deletions
have been linked to ASD phenotypes and other NDDs [345]. Transcriptomic analysis of
cortical neuron-like cells derived from hIPSCs belonging to a patient carrying a NRXN1
isoform deletion revealed that these neurons displayed upregulation of glutamatergic
synaptic and ion channels/transporter activity-related genes including GRIN1, GRIN3B,
SLC17A6, CACNG3, CACNA1A and SHANK1 [300]. In addition, a study using CRISPR-
Cas9-edited hIPSCs carrying a homozygous deletion of SHANK2 revealed transcriptomic
changes in neurodevelopment gene sets, identifying increased GRIN2B, GRM1 and GRM5
transcripts as differentially expressed [298]. The increase in the levels of different GRIN
genes is highly relevant for ASD neuropathology, as they encode NMDA receptors, and
GRIN-related mutations themselves have been associated with several neuropsychiatric
conditions, including NDDs [346].

Deficits in glutamatergic signaling were found using ASD patient hIPSC-derived
organoids carrying a mutation on glutamate decarboxylase 1 (GAD1), which encodes an
enzyme responsible for the conversion of glutamate into GABA [347]. This study revealed
that, although both control and GAD1-mutant organoids showed high levels of methylation
across the CpG sites of the GAD1 region of interest, GAD1-mutant hIPSCs showed specific
DNA methylation patterns, suggesting that GAD1 suffers different methylation effects,
which may indicate variable epigenetic regulation [348].

Other synapse-related molecules also seem to be altered in ASD hIPSCs. Although the
most widely studied molecule is the X-linked NLGN4X, NLGN4Y is equally relevant, as
it shares around 97% homology with NLGN4X. A functional comparison in this context
between these two using neurons derived from hIPSCs revealed that the impact of ASD-
associated mutations in NLGN4X is phenocopied when they are introduced in NLGN4Y,
impairing its trafficking to the cell surface, but it also showed that NLGN4Y cannot com-
pensate for the functional deficits caused by NLGN4X ASD-associated mutations [349].

Macrocephaly is one of the comorbidities described in ASD patients, suggesting that
the mechanisms underlying excessive neuronal growth may be also underlying some ASD
phenotypes. To address this question, a study using hIPSCs-derived NPCs from ASD
patients with macrocephaly was performed. Altered DNA replication and increased DNA
damage were found in ASD NPCs along with elevated ASD-related DNA DSBs in repli-
cation stress-susceptible genes, as shown by high-throughput genome-wide translocation
sequencing (HTGTS) [350]. These results suggest that hyperproliferation of NPCs may
be linked to ASD pathogenesis through the disruption of genes involved in cell adhesion
and migration. Another study using patient-derived forebrain organoids was conducted
to comprehend the impact of contactin-associated protein 2 (CNTNPAP2) gene variants
on embryonic cortical development, as genetic abnormalities in this ASD-related gene
are thought to be related with brain overgrowth. In agreement with this hypothesis, fore-
brain organoids carrying the CNTNPAP2 pathogenic variants revealed increased volume
and total cell number caused by increased production of NPCs, which was reverted by
CRISPR/Cas9 correction of the variant [351]. Sc-RNAseq showed that CNTNPAP2 is mainly
expressed in excitatory neurons, while gene ontology analysis reveals that the DEGs associ-
ated with pathogenic variants in this gene are enriched for ASD-associated genes [351]. In
addition, transcriptomic profiling of NPCs and neurons derived from hIPSCs engineered
with CRISPR/Cas9 to carry a CHD8 deletion, as recurrently seen in ASD patients, revealed
that genes associated with brain volume were differentially expressed in knockdown CHD8
NPCs and neurons [352], which adds valuable evidence to the previous studies since
CHD8 is involved in calcium-dependent cell–cell adhesion and is an established ASD-risk
gene. The same study also showed altered expression of genes involved in neuronal de-
velopment, B-catenin/Wnt and PTEN signaling and extracellular matrix skeletal system
development, such as TCF4, which overlap with genes associated with ASD or downstream
transcriptional targets of those [352], such as NXRN1. The same study was then performed
using brain organoids carrying the same mutation compared to isogenic controls. In ac-
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cordance with the previous study, TCF4 expression was upregulated, as was DLX1 and
DLX6-AS1, two genes known to be involved in GABAergic interneuron differentiation.
Overall, enrichment of differentially expressed genes involved in neurogenesis, neuronal
differentiation, forebrain development, B-catenin/Wnt signaling and axonal guidance was
found in heterozygous knockout CHD8 brain organoids [353]. These studies highlight the
convergence of several molecular mechanisms between NDDs, as most of the DEGs found
to be altered in CHD8 mutants are also key players in other disorders.

Rett Syndrome

Using publicly available RNA-sequencing databases of MECP2 mutant hIPSCs, a study
evaluated the role of MECP2 deficiency in the transcriptomic modifications found in RTT
patients using Weighted Gene Correlation Network Analysis (WGCNA) [354]. Overall, the
results suggested that translational dysregulation and proteasome ubiquitin dysfunction
begin in NPCs even before lineage commitment, as perturbation of translation, ribosomal
function and ubiquitination were found in MECP2-mutant hIPSCs along with altered gene
expression in ubiquitination pathways and neurotransmission in NPCs and hIPSC-derived
neurons [354]. Curiously, one of the genes found to be upregulated in both MECP2-mutant
hIPSC-derived neurons and hIPSCs was PDZ-binding kinase (PBK) [354]. The protein
encoded by this gene is responsible for the activation of the MAPK and PI3K/PTEN/AKT
pathways, widely associated with NDDs (as discussed above), suggesting the involvement
of some specific and some shared pathways as observed in RTT. In line with the translation
dysregulation observed in this study, another work aimed at finding shifts in mRNA ri-
bosomal engagement during human neurodevelopment. To accomplish that, they used
parallel translating ribosome affinity purification sequencing (TRAP-seq) and RNAseq in
RTT hIPSCs, hIPSC-derived NPCs and hIPSC-derived cortical neurons vs. their matched
controls. The study suggested that around 30% of key gene sets involved in neurodevel-
opment, transcription, translation and glycolysis are translationally regulated, and that
translation is globally impaired, along with mTOR signaling, in RTT cortical neurons [355].
In addition, CREB signaling, which was already shown to regulate MECP2 mRNA levels
and to be simultaneously regulated by MeCP2 in mice [356,357], was recently involved in
RTT pathology. Neurons derived from MECP2-mutant hIPSCs showed a significant reduc-
tion in CREB and phospho-CREB levels [389]. Moreover, overexpression of CREB through
treatment with a PDE-4 inhibitor ameliorated the synaptic morphology deficits observed.

Neuron-specific K(+)-Cl(−) cotransporter 2 (KCC2) is a known downstream target of
MECP2. Differentiation of neurons from RTT patient-derived hIPSCs revealed decreased
expression of KCC2, which was responsible for a delayed GABAergic functional switch
from excitation to inhibition that was reverted by KCC2 overexpression [358]. Considering
that KCC2 reaches its maximum expression relatively late in nervous system development,
this may explain in part the delayed onset of RTT symptoms and suggests the possible
involvement of GABAergic neuronal dysregulation in this disorder. A proteomic analysis
of NPCs derived from RTT patient hIPSCs showed that neuronal proteomic alterations
appear long before the appearance of the first phenotypes [359]. GO enrichment analysis
revealed changes among the differentially expressed proteins in several pathways such
as cell adhesion, cytoskeletal organization and synaptic function [359]. Recently, a study
addressed the role of the c-Jun N-terminal kinase (JNK) stress pathway in RTT using
MECP2-mutated hIPSCs-derived neurons. It was discovered that the JNK pathway was
activated in mutant neurons, which exhibit c-Jun hyperphosphorylation and cell death,
which was reverted by the treatment with a JNK1 inhibitor [360]. This presents the first
evidence suggesting JNK as a possible therapeutic target for RTT. P53, which is mostly
known due to its function as a tumor suppressor gene, also mediates cell death, which
was found to be activated in MECP2-mutant neurons. Curiously, neurons derived from
patient hIPSCs lacking MECP2 revealed signs of replicative stress concomitant with P53
induction and senescence, which were reverted by P53 inhibition along with the deficits
in dendritic complexity [362]. Activation of P53 targets was also detected in brains from
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RTT patients [362], validating the results obtained in vitro. However, these results raise
an important question that should be clarified: why there are aging-related genes and
pathways activated in NDDs, especially when the neuropathology is present in early stages
of development, even before the clinical onset of the disease.

Among the several mechanisms known to be altered in RTT, synaptic function is
one of the most affected. Transcriptomic analysis of neurons derived from RTT patient
hIPSCs revealed disruption of the GABAergic functional circuitry along with cytoskeletal
dynamics [363]. Curiously, this study found increased levels of NRG1 and NRG3, which
are mainly expressed in interneurons, as well as NRXN1 and NRXN3, which modulate
GABAergic transmission [363]. In addition, it was found that abnormal increases in the
chromatin binding of bromodomain containing 4 (BRD4), which is an epigenetic and
transcriptional regulator, lead to abnormal transcription in interneuron-related genes in
MECP2-mutant hIPSCs [364]. Curiously, these deficits were rescued by treatment with JQ1,
a known inhibitor of BRD4, suggesting that dysregulation of BRD4 may be involved in
the altered function of interneurons in RTT, underlying the disease phenotypes. Finally, a
study using a combined organoid system comprising cerebral cortex and GE-like tissue
derived from RTT hIPSCs, using GO enrichment analysis, revealed that genes upregulated
in MECP2-mutant organoids were associated with neuronal projection, morphogenesis
and synaptic assembly, while genes found to be downregulated were mainly linked to
mRNA metabolism, ER targeting and protein translation. Neuronatin (NNAT), a gene
involved in synaptic function, was the most upregulated gene identified in this study,
being enriched in inhibitory neuron groups. However, other genes, such as NRXN1,
were also upregulated [320], suggesting a perturbation of synaptic function regulators in
RTT pathology.

Down Syndrome

Transcriptomic analysis of human tissue from DS patients revealed that this syndrome
is associated with genomic-wide transcriptional disruption due to overexpression of genes
regulated by chromosome 21. In addition, dysregulation of neuronal development has been
known to be a key feature of this NDD. As so, comprehending which mechanisms may
be underlying this malfunction is mandatory, starting with NPCs, which are responsible
for the generation of the different neuronal population. NPCs derived from DS hIPSCs
exhibited genome-wide increased intra-chromosome interactions, disruption of lamina-
domains and changes in chromatin accessibility along with transcriptional and nuclear
architecture changes characteristic of senescent cells [365]. Consistently, treatment with
senolytic drugs, which promote the elimination of senescent cells (aging cells), reversed
all the trisomy 21-driven observed phenotypes [365], suggesting a role for cell senescence
in the development of DS neuropathology. Evaluation of cellular stress responses, which
may accelerate cell senescence, in DS hIPSCs revealed increase probability of apoptotic cell
death, dysregulation of protein homeostasis and increased expression of ER stress pathway.
Surprisingly, these deficits were also ameliorated by treatment with the small-molecule
4-phenylbutyrate (4-PBA), which prevents protein misfolding and aggregation [366]. Over-
all, these studies raise important questions about the role that protein aggregation and
accumulation may play in DS neuropathology.

Transcriptomic and proteomic analysis of DS hIPSCs at different stages of development
revealed disturbed DNA replication and synaptic maturation early in development, with
differentiation, oxidative phosphorylation and glycolysis being the most compromised
clusters [367]. Additionally, upregulation of the amyloid precursor protein (APP), known to
be involved in Alzheimer’s disease, and of the OLIG1 and OLIG2 transcription factors was
found, supporting the idea of deficits in neurogenesis and neuronal differentiation [367].
However, analyses conducted in chromosome 21 trisomic and disomic hIPSCs cells and
their derived cortical neurons indicated that trisomy of chromosome 21 may not limit
neuronal differentiation, but instead may interfere with the maintenance of pluripotency,
as trisomic hIPSCs revealed higher levels of neural transcripts in comparison with disomic
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hIPSCs, and differentiated faster into cortical neurons [368]. DS hIPSCs gene profiling
also revealed altered expression of genes related to cell migratory pathways, which was
corrected by inhibition of the overexpressed p21-activated kinase (PAK1) pathway, restoring
neuronal migration [336].

Curiously, the DSCAM/PAK1 pathway, which is known to be involved in cortical
development, also seems to be relevant in DS pathogenesis. Sc-RNAseq in brain organoids
derived from DS patients hIPSCs revealed an over-activation of DSCAM/PAK1, impaired
neurogenesis, decreased cell proliferation and diminished expression of cortical layer
II and IV markers, which may explain the reduced size of the DS-derived organoids.
Further CRISPR/Cas9-, CRISPRi- or small molecule-induced inhibition of DSCAM/PAK1
pathway reversed the observed phenotypes [412]. Another vital cellular mechanism that
seems to be impaired in DS models, contributing to pathology, is mitochondrial function.
Gene set enrichment analysis of DS hIPSCs showed that most differentially expressed
lncRNAs were associated with neuronal development, acting through cis-acting target
genes, and with mitochondrial functions [413]. These results were further confirmed
by qRT-PCR analysis of mitochondrial function-related genes, which were shown to be
downregulated in DS hIPSCs [413]. Intriguingly, the mitochondrial dysfunction found in
neurons derived from DS hIPSCs was already present early in development, in NPCs [414].
To unravel the mechanisms underlying this dysfunction, several studies were performed
using DS patient-derived hIPSCs. GABAergic neurons and MGE organoids derived from
DS patients showed abnormally perinuclearly clustered mitochondria exhibiting abnormal
mitochondrial function, which was reversed by inhibition of the DSCAM/PAK1 pathway
using gene-editing or treatment with small molecules [415].

The DNA methylation pattern of known CpG regions and promoters was assessed
in neurons derived from DS hIPSCs corresponding to early- and middle-gestation. This
analysis revealed that some differential methylation profiles appear early in development
in DS and are mostly found in neurodevelopment-related genes, specifically involved
in DNA binding and chromatin remodeling [416]. Neurons derived from DS hIPSCs
showed overexpression of cytoplasmic polyadenylation element binding protein 1 (CPEB1)
in neuronal dendrites, which is responsible for dendritic mRNA transport, suggesting a
disruption of this process [417]. Proteomic evaluation of these cells also revealed impaired
axonal trafficking and enhanced synaptic vesicle release [418].

Although challenging, chromosomal dosage compensation is not impossible and can
be achieved in a near future. Intriguingly, induction of the XIST RNA in differentiated
neuronal cells was already demonstrated to trigger chromosome 21 silencing in DS hIPSCs.
Neuronal differentiation disruption in these cells was also corrected by XIST induction at
different neurodevelopmental stages [419].

2.4.3. Other NDDs

Besides ASD, RTT and DS, other NDDs have been tackled using hIPSCs. Timothy
syndrome, a rare and lethal disorder, is caused by a de novo missense gain-of-function mu-
tation in the calcium voltage-gated channel subunit alpha 1C (CACNA1C) gene. Carriers of
this mutation exhibit developmental language delays along with impaired motor skills and
cognitive dysfunction. The average life expectancy is 2.5 years of age, with the most com-
mon cause of death being arrhythmia. Neurons derived from Timothy syndrome patient
hIPSCs revealed abnormal expression of tyrosine hydroxylase and increased levels of the
neurotransmitters dopamine and norepinephrine; these deficits were rescued using roscov-
itine, a cyclin-dependent kinase inhibitor [100,420]. In addition, abnormal neurogenesis
and reduced synaptogenesis were identified in these cells, using MEAs [291]. Additionally,
CNVs consisting of duplication or deletion of chromosomal regions have already been
linked to some NDDs (reviewed in [421]). Among these, disruption of the chromosome
15q11-q13 region may lead to three different conditions: Prader–Willi syndrome (PWS),
Angelman syndrome (AS) or duplication syndrome (Dup15q). Deletion of the paternal
15q11-q13 chromosome region leads to PWS, with patients carrying this CNV exhibiting
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excessive eating behaviors leading to obesity, hypogonadism, hypothalamus atrophy and
ID. Neurons derived from PWS hIPSCs revealed impaired neuronal differentiation and
abnormal DNA methylation [422,423]. Angelman syndrome is mostly associated with a
large maternal deletion of 15q11-q13, leading to loss of function of the UBE3A gene. Patients
carrying this CNV show developmental delay and language and motor impairments. In AS
patient hIPSC-derived forebrain neurons, altered excitatory synaptic activity is decreased
along with capacity for activity-dependent synaptic plasticity reduction [424]. 15q11-q13
duplication (Dup15q) syndrome is caused by maternal duplication of this chromosomal
region. Dup15q patients exhibit the same phenotypes observed in AS, with additional
ASD behaviors and high prevalence of seizures. Neurons derived from Dup15q hIPSCs
revealed increased excitatory synaptic transmission frequency and amplitude, increased
action potential firing, along with increased density of dendritic protrusions and decreased
inhibitory transmission [425]. Finally, another recurrent CNV described in NDD patients
is the chromosome 16p11.2 deletion, characterized by developmental delay, language
impairment, epilepsy and ASD along with microcephaly. Curiously, duplication of this
chromosome leads to an increased susceptibility to schizophrenia and bipolar disorder.
Neurons derived from hIPSCs carrying the 16p11.2 deletion exhibited increased soma size
and dendritic length along with reduced synaptic density [426].

Overall, the data obtained from neurons derived from hIPSCs of NDD patients con-
firmed the convergence of neuronal phenotypes and molecular pathways between different
NDDs and highlighted some potential therapeutical targets of relevance for their treatment
as shown in Figure 3.

2.4.4. Translation to Clinics

High-throughput screenings may be valuable in different steps of drug discovery,
starting with identification and validation of suitable therapeutic targets to determine the
mechanism of action (MOA) of compounds and their safety. LOF studies are the most
commonly used for target identification through coupling of siRNA-induced knockdown
of the gene of interest with HTS readout techniques. However, the high probability of off-
target effects and low stability of siRNA along with non-optimized transfection conditions
may lead to unreliable results, limiting the success rate of such strategies. Fortunately,
the appearance of CRISPR/Cas9 allowed for the validation of the results obtained with
siRNA, as had happened with the DSCAM/PAK1 pathway in DS hIPSCs [412]. Due to
effective hIPSCs neuronal differentiation protocols and the resemblance of this process with
human brain development, hIPSCs constitute a great model to identify novel therapeutic
targets for NDDs. Chemical screenings are usually avoided in this first stage due to the
amount of compounds required, substantially increasing the associated costs. However,
with the recent advances in technology and the appearance of artificial intelligence (AI),
it is already possible to predict which compounds will more likely be disease-modifying
using computational models. This alternative is undoubtedly timesaving and allows for an
enhanced efficiency of the entire process [427]. Next, after identifying a promising candidate
and finding biological relevance to further pursue it, it will be studied in cellular models to
confirm their MOA and whether the phenotypes observed using siRNA are similar to those
triggered by the pharmacological treatment. Again, combination of hIPSCs with CRISPR-
based tools and imaging (immunofluorescence), molecular (Western blotting, qRT-PCR),
electrophysiological (MEAs, patch-clamp) and transcriptomic techniques (sc-RNAseq) to
identify different MOAs of the candidate drug as well as associated phenotypes, predicting
patients’ response, is a valuable methodological approach to address these issues. The great
promise of hIPSCs for drug screening relies on the predictability of patients’ responses to the
treatment based on hIPSCs genotype or specific phenotypes, in the stability associated with
drug responsiveness during lifetime and in the fact that drug responsiveness depends only
on the engagement with the therapeutic target, not being modulated by liver metabolism
and side effects, which cannot be monitored in hIPSCs. In this context, both 2D and 3D
hIPSC models have been widely used for toxicity assessments [428,429]; however, due to
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their increased complexity, 3D organoids may be more efficient to identify novel therapeutic
drugs. Allied to these methodologies, better stratification of the patients, achieved by
genomic identification of risk factors, followed by matching according to overlapping risk
factors into genetically defined groups, would significantly improve the outcomes of the
clinical target studies by decreasing their heterogeneity. However, before reaching the clinic,
drug candidates validated in hIPSCs for toxicity and efficacy need to see their biological
relevance verified in vivo, using suitable animal models.Cells 2023, 12, x FOR PEER REVIEW 35 of 58 

 

 

 
Figure 3. NDD convergent molecular pathways. Simplified schematics of the major components 
known to be altered in NDDs. Mutations in some of the genes encoding these proteins may trigger 
altered protein translation and synaptic imbalances that culminate in the neuronal deficits already 
described in several NDDs. In the cytoplasm, PI3K/mTOR and MEK/ERK pathways, which regulate 
protein translation, are hyperactivated in response to mutations in PTEN, TSC1/2, NRXNs, NLGNs, 
FMRP, SYNGAP1 and DYRK1A, leading to abnormal protein production and synaptic malfunction; 
CHD8 mutations also contribute to this dysfunction through dysregulation of the cytoplasmic Wnt 

Figure 3. NDD convergent molecular pathways. Simplified schematics of the major components
known to be altered in NDDs. Mutations in some of the genes encoding these proteins may trigger
altered protein translation and synaptic imbalances that culminate in the neuronal deficits already
described in several NDDs. In the cytoplasm, PI3K/mTOR and MEK/ERK pathways, which regulate
protein translation, are hyperactivated in response to mutations in PTEN, TSC1/2, NRXNs, NLGNs,
FMRP, SYNGAP1 and DYRK1A, leading to abnormal protein production and synaptic malfunc-
tion; CHD8 mutations also contribute to this dysfunction through dysregulation of the cytoplasmic
Wnt signaling. Additionally, mutations in transcriptional regulators and chromatin remodelers
(CHD8, ARID1B, MECP2) favor/diminish the expression of genes that encode key proteins (Wnt
signaling-associated genes, BDNF, GABAR genes) or alter their expression (MECP2), triggering
excitation/inhibition (E/I) imbalances.
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2.5. Drug Screenings for NDDs Using hIPSCs

A key aspect in which hIPSCs are advantageous in comparison with ESCs is their
suitability for drug screenings. Using hIPSCs to mimic different disease phenotypes
allows for the study of developmental mechanisms that cannot be analyzed using other
models. This opens a window of opportunity to explore the therapeutic capacity of multiple
compounds in a cost-saving and fast way. Overall, hIPSCs have been used to evaluate some
therapeutic targets for a variety of NDDs, leading to the identification of clinical-grade
drugs. Although valuable, these screenings rely on protocols that require several weeks
to differentiate hIPSCs into cellular populations relevant for the disease, increasing the
chances of jeopardizing their quality. This highlights the need to develop shorter and more
stable differentiation protocols that result in globally more mature neuronal populations.
Despite these limitations, multiple molecular and cellular phenotypes observed in hIPSCs
were ameliorated by pharmacological treatment in several NDDs.

In ASD, neurons derived from hIPSCs were used to screen compounds by their ability
to increase SHANK3 mRNA expression. From these, lithium, valproate acid (VPA) and
fluoxetine increased SHANK3 levels and its colocalization with PSD95 in the synaptic
compartment. However, only lithium and VPA increased spontaneous calcium oscilla-
tions, an effect that was blocked by SHANK3 shRNA, showing that the observed effect
was SHANK3-dependent. Finally, these drugs were also tested in hIPSCs carrying ASD-
associated genetic variants, to clarify whether they were capable of rescuing the observed
phenotypes, which happened, as both drugs increased SHANK3-containing synapses as
well as spontaneous calcium oscillations [430]. Lithium further progressed for a clinical
trial with an ASD patient and efficiently improved her mood deficits, revealing promising
results [431]. Currently, it is being tested in a phase III clinical trial for ASD (NCT04623398).

For RTT syndrome, several drugs have been tested using hIPSCs. Insulin-like growth
factor 1 (IGF-1), a drug that entered the clinical trial phase, showing safety, tolerability
and mild efficacy in RTT girls in phase I (NCT01253317) but failing to show significant
improvements in phase II (NCT01777542) [432], was previously applied to hIPSC-derived
RTT neurons and rescued the reduction found in excitatory synapses [383]. In addition, a
female patient carrying a MECP2 missense mutation revealed decreased symptomatology
after 6 months of combined treatment with IGF1, melatonin and blackcurrant extracts [433].
Neurons derived from hIPSCs from patients with idiopathic ASD and matched controls
were used to uncover the transcriptional changes induced by the treatment with IGF-1,
both acutely and chronically. The results indicate that IGF1 treatment differentially impacts
control and ASD neurons, and within ASD neurons, it has a heterogeneous effect that is
correlated with the expression of the IGF1 receptor [434]. This study suggests that we
should be cautious when evaluating the effect of IGF1 in ASD. Of note, a new and more
powerful analog of IGF1 was developed and revealed safety, tolerability and efficacy in
RTT females in a phase II clinical trial (NCT02715115), ameliorating the breathing problems,
the motor dysfunction, the mood abnormalities and disruptive behavior as well as the
frequency of seizures [435]. Currently, it is in a phase III clinical trial (NCT04279314) and
has already showed some positive results [436]. Another study using RTT hIPSCs and
FOXG1-mutated hIPSC-derived neurons revealed that AAV-mediated gene expression
corrected FOXG1 mutation [437]. Preclinical studies in animal models were also conducted
using an AAV-transduced MECP2 gene expression cassette with endogenous regulatory
elements, allowing for a safe expression of the transgene in brain cells [438]. A clinical trial
is expected to be initiated soon, to test the efficacy of this system in RTT patients. Although
these are the most promising therapies tested in hIPSCs, several other molecules can be
chosen in the future to follow the same path, such as nefiracetam and PHA, gentamicin,
JQ1, choline, rolipram and HDAC inhibitors [363,364,383,386,389,439].

For DS, there are no hIPSC-validated drugs being tested in clinical trials. However,
several compounds already showed promising results in attenuating some of the trisomy
21-related phenotypes observed in neurons derived from DS patient hIPSCs. Treatment
of DS hIPSCs-derived neurons with a chemical chaperone, sodium 4-phenylbutyrate,
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which already showed promising results in a clinical trial for amyotrophic lateral sclerosis
(ALS) [440], reduced the presence of misfolded protein aggregates and prevented the pro-
gression of apoptotic processes in DS neurons [366]. In addition, treatment of GABAergic
progenitors derived from DS hIPSCs with FRAX486, an inhibitor of the PAK1 protein
(known to be overexpressed in these cells) rescued the interneuron migration defects previ-
ously observed [336]. Overall, this highlights the increased appearance of future possible
therapeutic targets to develop drugs that may attenuate DS phenotypes.

3. Conclusions and Future Perspectives

By now, the vital role that hIPSCs play in the neurosciences field and, especially, for
the study of NDDs is unquestionable. Their ability to mimic neurodevelopmental stages
and clinically relevant cell types and phenotypes, easy access and genetic manipulation,
and human origin are the major virtues of these cells. Thus, they are valuable assets to help
us clarify the developmental neuropathology triggered by several NDD-related genetic
variants, but also to find better therapeutic targets and drug treatments. This article started
by focusing on traditional models used to study NDDs, highlighting what was found and
their main pros/cons. Then, throughout the review, we tried to address pertinent questions
surrounding hIPSC generation, differentiation and manipulation, giving tips to select the
best conditions and techniques in order to obtain high-quality neuronal populations. Every
advantage and pitfall of the different methods was discussed, and plausible solutions were
presented to the most frequent problems. At the same time, a literature research update
was performed, reporting what was discovered thus far in the NDDs field using hIPSCs
as well as the currently on-going clinical trials based on drug screenings performed in
these cells.

Now that the hIPSCs field is starting to mature, it is time to start addressing key
issues for effective translation to clinics: their high cost and-time consuming protocols,
the genetical instability often observed in hIPSCs and the presence of genetic/epigenetic
mutations that leads to heterogenous and unreliable results, high mutational risk associated
with the reprogramming process—that may jeopardize the entire experiment—and lack of
reproducibility of existing protocols due to poor reporting of the experimental conditions.
This highlights the need to optimize protocols and combine the use of hIPSCs with animal
models to obtain more robust results. However, the use of neurons derived from hIPSCs
obtained from patients carrying NND causing mutations highlighted several disease phe-
notypes that correlated to those observed in humans and animal models. Additionally,
several pathways known to be impaired in humans and animals were also impaired in
neurons derived from NDD hIPSCs, and convergence between them was also observed,
supporting the potential for translatability of the results obtained. After a thorough lit-
erature search, one can conclude that different protocols of differentiation for the same
neuronal population revealed similar disease phenotypes, revealing that there is more
than one possible combination of factors and conditions to differentiate the same neuronal
population, raising the question of how alike they are and whether the obtained results are
comparable between differentially generated populations of the same neuronal subtype.
However, the reduced time in vitro leads to the generation of immature synapses and
reduced levels of synaptic proteins, which hamper the study of the synaptic component of
NDDs. Although this limitation may be partially solved by the use of brain organoids or
by transplantation into a rodent model, the results obtained thus far are inconsistent and
highly controversial, highlighting the need for better protocols to obtain robust synaptic
properties in vitro in an easy, reliable way. Overall, the need for improved techniques and
experimental designs to better tackle NDD-associated mechanisms is evident; however,
hIPSCs are without a doubt a precious model to improve basic research and drug screening
for high-quality and clinically translatable scientific findings in the future.
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