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André Sequeira, for guiding me through this journey.

ii



S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity. I confirm that I have
not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.
I further declare that I have fully acknowledged the Code of Ethical Conduct of the University
of Minho.

iii



A B S T R A C T

This thesis works on Reinforcement Learning tree search and attempts to find the best
possible sequence of actions the agent needs to execute to get the most reward while using
less computational effort than by just applying a quantum maximum finding algorithm.
To achieve this we will use the property that makes it possible to limit our search space to
the elements that were marked by the oracle in Grover’s Algorithm, by marking a fourth of
the search space and following it with a quantum maximum finding subroutine. From this,
one of the marked elements is obtained and the information encoded in it is used to update
a probabilistic distribution stored in a classical memory.
The goal is to encounter the minimum amount of iterations of this process and compare the
results, i.e., percentage of success which is measured as the number of times the algorithm
produces a solution (element with maximum reward) and the number of queries used - with
a traditional quantum maximum finding procedure. If this is observed, it is also hypothe-
sized that the algorithm could be used to observe a step further into the future compared to
the traditional procedure, i.e., use the same or fewer queries to evaluate a larger number
of sequences fruit of increasing the horizon of the episodes. The last hypothesis tests the
depth of the circuits, more specifically the number of gates used. If the algorithm evaluates
shallower circuits than the quantum maximum finding, the approach can be applied on the
current quantum machines (NISQ) because the shallower circuits produces more error-proof
measurements.
The results show that the proposed algorithm has no advantages compared to a traditional
quantum maximum finding procedure due to using more queries to achieve the same rate
of success which, consequently, invalidates the first and second hypothesis. For the third
hypothesis, the gate complexity was not directly measured. Instead, was opted to measure
the number of queries used by circuit which might not be sufficient to conclude that the
algorithm uses shallower circuits.

Keywords: Amplitude Amplification, Heuristic, Model-Free, Maximum Finding, Query
Complexity
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R E S U M O

Esta tese trabalha com a busca em árvores utilizando a Aprendizagem por Reforço para en-
contrar a melhor sequência possı́vel de ações que o agente terá de executar de forma a obter
o maior prémio possı́vel, isto enquanto usa menos esforço computacional em comparação
com utilizar apenas um algoritmo de procura quãntica pelo máximo. Para atingir estes
objectivos, usaremos a propriedade que possibilita limitar o espaço de procura para os
elementos marcados pelo oráclo no Algoritmo de Grover, marcando exatamente um quarto
do espaço de procura, procedendo com uma procura quântica. Disto resulta um dos ele-
mentos marcado e a informação codificada nele será usada para atualizar uma distribuição
probabilistica guardada em memória clássica.
O objectivo é encontrar o minı́mo de iterações deste processo necessária para obter uma
percentagem de sucesso - número de vezes que o algoritmo retornou um elemento que é
solução do problema e o número de queries usado - e comparar estes resultados com um
procedimento tradicional de procura quântica. Caso isto se obseve, é colocada a hipótese
de se usar este algoritmo como forma de observar ações futuras em comparação com os
algortimos tradicionais, isto é, usar o mesmo ou menos queries para avaliar um maior
número de sequências fruto do aumento do horizonte dos episódios a avaliar. A última
hipótese testa se a profundidade dos circuitos, mais concretamente o número de gates
usadas. Caso o algoritmo proposto utilize circuitos menos profundos que o algoritmo
quantum maximum finding, este poderá ser utilizado nas máquinas quânticas atuais pois
estes circuitos produzem medições mais resistentes a erros.
Os resultados mostraram que o algoritmo proposto não possui qualquer vantagem com-
parado ao quantum maximum finding por usar mais queries para atingir a mesma percent-
agem de sucesso o que, consequentemente, invalida a primeira e segunda hipótese. Quanto
à terceira hipótese, o número de gates usadas por circuito não foi medido diretamente.
Em vez disso, optou-se por medir o número de queris por circuito o que poderá não ser
suficiente para obter conclusões quanto à profundidade dos circuitos medidos.

Palavras-Chave: Amplificação de Amplitude, Complexidade de Query, Heurı́stica, Modelo
Livre, Procura pelo Máximo
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1

I N T R O D U C T I O N

Learning methods are studied in a wide range of fields, from psychology to mathematics and
computer science, in a way to understand how to efficiently transmit information through
various agents and how to acquire new information.
Why do we need to teach a machine how to solve a problem if we can program it?
Some problems are too complex or lack a predetermined and easy-to-recognize algorithm to
solve them. Artificial intelligence algorithms process huge quantities of information and
produce an answer that is the best statistical solution to the problem in a way to circumvent
this.
These algorithms require a huge amount of data and computing power, which is solved
today with parallelization techniques. Quantum computers make use of quantum principles
to push this parallelization paradigm even further, which justifies the recent efforts on
developing these machines and algorithms that are built on quantum properties.
In this thesis, we explore a branch of the machine learning field of study, Reinforcement
Learning. In reinforcement learning, because the agent has no information before the
exploration of the environment, the learning process requires a balance between exploration
and exploitation. This way the agent can obtain a complete view of the environment and
project the best action to take at a given time.
The environment is typically represented as a Markov decision process (MDP), either
deterministic or stochastic. MDPs are usually solved using algorithms based on dynamic
programming, which assumes the knowledge of the environment or, model-free techniques
in case the agent has no a priori access to information.

1.1 motivation

In Reinforcement Learning, in the presence of a deterministic environment, the agent’s
goal reduces to find the optimal sequence of actions that either lead to a goal state or that
maximizes reward. In this work, we consider the problem of finding the optimal sequence
of actions that maximize the reward in an episodic setting, i.e., the sequence of actions is
computed for a fixed number of time steps, also known as the horizon, h.
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Classically, it reduces to find the path in the search tree, leading to the maximum reward.
If the number of actions available at each state is constant, |A|, then the complexity of
finding the optimal path is O(|A|h). The problem can even be more general than that,
assuming a possibly different number of actions for each state, also known as the non-
constant branching factor. O(|A|h) is a loose upper bound in these cases. A groverized
solution is often employed in the quantum setting, reducing the complexity to O(

√
|A|h).

However, for non-constant branching factor trees, the gain in complexity could be lost since
the trivial Hadamard superposition allows every action to be represented even though not
used.

1.2 contributions

The paper [4] proposes an heuristic aproach to quantum search in tree-like structures. In the
paper, the authors propose an oracle that marks one fourth of the states ”closer” to the goal.
The oracle will look like

U |a1a2 · · · ad⟩ =

 − |a1a2 · · · ad⟩ if f (a1, a2, · · · , ad) ≤ F−1(0.25)

|a1, a2, · · · , ad⟩ otherwise
(1)

Where F(p) is a cumulative distribution function and F−1(x) is the quantile function
of the cumulative function, i.e., if F(x) = p represents the cumulative probability of the
element x being p, F−1(p) = x represents the element with cumulative probability equal to
p. By selecting one-fourth of the state space guarantees that one of the marked states will
be measured since under these conditions Grover’s algorithm exhibits a success probability
equal to 1 for a single application of Grover’s operator.
Another interesting approach that shares some similarities with what is presented here is
partial quantum search proposed in [5], where the authors propose a separation of the search
space in K blocks, followed by an inversion about the mean in every K block after marking
the desired state. Next, the target state is marked again and a last inversion about the global
average is made. The result is the concentration of the amplitude in the block where the
target state is present.
In this thesis, we will have the probability distribution of the states - sequence of actions
from the start state to an arbitrary horizon - stored in classical memory with the ”weight” of
each sequence of actions, and from it, we will select a fourth of the possible set of actions,
which will be lately marked by the oracle present in the Grover’s Algorithm. Then, a
Quantum Maximum Finding (QMF) procedure will be executed, hopefully, returning the
sequence with the highest reward present in the superposition of the marked states. The
weight will be increased in the just mentioned probability distribution over the possible state.
The algorithm will iterate over these steps until a given termination criterion is satisfied.
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Hopefully, the state (sequence of actions) with higher reward will have been assigned a
higher weight. The experiments were run to find how many iterations of this algorithm are
needed to get a similar success rate compared to running the same experiments with its
absence.
As is explained in Sections 2.4.1 and 2.4.2, the QMF algorithm will apply eventually

√
N

applications of the exponential search algorithm (Qsearch, see algorithm 1), which in turn
can potentially apply a maximum of

√
N Grover operators (queries). By reducing the initial

search space to N
4 it, hopefully, reduces the previous numbers to

√
N
4 .

Due to this algorithm being iterative, the goal is to find if reducing the number of queries
needed balances the number of iterations of the algorithm, resulting in a lower total number
of queries than by just applying the QMF algorithm on the entire state space at once while
converging to the maximum rewarded action sequence.
The hypothesis is that the query complexity of the algorithm acting on 25% of the actions
sequences is less than the query complexity of the algorithm searching in the full action
sequence domain. Moreover, it is hypothesized that this query complexity gain is maintained
even though the proposed algorithm has to iterate multiple times. Should the hypothesis
be validated, the algorithm could explore larger lookaheads at a similar query complexity
as full tree search in smaller horizons. The algorithm that explores larger lookaheads can
perform better decisions.

1.3 structutre

We aim at two kinds of readers, those who are in the field of classical Reinforcement/Machine
Learning and are curious about what quantum computation has to offer to their field, and,
those who come from the Quantum Computing field and want to know how quantum
algorithms enhance machine learning.
To reach both, we will start with the respective background theory such as Quantum
Mechanics concepts (2.1), an introduction to quantum computing and the algorithms that will
be used in this work (2.2) and Reinforcement Learning techniques like dynamic programming
and Markov Decision Processes (3).
Next, we present the algorithm proposed, the problems to which we applied the technique,
a discussion of the results and potential future work.
We will compare the number of queries in the circuit and the percentage of success, i.e., the
number of times the algorithms return the maximum reward present in the environment
between both methods to find if by sampling the search space we get better results.
Lastly, we discuss some ways of upgrading this algorithm, from complexity improvements
to the way the probability distribution can be updated.
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2

B R I E F I N T R O D U C T I O N T O Q UA N T U M M E C H A N I C S / I N F O R M AT I O N

In this chapter we will go over the theory behind quantum computation/information,
introducing some quantum mechanics concepts and how they are applied in computations.
Then, we give an overview of some relevant quantum gates, circuit examples and algorithms
that will be used as subroutines.

2.1 quantum mechanics

The contents of this section follow the introduction of [6] and are stated here for completion.
Quantum mechanics describes systems at the subatomic/atomic scales. At this size, classical
theories can not describe with certainty said systems. The key differences are the quantities
of a bound system which are restricted to discrete values (quantization). Objects behave as
particles and waves (wave-particle duality) and there are limits to how accurately the value
of a physical quantity can be predicted before its measurement. Here is introduced the Dirac
notation where a ket |ψ⟩, which denotes a quantum state, is a complex vector and a bra ⟨ψ|,
its complex conjugate. The norm of a vector is defined as the inner product, represented as
a bracket, ||ψ|| =

√
⟨ψ|ψ⟩.

2.1.1 Superposition

The state of a quantum mechanical system is a vector, ψ that belongs to a complex Hilbert
space.
A quantum state can be an eigenvector of an observable, and if so, we call it an eigenstate,
and the associated eigenvalue corresponds to the value of the observable in that eigenstate.
Thus, a quantum state can be a linear combination of the eigenstates, a quantum superposition:

|ψ⟩ = α1 |ψ1⟩+ · · ·+ αN |ψN⟩ (2)
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where {α1 · · · αN} is a complex amplitude vector. |ψ1⟩ · · · |ψN⟩ and N is the total number of
states in superposition. In general we can write:

|ψ⟩ = ∑
i

αi |ψi⟩ (3)

where |ψ⟩ is normalized and the eigenstates are orthonormal:

∑
i
|αi|2 = 1 (4)

Thus |αi|2 is the probability of a measure collapsing the state |ψ⟩ to |ψi⟩. The outer product
is constructed as |ψ⟩ ⟨ψ|. For every vector there is an orthonormal basis ei, ∀i ∈ N such as
the inner product

〈
ei
∣∣ej
〉
= δij and:

|ei⟩ ⟨ei| =


e1
...

eN

 (e1 · · · eN) =


e1e1 e1e2 · · · e1eN

...
...

. . .
...

eNe1 eNe2 · · · eNeN

 (5)

forms a projection operator that, when multiplied by some vector, projects the vector onto
the subspace of the basis vector. The projection can be used to change basis, expressing
some state (ψ) in the basis ei:

P |ψ⟩ = ∑
i
|ei⟩ ⟨ei|ψ⟩ = ∑

i
⟨ei|ψ⟩ |ei⟩ (6)

This operator is used in the process of measuring a quantum state.

2.1.2 Measurements and Operators

Other important entity are the operators, which in physics correspond to the observables
like momentum and position, that act on a quantum state. Operators act linearly by left
multiplication on a superposition state.
A measurement on a state |ψ⟩ is given by the Born Rule; lets say we have the state

|ψ⟩ = α1 |ψ1⟩+ α2 |ψ2⟩ (7)

the probability of measuring each eigenstate is

| ⟨ψi|ψ⟩ |2 =

α2
1, if |ψi⟩ = |ψ1⟩

α2
2, if |ψi⟩ = |ψ2⟩

(8)
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If we have an operator ρ, acting on |ψ⟩, of the form

ρ = ∑
i

ρi |ψi⟩ ⟨ψi| = ρ1 |ψ1⟩ ⟨ψ1|+ ρ2 |ψ2⟩ ⟨ψ2| (9)

this operator is also called the density operator and ρi describes the probability of measuring
a pure state. This one describes a density matrix we will measure the system with probability:

| ⟨ψi| ρ |ψ⟩ |2 =

α2
1ρ2

1, if |ψi⟩ = |ψ1⟩

α2
2ρ2

2, if |ψi⟩ = |ψ2⟩
(10)

2.1.3 Time evolution and Unitary Operators

The evolution of a quantum mechanical system is described by the well known Schrödinger
equation:

ih̄
d
dt
|ψ⟩ = Ĥ |ψ⟩ (11)

where Ĥ denotes the Hamiltonian of the system.

The solution to this equation is the unitary operator ψ(t) = U (t) |ψ0⟩; here ψ0 is the initial
state, h̄ is the Planck constant and U (t) is the unitary time-evolution operator given by

U (t) = e−i t
h̄ Ĥ (12)

Unitarity means that the operator preserves the inner product between the vectors in an
Hilbert space. The Hamiltonian is hermitian ( H = H† ), which means that the possible
measured energies (eigenvalues of the Hamiltonian), are always real numbers.
The Born rule states that if an observable corresponding to an operator A is measured in a
system with normalized wave function |ψ⟩ , then:

• the measured result will be one of the eigenstates of A

• the probability of measuring a given eigenvalue will equal ⟨ψ| Pi |ψ⟩, where Pi is the
projection onto the eigenspace of A corresponding to ψi.

Since the complex number ⟨ψi|ψ⟩ is known as the probability amplitude that the state vector
|ψ⟩ assigns to the eigenvector |ψi⟩, the Born rule generally says that this probability is equal
to the amplitude-square | ⟨ψi|ψ⟩ |2.
The Schrödinger equation is a linear differential equation meaning that if we have two wave
functions that are solutions then a linear combination of both is also a solution allowing for
the superposition principle that was mentioned before.
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2.1.4 Composite systems and Entanglement

Suppose there are two quantum systems, A and B, with the respective Hilbert spaces HA

and HB. These can be combined with the tensor product resulting in the system spanned
over the Hilbert space H, which is given by

H = HA ⊗HB (13)

Following this, we can introduce the concept of entanglement. Let us fix a basis {|i⟩A} for
HA and {|j⟩B} for HB. The general state of H is of the form

|ψ⟩AB = ∑
i,j

cij |i⟩A ⊗ |j⟩B (14)

This state is separable if exists the vectors cA
i , cB

j so that cij = cA
i cB

j , yielding |ψ⟩A = ∑i cA
i |i⟩A

and |ψ⟩B = ∑j cB
j |j⟩B. If the state |ψ⟩AB is entangled, we can not describe each component of

the subsystems A and B meaning, that for at least one pair of coordinates (cA
i , cB

j ), cij ̸= cA
i cB

j .
Instead, a density matrix is defined which describes the statistics that can be obtained by
making measurements on either component system alone.
If a quantum system was perfectly isolated it would remain coherent but would be impossible
to make any measurement on. During a measurement, occurs a loss of information to
the environment (just as a heat bath [7]) resulting in coherence being lost over time. The
dynamics between the state and the environment can be viewed as an entangled state,
sharing quantum information.

2.2 quantum computation

There are several quantum computing models, however, only a subset of them can offer
universal quantum computation. Some examples are: quantum circuit model, quantum Turing
machine, adiabatic quantum computer, blind quantum computing and others [8].
In terms of computability theory, quantum computers, offer no advantages over classical
computers, meaning, that quantum computers and classical computers offer solutions to the
same problems [9]. However, quantum computation, in several applications has a lower time
complexity over the classical ones. Quantum computers are believed to quickly solve certain
problems that no classical computer can solve in feasible time - also known as quantum
supremacy. The advantages comes from exploiting quantum mechanics properties such as
superposition, entanglement and interference. In the quantum circuit model, generally, the
computation is composed of three steps:

7



• Initialization: usually this step involves transforming the ground state into a superpo-
sition of the sub-states that encode the information

• Intended Computation: unitary transformations on the input state

• Measurement: collapsing the final state into one of the substates present prior to the
measurement

2.2.1 Qubit

Any two-level quantum-mechanical system can be used as a qubit. Multi-level systems
can be used as well if they possess two states that can be decoupled from the rest. Some
common examples are the polarization of a photon where the dual states are encoded as
the horizontal and vertical polarization of the light [10], the spin of an electron [11], and the
supercurrent phenomenon that flows through a Josephson junction [12].

The ground state of the two-level system can be expressed as the zero state |0⟩ and the
first excited state as the |1⟩ state which form a orthonormal basis of an Hilbert space and is
called the Computational basis, being isomorphic to C2. The state of a qubit is represented
by a linear combination of the basis states |0⟩ and |1⟩. According to the Born rule, with
probability |α0|2 we observe the state |0⟩ and with |α1|2 we observe |1⟩, following the rule
|α2

0|+ |α2
1| = 1. The state can also be represented in the standard basis as the vectors:

|0⟩ =
(

1
0

)
|1⟩ =

(
0
1

)
(15)

Another representation is the Bloch Sphere and can be parametrized as

|ψ⟩ = eiϕ(cos
θ

2
|0⟩+ eiφsin

θ

2
|1⟩) (16)

8



Figure 1: Bloch Sphere. Image from Wikipedia.

Note that, because α and β are complex numbers, we should expect four degrees of
freedom. However, one degree of freedom is eliminated by the normalization constraint
leaving us with equation 16. Additionally, for a single qubit, the overall phase of the state
eiϕ has no physical observables resulting in eiφ being the only significant phase, presented in
figure 2.
We can represent a classical bit as being in either the north or south pole of the sphere,
pure qubit states are spanned over the surface of the sphere and a mixed state can only be
represented inside the sphere.
In the circuit model of quantum computation, gates (unitary matrices that emulate quantum
operators) operate over qubits mapping them to an arbitrary state.

2.2.2 Quantum Gates

The computation is performed by quantum logic gates. These are operators described as
unitary matrices relative to some basis (usually the computational basis). This property
makes these gates reversible meaning that, if we consider a state |ψ0⟩ and an unitary operator
O, we can write |ψ1⟩ = O |ψ0⟩ and |ψ0⟩ = O−1 |ψ1⟩.

The most known single qubit gates are the Pauli matrices:

σx =

(
0 1
1 0

)
= X

σy =

(
0 −i
i 0

)
= Y

σz =

(
1 0
0 −1

)
= Z

(17)

9



In general, a single qubit phase shift can be written as P(φ) =

(
1 0
0 eiφ

)
and

Z =

(
1 0
0 eiπ

)
= P(π)

S =

(
1 0
0 ei π

2

)
= P

(π

2

)
=
√

Z

T =

(
1 0
0 ei π

4

)
= P

(π

4

)
=
√

S

(18)

The σx acts as a classical NOT gate inverting the state (often called the bit-flip gate)

σx |0⟩ =
(

0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1⟩ (19)

The σz acts as a phase-flip gate inverting the phase of a quantum state |1⟩ while leaving the
state |0⟩ unchanged

σz =

(
1 0
0 −1

)(
1
0

)
=

(
1
0

)
= |0⟩ (20)

σz =

(
1 0
0 −1

)(
0
1

)
= −

(
0
1

)
= − |1⟩ (21)

In this case the global phase is irrelevant, in fact, if we measure a state |1⟩ transformed
by a gate σz resulting in − |1⟩, we will measure it with the square amplitude, which in this
case results in measuring the state |1⟩ all the time. Mind you that this is true if we do not
perform any computation after flipping the phase; Grover’s Algorithm is a clear example of
an algorithm where the global phase is determinant as we will see in Section 2.4.1.

Rotation gates correspond to single qubit rotations on the corresponding axis of the Bloch
Sphere. Equations 22, 23 and 24 refer to rotations around the x̂, ŷ and ẑ axis respectively

Rx(θ) =

(
cos(θ/2) −isin(θ/2)
−isin(θ/2) cos(θ/2)

)
(22)
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Ry(θ) =

(
cos(θ/2) −sin(θ/2)
sin(θ/2) cos(θ/2)

)
(23)

Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)
(24)

All single-qubit rotation gates can be translated into Pauli-matrices, using an angle of
θ = π as represented in equation 25

Rx(π) = −iX

Ry(π) = −iY

Rz(π) = −iZ

(25)

An arbitrary single-qubit gate can be parametrized by three Euler angles as

U(ϕ, θ, φ) =

(
cos(θ/2) −eiϕsin(θ/2)

eiφsin(θ/2) ei(θ+ϕ)cos(θ/2)

)
(26)

The Hadamard gate is probably the most important logic gate, being responsible for
creating quantum uniform superpositions over the basis state:

H |0⟩ = 1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

[(
1
0

)
+

(
0
1

)]
=

1√
2
(|0⟩+ |1⟩) (27)

H |1⟩ = 1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2

[(
1
0

)
−
(

0
1

)]
=

1√
2
(|0⟩ − |1⟩) (28)

An arbitrary superposition state can be created using the Ry gate as in equation 29

Ry(θ) |0⟩ =
(

cos(θ/2) −sin(θ/2)
sin(θ/2) cos(θ/2)

)(
1
0

)
= cos(θ/2) |0⟩+ sin(θ/2) |1⟩ (29)

From here is a matter of solving the equations α0 = cos(θ/2); α1 = sin(θ/2) for said super-
position |ψ⟩ = α0 |0⟩+ α1 |1⟩.
To operate over multiple qubits we have the fundamental two-qubit gate CNOT, controlled-
NOT gate or CX. This gate does a bit-flip on a qubit (target) dependent on the state of another
one (control)

11



CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (30)

In other words, if the control is zero, it applies the identity matrix on the target or applies
a not gate if the control is one. In general, this gate can be modified to apply any other
single-qubit gate U . Writing in Dirac notation

CNOT = |0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗U (31)

The CNOT gate in conjunction with the Hadamard is able to entangle qubits

CNOT(H ⊗ 1)(|0⟩ ⊗ |0⟩) = CNOT
(

1√
2
(|0⟩+ |1⟩)⊗ |0⟩)

)
=

1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩)

(32)

Figure 2: CNOT circuit representation. Image from Wikipedia.

Lastly, is the Toffoli gate also known as CCNOT being the quantum analog to the classic
AND gate. This gate has 2 control qubits and flips the third one if the controls are both in the
state |1⟩. The Toffoli gate needs to be decomposed into simpler gates to be implementable
on actual hardware. The canonical Toffoli gate is decomposed as in figure 3, and further
decomposed as in Figure 4 for an arbitrary number of control qubits.

Figure 3: Toffoli gate representation and its decomposition with elementary gates. Image from [1].

12



Figure 4: V-Shape decomposition for multi control gates. Image from [2].

2.3 initialization

The most known state preparation methods are the Basis encoding and Amplitude encoding but
there are others such as Qsample encoding, dynamic encoding, squeezing embedding, Hamiltonian
encoding [13]. In this work, we will use the basis encoding method because of the constraints
imposed by the algorithm that will be proposed later. First, let´s consider a classical binary
input data set of M elements, D = {x0, · · · , xM−1} where xm = {0, 1}n, n being the bitstring
length.

2.3.1 Basis Encoding

This method is the most straightforward, it just associates each element of the data set with
a computational basis state of a qubit system. In this case, the amplitude of each quantum
state carries no information and is only used as a way to ”mark” the state for posterior
processes.
An entire data set will be represented as:

|D⟩ = 1√
M

M−1

∑
m=0
|xm⟩ (33)

For example the data set of the string x0 = 01 and x1 = 10 is represented as

|D⟩ = 1√
2
|01⟩+ 1√

2
|10⟩ (34)
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and it is achieved by applying the following operations

CNOT(H ⊗ X)(|0⟩ ⊗ |0⟩) = CNOT(
1√
2
|0⟩+ 1√

2
|1⟩)⊗ |1⟩

=
1√
2

CNOT(|01⟩+ 1√
2
|11⟩)

=
1√
2
(|01⟩+ 1√

2
|10⟩)

(35)

Figure 5: Initialization circuit for the specific state presented in equation 35.

For this example, the initialization circuit is very simple to realize. A more generalized
way of creating such state preparation circuits is described in [14]. A better approach to
basis encoding is to encode the indexed positions of the array instead of the elements. If we
take the array, D = {010101, 101111}, it can be encoded by |0⟩ 7→ 010101 and |1⟩ 7→ 101111.
This way it is possible to encode repeated binary strings [15] and use fewer qubits.

2.3.2 Amplitude Encoding

This technique, encodes the information on the amplitude of the sub-states of a quantum
state. A normalized dataset of M elements, D = x0, · · · , xM will be represented by the
quantum state as

|D⟩ =
N

∑
i=1

ai√
norm

|ψi⟩ (36)

where | ai√
norm |

2 corresponds to the amplitude of element xi of the dataset D and |ψi⟩ is a
quantum state of log(M) qubits. To exemplify, let us say we want to amplitude encode
the dataset x = [2, 2.2, 4, 0]. First we calculate the norm, |D| = 24.84, the normalized array
becomes xnorm = 1√

24.84
[2, 2.2, 4, 0] and now we can represent this array in the state

|D⟩ = 1√
24.84

[2 |00⟩+ 2.2 |01⟩+ 4 |10⟩] (37)
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Note that the
√

24.84 appears due to the measurement postulate. Again for this example
in particular, is relatively easy to come up with a set of operators that initializes |D⟩

CRy(θ2)(Ry(θ1)⊗ H)(|0⟩ ⊗ |0⟩) = CRy(θ2)(cos(θ1/2) |0⟩+ sin(θ1) |1⟩)(
1√
2
|0⟩+ 1√

2
|1⟩)

=
1√
2

cos(θ1/2) |00⟩+ 1√
2

cos(θ1/2) |01⟩+ 1√
2

D

(38)
where D = sin(θ1/2) |1⟩ (cos(θ2/2) |0⟩+ sin(θ2/2) |1⟩ − sin(θ2/2) |0⟩+ cos(θ2) |1⟩) result-

ing in the final state

|ψ⟩ = 1√
2

cos(θ1/2) |00⟩+ 1√
2

cos(θ1/2) |01⟩+

[sin(θ1/2)cos(θ2/2)− sin(θ1/2)sin(θ2/2)] |10⟩+

[sin(θ1/2)sin(θ2/2) + sin(θ1/2)cos(θ2/2)] |11⟩

(39)

Lastly we can get θ1 and θ2 by solving the equations

1√
2

cos(θ1/2) =
2√

24.84
1√
2

cos(θ1/2) =
2.2√
24.84

sin(θ1/2)cos(θ2/2)− sin(θ1/2)sin(θ2/2) =
4√

24.84

sin(θ1/2)sin(θ2/2) + sin(θ1/2)cos(θ2/2) = 0

(40)

Again, this is a very naive way of obtaining an initialization circuit but is an excellent
exercise to practice the application of the gates presented in the chapter subsection 2.2.2.
A more generic technique consists of mapping any arbitrary state to the ground state [16]. It
means that to be used as a state preparation routine, we need to invert every gate and apply
them in inverse order.

This strategy has the advantage of only needing log(N) qubits - N being the total number
of elements to encode - and can encode different data types, i. e., integer or floating-point.
On the other hand, it creates deep circuits due to the use of multi-controlled gates (see figure
3 for the decomposition of a multi-controlled gate which can be decomposed as in figure 4).
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2.4 quantum algorithms

2.4.1 Grover’s Search and Amplitude Amplification

One solution

Consider the problem: given a discrete function y = f (x) and a search value yi, find x such
that f (x) = yi. Classically, a search performed on an array of N ordered elements will return
the solution, i.e., the index i of the array that corresponds to x in O(log N) steps. However,
in an unordered set of elements, no classical algorithm can find i with probability higher
than 1

2 without looking at half the elements on average.
Consider the elements are encoded on a uniform superposition. Doing a measurement will
collapse the state to one of the sub-states that represent one of the data points encoded
in the quantum state, possibly one of the states that we are not interested in. What if
we want to measure a particular sub-state? We can measure the quantum state multiple
times, which is costly because the quantum state needs to be created every time after we
measure it. Alternatively, we can amplify the amplitude of that particular sub-state with the
algorithm proposed in [17], reducing the number of circuits we would have to run. This is
a procedure used in a lot of other algorithms, such as the well-known Grover’s Algorithm.
Suppose we have a state |ψ⟩ and an operator A that transform |ψ⟩ into a superposition of
its sub-states, encoding an arbitrary set of data and performs no measurements. In [18] the
authors mention a Boolean function χ : Z→ {0, 1} that induces the Hilbert space, to which
|ψ⟩ belongs, into a sum of two subspaces, the good and the bad. The good subspace is the
subspace spanned by the set of basis states |x⟩ ∈ H for which χ(x) = 1. The amplification
process is done by applying repeatedly the operator

Q = −AS0A−1Sχ (41)

also known as a grover iteration. The operator Sχ is the oracle that changes the sign of the
good states,

|x⟩ →

− |x⟩ , if χ(x) = 1

|x⟩ , if χ(x) = 0
(42)

the operator S0 changes the sign of the amplitude if the state |x⟩ is in the ground state and
the operator A−1 is the inverse of A.
A graphical explanation of a Grover iteration can be seen on the Figure 6
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Figure 6: Geometric representation of the first iteration of Grover’s Algortihm. Image from [3].

The state ψ is a superpositon of the solution state |β⟩, and |α⟩, the superposition of all
non-solution states. Sχ ( O in the image 6) acts as a reflection operator, rotating |ψ⟩ around
the bad states α (fliping their phases in the process), resulting in |ψ⟩′ (O |ψ⟩ in the same
image). Then, the operators −AS0A−1, where S0 is the reflection around the all-zero state,
transforming |ψ⟩′ in G |ψ⟩. In sum, the reflection around the |ψ⟩ state is described as,

−AS0A−1 = 2 |ψ⟩ ⟨ψ| − I⊗n (43)

An interesting property of the operator Q appears when Sχ marks exactly 25% of the search
space, on a uniform superposition. If that happens, the reflection around |ψ⟩ eliminates all
the ”bad” states producing a uniform superposition over the ”good” states, guaranteeing
that we will measure only the ones marked by the oracle Sχ. On the other hand, if we mark
1
2 of the states in a uniform superposition the algorithm will not work. These properties
emerge due to the fact that, after the operator S0 acts as an inversion about the mean. As an
example lets suppose that we have the state |ψ⟩ = A |ψ0⟩. Here A is a set of operations that
encode our data and |ψ0⟩ = |0⟩⊗2.

|ψ⟩ = 1√
4

3

∑
i=0
|xi⟩ =

1
2
(|00⟩+ |01⟩+ |10⟩+ |11⟩) (44)

Supose that Sχ marks the state |00⟩ leaving |ψ⟩′ = 1
2 ([− |00⟩+ |01⟩+ |10⟩+ |11⟩].

Next, the inversion about the mean is performed. Inverting around the mean is to find a
different sequence of numbers such that:

• the new numbers have the same distance as before from the mean, but inverted and,

• the new sequence has the same mean as before.
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Suppose for a given sequence of amplitudes the mean is µ = ∑N
i=0 αi
N . For every amplitude

αi the distance to the mean will be αi − µ. After the inversion about the mean the resulting
amplitude of each state will be given as

2µ− αi (45)

If we calculate the distance to the mean of every new amplitude we get 2µ − αi − µ =

−(αi − µ) proving the first point. For the second point we have

µnew =
1
N

N

∑
i=0

2µ− αi = 2µ− ∑N
i=0 αi

N
= 2µ− µ = µ (46)

Applying this to our example we get

|ψ⟩′′ =
(

2
4
+

1√
4

)
|00⟩+

(
2
4
− 1√

4

)
|01⟩+

(
2√
4
− 1√

4

)
|10⟩+

(
2
4
− 1√

4

)
|11⟩

= |00⟩
(47)

We can conclude from these examples that for the case we mark 1
4 of the total state space

we can make sure that the measurement will result in one of the marked ones.
For the next example, we will mark half of the states, |01⟩ and |11⟩, resulting in the

following: µ = 0, |ψ⟩′ = 1√
4
(|00⟩ − |01⟩+ |10⟩ − |11⟩) and applying equation 45 we end up

with ∣∣∣ψ′′〉 =
1√
2
(− |00⟩+ |01⟩ − |10⟩+ |11⟩) (48)

With this, we showed that the algorithm will just swap the amplitude of the marked
states with the ”bad” ones when half of the states were marked keeping their probability of
being measured the same as before the amplification. More precisely, if we have the state
|ψ⟩ = sin( θ

2 ) |β⟩+ cos( θ
2 ) |α⟩, we see in Figure 6, that a single application of the operator G

rotates the state by 3 times the initial angle resulting in

|ψ⟩ = sin(
3θ

2
) |β⟩+ cos(

3θ

2
) |α⟩ (49)

or, more generally
G j = sin((2j + 1)θ) |β⟩+ cos((2j + 1)θ) |α⟩ (50)

So, we have to apply G j times such that the probability of measuring a good state is close to
1

sin2((2j + 1)θ) ≈ 1j = ⌊ π

4θ
⌋ (51)
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In general, the reader might be tempted to iterate this algorithm j number of times to get the
amplitude of the desired state close to one but, be careful with the amplitude of said state, if
it is too high the mean after its inversion might be negative, decreasing the amplitude after
the inversion about the mean.

Multiple number of Solutions

Let us suppose our problem has t solutions in a search space of N elements. Grover’s
Algorithm can be easily adapted for this problem, we just need to create the oracle, i.e., the
operator Sχ, to mark all solutions and follow it with the reflection over the mean. This

process may be iterated j = π
4

√
N
t times to ensure that we measure a solution with maximum

probability [17].

Unknown number of Solutions

The case of the unknown number of solutions was first presented for a classical search in
[19]. A quantum adaptation of the exponencial search algorithm created by Jon Bentley and
Andrew Chi-Chih Yao was proposed in [17], where the authors proved that it still converges

in O(
√

N
t ). Because we do not know the number of solutions we can not apply a priori the

exact number of Grover’s operators, j, that maximizes the amplitude of the solutions. The
algorithm solves this by selecting the number of operators to be applied randomly from a
set that grows exponentially with each iteration until it finds a solution.

Algorithm 1 Qsearch

m← 1; maxiterations←
√

N; λ← 6
5 ; A[N]

while m ≤ maxiterations do
it← random(1, m);
Create |ψ⟩ = 1√

N ∑N
i |i⟩ ;

Apply it iterations of Grover’s operator, Equation 41;
Measure |ψ⟩ , i← |i⟩ ;
if A[i] == x then

return i;
else

m← min(λ ∗m, maxiterations);
end if

end while
return Null

Notice that the parameter λ must be a number between 1 and 4
3 .

19



2.4.2 Quantum Maximum Finding

Algorithm 1 can be used as a subroutine to find the minimum element in an unordered list
as proposed in [20]- Although, in the article, the authors designed the algorithm to find the
minimum, a magnitude comparator oracle that marks the states |x⟩ such that A[x] ≥ A[y],
where y is a threshold, can be trivially devised and was suggested in [21].
The algorithm uses the Qsearch as a subroutine. We start by randomly choosing one of the
elements from the set to be the threshold of the Qsearch (y). The Qsearch is then applied to
find an element that is larger than the threshold which becomes the new threshold.
The authors claim that the probability is 1− 1

2c where c is the number of iterations of the
quantum maximum finding algorithm. The algorithm finds a solution in O(

√
N) iterations.

Algorithm 2 QMF(Quantum Maximum Finding)

y← random(0, ..., N − 1); it← 0; A[N];
while it ≤

√
N do

Create |ψ⟩ = 1√
N ∑N−1

i=0 |i⟩ ;
Apply the magnitude comparator oracle;
Apply the Qsearch Algorithm 1;
Measure |x⟩ , x

′ ← |x⟩;
if A[x

′
] > A[y] then;

y← x
′

;
end if

end while
Return y
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3

R E I N F O R C E M E N T L E A R N I N G

Reinforcement Learning (RL) is an area of machine learning together with supervised learning
and unsupervised learning.
In supervised learning, the agent receives a labeled dataset {x,y} where y is a ”flag” that
classifies x. The goal of the agent is to design a function f : x 7→ y, such that it learns all the
correct labels associated with x. The goal is to generalize such functions to unseen data.
In unsupervised learning, the parity present in the training set does not exist, and so, the
agent has to find the patterns in the data.
RL differs from the previous two. The RL agent receives information from the environment,
namely the state is fully observable and more importantly the reward. The agent needs
to interact with the surrounding environment and learn by trial and error. RL algorithms
aim to maximize a reward which is a signal that indicates the degree of goodness of the
performed action.
RL techniques have a trade-off, the exploration v.s. exploitation problem, since the agent
has no prior knowledge of the environment. This has been thoroughly studied through
the multi-armed bandit problem and for finite state space, MDPs in [22]. Should we take
an action that we already know the outcome or should we risk-taking an unknown action
expecting a bigger reward?
For RL problems, the environment can be fully observable, the agent can directly observe
the environment, for example, the game of chess; or, it can be partially observable, where the
agent has access to a particular piece of the entire environment like the game of poker. In
this thesis, we will consider fully observable environments, which can be stated as Markov
Decision Processes (MDP).

3.1 markov decision processes

MDPs consist of states, actions, transitions between states, and a reward function definition.
They form the basis of RL since it gives a clear definition of an environment and its dynamics.
An MDP is described as a tuple ⟨S, A, T, R⟩. An additional parameter might be added to
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this tuple, the discounting factor γ, as we will see later.
A set of states, S, is defined as the finite set S = {s1, · · · , sN}. For example, in chess, any
possible configuration of pieces disposed on the board is a state.
A set of actions, A, is defined as A = {a1, · · · , aK}. The set of actions that can performed in
a state is described as A(s).
Applying the action a ∈ A, in the state s ∈ S, the system performs a transition form s to a
new state s

′ ∈ S , based on a probability distribution over the set of possible transitions.The
transition function T is defined as T : S× A× S→ [0, 1], i.e., the probability of ending up
in state s

′
after taking action a in state s is denoted T(s, a, s

′
). For each state-action pair, T

needs to be normalized 0 ≤ T(s, a, s
′
) ≤ 1 and ∑s′∈S T(s, a, s

′
) = 1.

The system being controlled is an MDP if the result of an action does not depend on the
previous actions and visited states (history), but only depends on the current state, also
known as the Markov Property

P(st+1|st, at, st−1, at−1, · · · ) = P(st+1|st, at) (52)

Here the time is discrete, st denotes the state at time t. The idea of Markovian dynamics
is that the current state s gives enough information to make an optimal decision. It is not
important which states and actions preceded s.
More general models can be characterized by being k-Markov, i.e., the last k states are enough.
The Reward Function is responsible to assign rewards to the agent and can be designed
mainly with two distinct strategies, namely, state-dependent rewards or state-action depen-
dent rewards. The state reward function is defined as Rsa : S→ R specifying the rewards
for being in a state. Other definitions are: R : S× A→ R or Rsa : S× A× S→ R. The first
gives rewards for acting in a state, and the second gives rewards for particular transitions
between states.
The transition function T and the reward function R together define the model of the MDP.
Often MDPs are depicted as a state transition graph where the nodes correspond to states/ac-
tions and (directed) edges denote transitions[23]. The reward is added to this representation
that tells how good it is in a given state. The acumulated reward defines a trajectory in the
graph, Gt, the return of some sequences of rewards, Gt = Rt+1 + · · ·+ RT. This formulation
may be problematic, in the case T = ∞, the reward will be infinite. The discount factor
ensures that – even with an infinite horizon – the sum of the rewards obtained is finite.
In episodic tasks, the discount factor is not needed, however, it is useful when h → ∞ to
prevent large reward summation that may difficult the optimization reward.To solve this, is
added the discounting factor γ resulting in Gt = Rt+1 + γRt+2 + · · · = ∑∞

k=0 γkRt+k+1. There
are three models of optimality in the MDP: the finite horizon, where the expected return is
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given by E
[
∑h

t=0 rt

]
; the discounted infinite horizon, E

[
∑∞

t=0 γtrt
]
, and the average reward,

limh→∞ E
[

1
h ∑h

t=0 rt

]
.

3.1.1 Policies

Given a MDP M, a policy π is a computable function that outputs for each state s ∈ S
an action a ∈ A(s). A deterministic policy is described as π : S → A or π : S× A → δSA

( for every s ∈ S, π(s, a) ≥ 0 and ∑a∈A π(s, a) = 1. A stochastic policy is defined as
π : S× A→ [0, 1].
Sampling trajectories under a policy π is done by:

• a start state s0 from the initial state distribution I is generated

• the action a0 = π(s0), calculated by the policy π, is performed

• Based on the transition function T and reward function R, a transition is made to state
s1, with probability T(s0, a0, s1) and a reward is received

If the task is episodic, the process ends after some steps or if the agent reaches a terminal
state.

3.1.2 Value functions and Bellman Equations

A value function represents an estimate of how good it is for the agent to be in a certain
state. The value of a state s under a policy π, Vπ(s) is the expected return when starting in
s and following π. Considering the infinite horizon model, this can be expressed as

Vπ(s) = Eπ{
∞

∑
k=0

γkrt|st = s} (53)

A similar state-action value function Qπ(s, a), or Q-function, can be defined as the expected
return starting from state s, taking action a and thereafter following policy π

Qπ(s, a) = Eπ{
∞

∑
t=0

γtrt|st = s, at = a} (54)
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One fundamental property of value functions is that they satisfy certain recursive properties.
For any π and any state s, Vπ(s) can be recursively defined as a Bellman equation:

Vπ(s) = Eπ{rt + γ1
t+1 + γ2rt+2 + · · · |st = s}

= Eπ{rt + γVπ(st+1)|st = s}

= ∑
s′

T(s, π(s), s
′
)
(

R(s, a, s
′
) + γVπ(s

′
)
) (55)

This property denotes that the expected value of state is defined in terms of the immediate
reward and values of possible next states weighted by their transition probabilities, and
additionally a discount factor. Multiple policies can have the same value function, but for a
given policy π, Vπ is unique.
The goal for any MDP is to find the optimal policy, the policy that maximizes the value
function Vπ(s) for all s ∈ S, i.e., maximizes the reward.
An optimal policy, π∗, is such that Vπ∗(s) ≥ Vπ(s), ∀s ∈ S and ∀π ∈ Π. The Bellman
optimality equation

V∗(s) = maxa∈A ∑
s′

T(s, a, s
′
)
(

R(s, a, s
′
) + γV∗(s

′
)
)

(56)

states that the value of a state under the optimal policy must be equal to the expected return
for the best action in that state. To select an optimal action given the optimal state value
function V∗ the following rule can be applied:

π∗(s) = argmaxa ∑
s′

T(s, a, s
′
)
(

R(s, a, s
′
) + γV∗(s

′
)
)

(57)

π∗ is called the greedy policy because it allways selects the best action using the value
function V. The analogous optimal state-action value is:

Q∗(s, a) = ∑
s′

T(s, a, s
′
)
(

R(s, a, s
′
) + γmaxa′Q

∗(s
′
, a
′
)
)

(58)

Q-functions are useful because they make the weighted summation over different alternatives.
This is the reason for their preference in the model-free setting, i.e., in case T and R are
unknown. The relation between Q∗ and V∗ is given by

Q∗(s, a) = T(s, a, s
′
)
(

R(s, a, s
′
) + γV∗(s

′
)
)

(59)

V∗(s) = maxaQ∗(s, a) (60)
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And the optimal action (best policy) can be written as

π∗(s) = argmaxaQ∗(s, a) (61)

3.2 dynamic programming

Dynamic Programming (DP) is a method of solving a complicated problem by breaking it
down into simpler sub-problems in a recursive manner. In the context of RL, the Bellman
Equation acts as a recursive structure and its solution can be solved with DP techniques.
There are two main models used, Policy Iteration and Value Iteration.
We will assume a standard MDP < S, A, T, R, γ > where the state and action sets are finite
and discrete such that they can be stored in tables. The reward and value functions are
assumed to store values for all states and actions separately.

3.2.1 Policy Iteration by Howard

This technique is composed of two stages: the policy evaluation stage computes the value
function of the current policy and the policy improvement stage computes an improved policy
by a maximization over the value function. This is repeated until converging to an optimal
policy. The first step is to find the value function Vπ of a fixed policy π. This is called the
prediction problem.
The Bellman equation is transformed into an update rule, turning the actual value function
Vπ

t into Vπ
t+1, the one-step lookahead.

Vπ
t+1(s) = Et{rt + γVπ

k (st+1)|st = s}

=

′

∑
s

T(s, π(s), s
′
)(R(s, π(s), s

′
) + γVπ

k (s
′
))

(62)

The update rule is applied to each state s ∈ S in each iteration. The old value-function
is replaced with a new one based on the expected value of possible successor states,
intermediate rewards, and weighted by their transition probabilities. This operation is
called a full backup because it is based on all possible transitions from that state.
At the end of policy evaluation, we ought to improve Vπ(s).First, we identify the value of
all actions:

Qπ(s, a) = Et{rt + γVπ
t (st+1)|st = s, at = a}

= ∑
s′

T(s, a, s
′
)(R(s, a, s

′
) + γVπ

k (s
′
))

(63)

If Qπ(s, a) is larger than Vπ(s) then a is chosen to update the policy for state s. This is
done for every state of the MDP, generating our improved policy. That is, we can compute
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the greedy policy, selecting the best action in each state, based on the current value function
Vπ:

π′(s) = argmaxaQπ(s, a)

= argmaxaE{rt + γVπ(st+1)|st = s, at = a}

= argmaxa

′

∑
s

T(s, a, s
′
)(R(s, a, s

′
) + γVπ

k (s
′
)), ∀s ∈ S

(64)

If π′(s) = π(s), ∀s ∈ S then the agent converged to the optimal policy. For a finite MDP
each πt+1 is strictly better than πt unless πt = π∗ in which case the algorithm stops. The
algorithm is presented in Algorithm 3.

Algorithm 3 Policy Iteration (PI)

Require: V(s) ∈ Randπ(s) ∈ A(s) f oralls ∈ S
Policy Evaluation
repeat

∆← 0
for all s ∈ S do

v← Vπ(s)
V(s)← ∑

′
s T(s, π(s), s

′
)(R(s, π(s), s

′
) + γV(s

′
))

∆← max(∆, |v−V(s)|)
end for

until ∆ < σ

Policy Improvement
p← true
for all s ∈ S do

b← π(s)
π(s)← argmaxa ∑

′
s T(s, a, s

′
)(R(s, a, s

′
) + γV(s

′
))

if b ̸= π(s) then
p← f alse

end if
end for
if p then

halt
else

go to Policy Evaluation
end if
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3.2.2 Value Iteration

This algorithm blends the policy improvement step into it.

Vt+1(s) = maxa

′

∑
s

T(s, a, s
′
)(R(s, a, s

′
) + γVπ

t (s
′
))

= maxaQt+1(s, a)

(65)

The value iteration algorithm spends less time in the evaluation part by removing the
improvement step and, instead of initializing a policy randomly and alternating between
evaluation and improvement, it initializes the value function arbitrarily.
Both algorithms theoretically converge to the optimal policy, however, the difference in the
update, makes the Value Iteration converge to the optimal policy faster. These algorithms
operate over the entire state space of the MDP which, for some applications, may be too
expensive.

3.3 model-free techniques

In contrast with the algorithms discussed in the previous section, model-free methods do
not rely on the availability of a priori model of the MDP. This generates a need to sample
the MDP to gather statistical knowledge about this unknown model.
The first one is to learn the transition and reward model from interacting with the environ-
ment. Once our model is sufficiently correct, the methods from the previous section can be
applied. This is called model-based RL or indirect RL.
The second option, direct RL, is to estimate values for actions, without even estimating the
model of the MDP. Additionally, mixed forms between these two can exist. For example,
one can still do a model-free estimation of action values, but use an approximated model to
speed up value learning by using this model to perform more, and in addition, full backups
of values.
Aditionally, it is difficult to assess the utility of some action, if the real effects of this particular
action can only be perceived much later. One possibility is to wait until the end of an episode
and punish/reward specific actions along the path taken. However, this will take a lot of
memory and, often, it is not known beforehand whether, or when, there will be an ”end”.
Instead, similar mechanisms as in value iteration can be used to adjust the estimated value
of a state based on the immediate reward and the estimated (discounted) value of the next
state. This is generally called temporal difference learning.
The general class of algorithms that interact with the environment and update their estimates
after each horizon are called online RL. Here, the agent selects an action based on its current
state, gets feedback in the form of the resulting state and associated reward, and updates its
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estimated values stored in Vπ and Qπ. The selection of the action is based on the current
state s and the value function.

Algorithm 4 Online RL

for each episode do
s ∈ S is the starting state
t← 0
repeat

choose an action a ∈ A(s) from π(s)
perform action a
observe the new state s

′
and reward r

update T, R, Q and/or V
using the experience ⟨s, a, r, s

′⟩
s← s

′

until s
′

is the goal state/terminal state or we reached the horizon
end for

Since model-free algorithms need to balance exploration and exploitation, the agent
needs an action-selection mechanism that balances effectively, between informed actions and
random actions.
The most basic exploration strategy is the ϵ−greedy, where, the learner takes its current best
action with probability 1− ε and other randomly selected action with probability ε. One
natural way of balancing exploration/exploitation is through the Boltzmann exploration
strategy where the agent stochastically selects an action from the probability distribution π

in equation 66.

π(a|s) = e
Q(s,a)

T

∑i e
Q(s,ai)

T

(66)

where T is known as the inverse temperature β = 1
T . Higher values of T will move the

selection strategy more towards a purely random strategy and lower values will move to
a fully greedy strategy. We can combine the ϵ− greedy and the strategy in equation 66,
selecting the best action with probability 1− ϵ and an action computed by the Boltzmann
exploration strategy, with probability ϵ.

3.3.1 Monte-Carlo Methods

Monte-Carlo(MC) algorithms treat the long-term reward as a random variable and take as its
estimate the sampled mean. It estimates values based on averaging sample returns observed
during an interaction. Monte Carlo methods are defined only for episodic tasks, they are

28



incremental in an episode-by-episode sense, but not in a step-by-step (online) sense.
As more returns are observed, the average should converge to the expected value.
Suppose we are trying to estimate vπ(s), the value of a state s under policy π, given a set of
episodes obtained by following π. Each occurrence of state s in an episode is called a visit to
s. The state s may be visited multiple times during an episode so let us call the first time it is
visited first visit to s. The first-visit MC method estimates vπ(s) as the average of the returns
following first visits to s, whereas the every-visit MC method averages the returns following
all visits to s. Both these methods converge as the number of visits (or first visits) to s tends
to infinity.
The computational expense of estimating the value of a single state is independent of the
number of total states.
An interesting application of Monte-Carlo methods is the Monte-Carlo Tree Search where
each episode is divided into four steps: selection, expansion, simulation and backpropagation.
This technique was used to design software that was able to beat the world champions in
games like chess and Go (see [24]).

3.3.2 Temporal Difference Learning (TD)

An advantage of TD methods is that they are naturally implemented in an online, incremental
fashion such that they can be easily used in various circumstances. Only along experienced
paths do values get updated, and updates are affected after each step. This is an advantage
over Monte Carlo methods where we have to wait until the end of an episode. Also, Monte
Carlo methods must ignore or discount episodes on which experimental actions are taken,
which can greatly slow learning.
TD(0) is used to evaluate a policy through the use of the following update rule:

Vk+1(s) = Vk(s) + α(r + γVk(s
′
)−Vk(s)) (67)

where α ∈ [0, 1] is the learning rate that determines how much the values get updated. The
difference with DP backups is that the update is still done by bootstrapping but is based on
an observed transition, it uses a sample backup instead of a full backup. Only the value of
one successor state is used, instead of a weighted average of all possible successor states.
The learning rate α has to be decreased appropriately for learning to converge.
Q-learning incrementally estimate Q-values for actions, based on feedback (rewards) and the
agent’s Q-value function [25].

Qk+1(st, at) = Qk(st, at) + α(rt + γmaxaQk(st+1, a)−Qk(st, at)) (68)

29



The agent makes a step in the environment from state st to st+1 using action at while
receiving reward rt. The update occurs on the Q-value of action at in the state st from which
this action was executed.
SARSA is a on-policy algorithm that learns the Q-value function for the policy the agent is
executing.

Qt+1(st, at) = Qt(st, at) + α(rt + γQt(st+1, at+1)−Qt(st, at)) (69)

at+1 is the action that is executed by the current policy for state st+1. Note that the max-
operator in Q-learning is replaced by the estimate of the value of the next action according
to the policy. This learning algorithm will still converge to the optimal value function (and
policy) under the condition that all states and actions are tried infinitely often and the policy
converges in the limit to the greedy policy.
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4

Q UA N T U M R E I N F O R C E M E N T L E A R N I N G A N D T R E E S E A R C H

The article that served as inspiration for this thesis, [4], deals with the branching factor of a
search tree and its consequences and tries to answer questions like what are the ramifications
of a variable such as the branching factor? Would the system require the use of a constant
branching factor? In this thesis we approach only problems with constant branching factors,
however, the strategy used has its genesis in an attempt to answer the previous questions.

4.1 branching factor ramifications

In theoretical computer science, one possible way to measure a problem’s complexity consists
in assessing how long a given algorithm takes to find a solution. This time complexity is
dependent on hardware factors so, it is more suitable to find the total amount of items
that are needed to be evaluated. In the case of a classical tree search, this equates to the
number of nodes to take into account. From a classical tree search perspective, complexity is
expressed in terms of b, the branching factor; d, the depth of the shallowest goal node and
m, the maximum length of any path in the state space.
A tree with constant branching factor b and depth d will have a total of bd leaf nodes.
Suppose the search will be performed up to a depth level d. Each sequence of actions will
contain d elements/actions with each one requiring n = ⌈log2(b)⌉ bits. In total the binary
string will employ n× d bits. We are able to construct a quantum superposition |ψ⟩ that
encompasses all the actions to be applied up to a depth level d (basis encoding)

|ψ⟩ = 1√
2n∗d

2n∗d−1

∑
x=0
|x⟩ (70)

Consider the example given by the authors in [4], section 2.2. In figure 7, the authors
present a tree with an action set a = a0, a1, a2, a3, a4. In this case, we have two distinct types
of branching factor, the maximum branching factor bmax = 5 and the average branching
factor of each node bavg = 2. In order to encode each of the possible actions we require
n = ⌈log2(bmax)⌉ = 3 bits. If we build a quantum superposition state |ψ′⟩, if we take
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into account a depth d = 3, it would have 2n∗d = 29 = 512 possible states when in
reality there is only 7 different states. Here, n = ⌈log2(bavg)⌉ bits might have sufficed to
encode all different set of actions; by employing n = ⌈log2(bmax)⌉ bits, the search space is
extended and in the process some of the speedup provided by Grover’s algorithm is lost.
Considering, bavg < bmax, when does Grover’s algorithm stop providing a speedup over
classical approaches?

Figure 7: Search tree with a non constant branching factor. Image from [4]

The number of times to apply Grover’s operator is

|G| =
√

N

=
√

2n∗d

=
√

2⌈log2(bmax⌉)∗d

= 2
⌈log2(bmax)⌉∗d

2

(71)

To determine where the threshold lies between the number of elements of a classical search,
bd

avg, and the total number of times to apply Grover’s iterate we need to solve

bd
avg = |G| ⇔ bd

avg = 2
⌈log2(bmax⌉)∗d

2

⇔ bavg = 2
⌈log2(bmax)⌉

2

(72)

Accordingly, when bavg < 2
⌈log2(bmax)⌉

2 then the total number of nodes evaluated classically

will be less than the number of times to apply Grover’s Iterate and, when bavg > 2
⌈log2(bmax)⌉

2 ,
the Grover’s search will yield a speedup over classical search algorithms.
The authors follow this by studying each bmax and its associated range of bavg values.
To basis encode any bmax we require n = ⌈log2(bmax)⌉ bits. The use of the ceiling function
forces certain ranges of bmax to require the same number of n bits.
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Following this, the authors study what happens when a transition is made, for example,
from n to n + 1 bits. In this case the bavg value grows from 2

n
2 to 2

n+1
2 which differ by a factor

of
√

2, bn+1
avg =

√
2bn

avg.

4.2 quantum heuristic

During the search process, it would be useful to know which action might produce a state
which is closer to a goal state. This process may be described as trying to determine the
quality of a path of actions with the optimal solution having the lowest cost among all
solutions. This is conceptualized as an heuristic, a function h(n) responsible for presenting
an estimate of the distance that a given state n is relative to a goal state. The function h(n) is
defined depending on the problem at hand.
In the paper, the authors reflect the heuristic function as a unitary operator U to be employed
by Grover’s algorithm, flipping the amplitude of the solution states. We can opt to consider
only the states whose heuristic outputs a value below a certain threshold T.
Consider that |n⟩ is the current node being processed and ai, action at depth i. The operator
U is simply described as

U |a1a2 · · · ad⟩ =

 − |a1a2 · · · ad⟩ if h(a1, a2, · · · , ad) ≤ T

|a1a2 · · · ad⟩ otherwise
(73)

The authors extend this idea to a heuristic distribution, the heuristic function employed
has a probabilistic distribution, either discrete or continuous. Because in this work we will
deal with discrete probabilistic distributions, the other will be ignored.
Let us consider a discrete random variable X. The sum of the set containing all possible
probabilities is 1, ∑n

i=1 P(X = xi) = 1.
The probability that a random variable X takes on a a value that is less than or equal to x is
referred to as the cumulative distributive function F, F(x) = P(X ≤ x). For a discrete random
variable X, F(a) is a simple sum of the values up to element a F(a) = ∑x≤a P(X = x).
To calculate F(x) = p or, in other words, which values the cumulative distribution function
equals a certan probability, the quantile function is used F−1(p) = x. In discrete random
variables, the cumulative distribution function may contain gaps between values of the
domain so that the quantile function is given by F−1(p) = in f {x ∈ R : p ≤ F(s)} where in f
is the infinity operator (see [26]).
Knowing that when a fourth of the states are marked, Grover’s algorithm needs only one
iteration to obtain one of the marked states, the authors fine-tune the operator U with the
assistance of the quantile function.
Suppose the heuristic function f : X → Y. We are interested in marking as a solution the
state that produces the smallest values of codomain Y. From a probabilistic point-of-view, it
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is possible to check if the heuristic value is less than or equal to the quantile function output
for a probability of 25%, transforming the equation 73 in

U |a1a2 · · · ad⟩ =

 − |a1a2 · · · ad⟩ if h(a1, a2, · · · , ad) ≤ F−1(0.25)

|a1a2 · · · ad⟩ otherwise
(74)

This notion can be expanded to contemplate different sections of a probability distribution,
obtaining a superposition of the states that lie between the heuristic values F−1(a) and
F−1(b) where a and b denote two different probabilities.

U |a1a2 · · · ad⟩ =

 − |a1a2 · · · ad⟩ if h(a1, a2, · · · , ad) ∈ [F−1(a), F−1(b)]

|a1a2 · · · ad⟩ otherwise
(75)

In conclusion, the paper verifies, in the case of a non-constant branching factor, whether is
worth using Grover and, presents a way to reduce the search space by evaluating the states
that are within a given threshold.
This thesis differs from the above in the fact that the selection is done classically as opposed
to the paper where the authors present a quantum oracle that marks a fourth of the states.
The quantile function provides no value to this thesis: the marked states are simply sampled
from the current heuristic which is not encoded in the quantum state, effectively selecting a
fourth of the total states to be marked instead of the ones in which the quantile function
is less than or equal to 25%. With this, we just make sure that the sequences which were
observed as having the highest reward have a higher probability of getting selected.
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5

P R O P O S E D A L G O R I T H M : G 2 5

5.1 quantum maximum finding with g25

A sequence of actions is encoded as a binary string of length h ∗ log2A where h is the horizon
or, the number of actions that the agent will perform and A is the possible alternative actions
available at each state s (also referred to as the branching factor), resulting in a total of
N = Ah alternative sequences.
There are cases, however, where N = Ah might be a loose upper bound on the size of the
search domain. These cases include:

• different states sj having a different number of available actions, Aj, with Aj < A,
which results in a total number of actions sequences significantly less than N. A small
search space might render this thesis strategy useless;

• having some a priori knowledge that certain actions on certain states will lead, with
high probability, to a larger reward; this a priori knowledge would allow pruning the
decision tree (by not taking into account the potentially less rewarding actions), thus
reducing the search domain.

This dissertation does not directly handle any of the previous cases. A constant branching
factor is used and no a priori knowledge on the rewards of the actions is assumed. It takes,
however, a different approach as a first step towards reducing the search domain. A uniform
probability distribution P is initially prepared over all N sequences of actions. 25% of these
sequences are stochastically selected and marked for evaluation with the QMF algorithm.
QMF returns a given sequence and P is updated proportionally to the associated reward. A
new subset of 25% of all possible sequences of actions is selected again from P and processed
using QMF.
The goal is, by updating the distribution, at least one of the sequences of actions that have
the highest reward possible will have the highest weight and, then will be selected as the
solution to the problem.
The hypothesis is that the query complexity of the circuit acting on 25% of the actions
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sequences is less than the query complexity of the circuit acting on the totality of actions
sequences. More importantly, it is hypothesized that this query complexity is maintained
even though the proposed algorithm has to iterate multiple times. This hypothesis is
experimentally tested in the next chapter. If it holds it will enable a reduction in the total
number of queries required to find an optimal action for a given horizon. Additionally, it
will allow for better decision-making by increasing the horizon while maintaining a similar
number of queries as the original algorithm. This procedure is shown in Algorithm 5.

Algorithm 5 Proposed Algorithm: G25

Initialize the distribution: P = ∑N
i=1

1
N ;

repeat
Initialize the quantum state |ψ⟩ = R(∑N

i=0
1√
N
|a0 · · · ah⟩ ⊗ |0 · · · 0⟩);

Selection: Sample a fourth of the sequences from P;
Apply the G25 operator;
SearchApply c iterations of the Quantum Maximum Finding;
Measure the state;
Update the distribution P;

until A set number of iterations were performed;

5.1.1 Selection

The Selection stage is just a classical sampling from the current distribution P, choosing a
fourth of the total number of sequences. The distribution is initialized as a uniform discrete
distribution over all the possible sequences of actions and updated over the course of the
iterations performed.

5.1.2 Search

This step is performed by the quantum machine and to do so, the quantum state is initialized,
followed by the application of the G25 operator and it is ended with the QMF algorithm.
The initialization of the quantum state is done by creating a superposition over the action
register. Then is applied an operator that entangles the action register with the reward
register, R. By doing this we map each sequence of actions to its reward.
Next, we apply the G25 operator. This operator is just a Grover’s operator (41), with exactly
a fourth of the search space marked. A single application of this operator results in a
superposition over the states that were marked by the oracle reducing the amplitude of the
unmarked ones to 0.
Next the QMF algorithm is applied, to be more precise, 3 iterations of this algorithm will
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be executed, giving a probability of the result being the maximum reward present in the
superposition of 87,5% as was mentioned in section 2.4.2. Notice that, even though we may
measure a sequence with the highest reward after just 1 or 2 iterations, the algorithm always
performs the 3 iterations because the agent does not know a priori the maximum reward
that it may obtain and will keep searching for a better one.

5.1.3 Update

The updating is done by adding to the measured sequence the respective reward obtained
and subtracting the adequate quantity to normalize the distribution.

Normalization

The measured sequence ”weigth” is updated by (76):

psel =
1 + rsel

t−1 + rsel

N + Rt−1 + rsel (76)

where sel refers to the measured sequence, rsel
t−1 is the reward the sequence sel has acumulated,

rsel is the measured reward and Rt−1 is the total acumulated reward by the measured
sequences after t iterations of the G25 algorithm.
The rest of the sequences are updated by equation (77):

pseq =
1 + rseq

t−1

N + Rt−1 + rsel (77)

It can be proven that for each update of the distribution, the sum of the ”weights” is 1:

psel + ∑
seq∈S′

pseq =
1 + rsel

t−1 + rsel

N + Rt−1 + rsel +×
∑seq∈S′(1 + rseq

t−1)

N + Rt−1 + rsel (78a)

=
1 + rsel

t−1 + rsel + (N − 1) + ∑seq∈S′ r
seq
t−1

N + Rt−1 + rsel (78b)

=
N + rsel + (∑seq∈S′ r

seq
t−1 + rsel

t−1)

N + Rt−1 + rsel (78c)

=
N + Rt−1 + rsel

N + Rt−1 + rsel (78d)

where S′ represents all the sequences except the one that was measured by the algorithm at
the iteration t. Notice that in 78c, ∑seq∈S′ r

seq
t−1 + rsel

t−1 = Rt−1.
After t iterations of the algorithm, the distribution is given by equation (79):
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P = ∑
seq

1 + xseq × rseq
t

N + Rt
(79)

where xseq is the number of times the sequence seq was measured, N is the total number
of possible sequences of actions and Rt is the reward acumulated over all measured se-
quences after t iterations of the algorithm, Rt = ∑seq xseq × rseq. As any discrete probabilistic
distribution, ∑ p = 1:

P = ∑
seq

1 + xseq × rseq

N + Rt

=
N + ∑seq xseq × rseq

t

N + Rt

=
N + Rt

N + Rt
= 1

(80)

Since the exact number of iterations of the G25 algorithm to achieve close to 100% success
rate is hard to be determined mathematically, the experiments consist of applying 1 to
it iterations of the G25 algorithm (see Chapter 6). After each experiment, the sequence
with the maximum ”weight” is picked as the output of the c iterations of the algorithm
(seqout = argmaxP).
Then the success rate, specifically, the number of experiences that result in a sequence with
the maximum reward possible for that environment, is compared with the QMF algorithm.
Notice that, in the latter, there is no distribution, so the 3 iterations of the QMF are applied
and the result is the output.

5.2 complexity

Being a hybrid algorithm we will take into account the classical and quantum complexity of
the algorithm.
Since the algorithm proposed aims to reduce the number of queries, this will be the metric
used to study its complexity. Specifically, in the quantum setting, this query complexity
refers to the number of Grover’s operators that any given experiment is expected to utilize.
The classical complexity is simply the number of elements to be searched in both the selection
and update steps. It is easy to see that both these steps have a complexity of O(N):

• the algorithm has to select exactly a fourth of the sequences resulting in a complexity
of O(N

4 ) = O(N) when N → ∞;

• in the updating step, the machine will have to search the measured sequence over N
and, for the same reasons as in the select step, this grows linearly with the increasing
of the search space
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The sequences generation was ignored. For the quantum computation, because we make use
of the Quantum Maximum Finding algorithm, it inherits its complexity of O(

√
N). Notice

that, after the G25 operator we end up with a fourth of the original number of sequences so
the complexity will be O(

√
N′) where N′ = N

4 .
Despite the gain in the quantum complexity, the size of the circuits might be higher with the
application of the G25 operator. For this thesis, only the number of queries (applications of
the operator Q in the QMF algorithm) will be taken into account in the calculation of the
complexity.
If we look at the algorithm globally, its complexity will be O(N) (when N → ∞) due to the
logistics surrounding the distribution.
How to solve this?
For the selection, we can circumvent this by, instead of selecting a fourth of the search
space every iteration, applying this selection only for the first iteration and in the next ones,
substituting a set number of sequences of the previous selected with different ones resulting
in a constant complexity, O(1). The previous approach was not tested so its impact on the
behavior of the algorithm and its results are not known.
The second item was ignored by hashing the distribution.
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6

C A S E S T U D Y

6.1 simulations : the gridworld

The modeled environment chosen was the Gridworld. As the name suggests, the environ-
ment is a grid/matrix of chosen dimensions where the states are each cell of the matrix,
and the agents have four available actions at each time-step: move left, right, up, or down.
There can be ”blocked” states, which can simulate a wall/object; goal states and we can add
rewards to each state. The goal of the agent is to find the path that accumulates the most
reward (if that is the case) or reaches a goal state avoiding blocked states along the path.
This type of environment is easily scalable making it a perfect fit for this thesis.
Our set of actions A = {le f t, right, up, down} is basis encoded as the states A = {le f t →
|10⟩ , right→ |00⟩ , up→ |01⟩ , down→ |11⟩}. For this, we need two qubits for each step of
the MDP, i.e, the horizon of each episode. In this work, we take into account the actions
performed at states in the edge of the environment that lead the agent in that direction, for
example, if the agent is in the bottom left entry of the grid and moves to the left, he will
remain in the same state but the time step will continue.
The goal state is different from the others by being the only one that offers a reward (this is
not true for the 4x4 Gridworld for reasons mentioned later).
The minimum number of alternative sequences of actions is given by N = Ah, where A is
the number of alternative actions available at each state (also referred to as the branching
factor) and h is the horizon (i.e., the length of the sequence of actions).
It was considered that the maximum amount of reward collected at each timestep is 1 leading
to the possible maximum reward to be collected being given by h so that log2(h) + 1 qubits
are needed to encode the reward of each sequence of actions.
Another important consideration is the characteristic of the simulation. Because we are
dealing with deterministic problems, the need to encode the states is removed, and only the
actions are taken into account. Thereafter, the implementation uses only one register for the
actions with log2(actions) ∗ horizon qubits and one register for the rewards with log2(h) + 1
qubits.
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6.1.1 Studied Gridworlds

2x2 Grid

The first case study was the 2x2 Gridworld. The starting state is in the bottom left corner
and the goal state is in the top right. In this case, the agent only needs 2 steps to reach the
end goal. However, it was simulated a horizon of three because if we only considered 2

actions, we would have a superposition of 16 quantum states. Performing the operator G25

in a superposition of 4 states. If the selected states contain more than 1 encoded sequence
with a reward greater than the given threshold, the quantum maximum finding algorithm
will not work (the amplification over the mean does not work for n = N

2 selected sequences,
see 2.4.1).
In this case, there are 4 sequences with the maximum reward of 2, 12 with reward 1, and the
rest offer no reward. The total number of sequences is 43 = 64.

Figure 8: The simulated 2x2 Gridworld. In black is the starting state and in blue the goal state.

4x4 Grid

The last environment simulated was a GridWorld 4x4. In this case, we have two states that
offer reward 1 and the rest give no reward.
The simulation was divided into two cases: one where the maximum reward is two and the
other has a maximum reward of three. The reason is that in the first case it was intended
that the reward availability was the same as in the 2x2 Gridworld so that the difference in
results would not interfere in the discussion; for the second case, the idea is to study the
behavior with a different set of rewards.
As we can conclude from the images 9 and 10, for the agent to collect the desired rewards,
two and three respectively, the horizon of each episode should be five resulting in a total of
45 = 1024 different sequences.
In the case of Figure 9 there are 6 sequences of actions with reward two and 42 with reward
1.
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Figure 9: The simulated 4x4 Gridworld with a maximum reward of 2.

In the case of Figure 10 there are 3 desired rewards (reward 3), 31 with reward 2 and 121

with reward 1.

Figure 10: The simulated 4x4 Gridworld with a maximum reward of 3.

We can see that the number of solution sequences (sequences with the maximum reward)
is closely the same between every simulation, however the pool of sequences from which we
have to search increases from 64 in the 2x2 case to 1024 in the 4x4 case.

6.2 results

For each of the previously described experimental environments, results are presented for
different numbers of iterations of the proposed algorithm, specifically, 1 to 5 iterations. This
algorithm is labeled as G25. Each experiment was performed 50 times. Tables 1,2 and 3

present how many times (out of the 50 experiments) each possible reward was measured.
The “Success rate” column presents the ratio the maximum possible reward was measured
over the total number of experiments. The columns µqueries and σqueries present the average
number of queries (executions of Grover’s operator) per experiment and the respective
standard deviation. The row labeled with 0 refers to the original algorithm, I.e., performing
the search over the total number of possible sequences of actions. Comparing the original
with the G25 algorithm for the 2x2 grid world (see table 1) a similar average number of
queries is achieved for 3 iterations of the latter. However, under these conditions, the former
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#Iterations of G25 Reward 0 Reward 1 Reward 2 Success µqueries σqueries
1 1 20 29 58% 10 2

2 0 7 43 86% 19 3

3 0 3 47 94% 29 4

4 0 1 49 98% 37 5

5 0 0 50 100% 46 5

0 0 0 50 100% 26 7

Table 1: Results for the 2x2 Gridworld

achieves a 100% success rate, whereas the latter succeeds at a lower rate of 94%.
It is fair to conclude that in this case, the G25 algorithm provides no benefits compared
to just performing a normal quantum search with the QMF. It actually is detrimental; to
achieve close to 100% success rate, the results show the need for at least 4 iterations which
already have a higher query usage as may be seen in Figure 11.
What if the search space has more sequences of actions? In the 4x4 Gridworld, N = 1024
and by the Qsearch algorithm the number of Grover operators (queries) to be applied can
reach up to

√
N = 32; adding to this, if the Qsearch does not return a solution (a sequence

with reward higher than the threshold passed to the algorithm), the QMF algorithm will
apply the Qsearch

√
N = 32 times. Using the G25 operator these numbers are reduced to

only 16 hopefully reducing the queries used.

Figure 11: Success Rate v.s. Number of queries used for the 2x2 Gridworld
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In the table 2 and figure 12 we can observe that the G25 algorithm achieves a success rate
of 100% with only 3 iterations and with a less average number of queries, showing some
potential.

G25 Iterations Reward 0 Reward 1 Reward 2 Success µqueries σqueries
1 0 15 35 70% 139 43

2 0 1 49 98% 258 55

3 0 0 50 100% 384 70

4 0 0 50 100% 507 82

5 0 0 50 100% 624 101

0 0 0 50 100% 463 123

Table 2: Results for the Gridworld 4x4 with a maximum reward of 2.

Figure 12: Success Rate v.s. Number of queries used for the Gridworld 4x4 with a maximum reward
of 2.

Lastly, it was simulated the same environment 4x4 but where the agent can get a maximum
reward of 3 with 5 actions. Table 3 and Figure 13 show some interesting behaviour.
Firstly, we see that the algorithm offers, again, no advantages.
Secondly, the case where the quantum search is applied in the entire search space results
in a higher standard deviation than the average meaning that in some experiments were
needed a lot fewer queries, while in others this number is extremely high.

Why does this happen? Recall that the QMF is iterated 3 times and each iteration only
terminates if a measurement retrieves a reward larger than the current threshold, otherwise,
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G25 Iterations Reward 0 Reward 1 Reward 2 Reward 3 Success µqueries σqueries
1 0 0 26 24 48% 91 52

2 0 0 10 40 80% 160 69

3 0 0 6 44 88% 221 82

4 0 0 4 46 92% 268 87

5 0 0 1 49 98% 328 98

0 0 0 0 50 100% 139 185

Table 3: Results for the 4x4 Gridworld with a maximum reward of 3.

Figure 13: Success Rate v.s. Number of queries used for the Gridworld 4x4 with a maximum reward
of 3.

it is performed
√

N searchs which can apply from 1 to
√

N Grover operators (queries)
(Remember: this number is chosen randomly and the interval grows with each iteration).
The cases where a significantly low number of queries used are a result of in each iteration
of the QMF was found a reward larger than the threshold, while on the other side of the
spectrum, the high number of queries used are a product of the maximum reward being
measured in the first iteration of the QMF causing the other 2 to follow the second halt rule.
Tables 5 and 4 show a ”dry running” of 2 different experiments done without the G25

operator where, in table 5, was used a number of queries were in the low side of the
spectrum because 3 solutions were found (lines in bold), while, in the table 4, resulted in a
high number of queries due to only 2 solutions being found. Notice that the first solution is
a reward of 2 which means that, in the next attempts only a sequence with reward 3 will
halt the iteration and the last iteration of the QMF will execute the

√
N Qsearch evaluations.
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Additionally, in the first table, it did not take too long to find a solution which can be seen
by the low number of lines between each solution, while in the second table this number is
higher between the first solution found and the second which, in conjunction with the first
argument, contributes for the high number of queries used in some experiments.
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#Queries used Sequence measured Reward obtained Threshold
1 0100011000 2 0
1 1000000110 0 2

1 0100100111 0 2

1 1001000001 1 2

1 0101010011 1 2

3 0111010011 0 2

5 1011111111 0 2

4 1011010011 0 2

12 0100010010 3 2
1 0100100101 0 3

1 0110111010 0 3

1 0010101100 0 3

2 1000111101 0 3

3 0110001111 0 3

6 0110111000 0 3

3 0111100001 0 3

1 1100010101 1 3

17 0000010111 1 3

22 1000001001 0 3

20 0100101101 0 3

20 1100100101 0 3

8 0101110101 0 3

28 1011001000 0 3

3 1000100010 0 3

8 0100100000 0 3

7 1111011001 0 3

11 0011111101 0 3

26 0100101111 0 3

2 1001100111 0 3

29 1010000011 0 3

21 1001100010 0 3

24 0010010100 1 3

27 0011110000 0 3

25 1000000011 0 3

4 0000000100 0 3

4 1110011010 0 3

2 1110110111 0 3

6 1010110011 0 3

10 0111000001 0 3

25 1010010110 0 3

24 1101000010 0 3

Table 4: Dry running of an iteration of the search without applying the G25 operator. Here is shown
a high number of circuit executions which result in a total number of queries much higher
than the mean.
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# Queries used Sequence Measured Reward Obtained Threshold
1 1001000110 1 0
1 0110000100 2 1
1 1100101000 0 2

1 1111111010 0 2

1 0001010010 3 2

Table 5: Dry running of an iteration of the search without applying the G25 operator. Here is shown
a low number of circuit executions and in each of them only one query was needed resulting
in a total of 5 queries to obtain the maximum reward.

Circuit average query complexity

Circuit depth is tied with the decoherence times of current quantum computers. The deeper
the circuit the higher the chance that the information is lost to the environment.
Despite, this being a real problem, in this work the size of the circuit was not taken, directly,
into account. This would be a very difficult metric to quantify due to the dynamics of the
algorithm. To be more precise, this dynamic is a result of three factors:

• The G25 operator contains an oracle that marks a fourth of the sequences, which in
turn, are sampled for every iteration of the algorithm resulting in an oracle that can
differ for each iteration.

• The number of Grover operators applied in each Qsearch is also dynamic, adding
another layer to the variance of the circuit size.

• The oracle used in the QMF also changes depending on the current threshold.

Instead, was adopted the average number of queries per circuit which are presented in
the next table.

Environment With G25 Without G25

2x2 1 2

4x4 (Rmax = 2) 5 11

4x4 (Rmax = 3) 4 7

Table 6: Average number of queries evaluated in each circuit.

The results presented in the table 6 show that, by reducing the search space using the
proposed G25 algorithm, on average, the number of queries performed per circuit is less
than searching the entire space. This reduced average number of queries may translate into
the proposed algorithm being more suitable to near/medium term noisy quantum hardware.
It must be kept in mind that the G25 algorithm requires an additional initial step to prepare
a uniform superposition over the 25% selected basis states. The above-mentioned potential
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advantage for NISQ systems depends on actual circuit depths, which haven’t been evaluated.
This will be proposed as future work.
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7

C O N C L U S I O N A N D F U T U R E W O R K

7.1 conclusion

To summarize, the proposed approach aimed to reduce the number of queries needed to
evaluate the best possible sequence of actions an agent will need to retrieve the most reward
possible. To achieve this, the algorithm takes advantage of reducing the total number of
sequences to search to exactly a fourth of all available to the agent in a given environment.
The strategy uses the characteristic of only needing one Grover’s operator to create a uniform
superposition over the marked states while reducing the amplitude of the unwanted states
to zero. The QMF subroutine is then performed and the information retrieved serves to
update a distribution stored in a classical memory. This process is iterated and is expected
that at least one of the sequences with the highest reward, will have the highest ”weight”.
The data obtained, specifically, the case of the Gridworld 4x4 with a maximum reward of 2,
shows some advantages by utilizing the proposed algorithm. For low search spaces, as in
the case of the 2x2 Gridworld, the algorithm showed no advantage.
Another observed aspect is the interaction between the number of iterations of the QMF
subroutine and the total number of different rewards which is another aspect to take into
account. The fact that the agent is dealing with a model-free environment makes the
calculation of an optimal number of iterations of the QMF quite difficult or even impossible.
In the case studies presented, the results allow us to also conclude that the supposition that
the algorithm might be able to see ”a bigger picture” of the environment while using the
same queries of its competitor can not be achieved; the case that shows some advantages
uses a similar number of queries as applying the QMF by itself. If the horizon was increased,
the algorithm would eventually use more queries, considering that the number of iterations
remains the same as in the results presented than its competitor.
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7.2 future work

The inconclusive results might indicate a need for extensive empirical work to be done.
Realizing more experiments to increase the analyzed data might help get a better idea of the
potential of the algorithm.
Increasing the search space is also critical to get a better understanding of the scalability of
the algorithm. As mentioned before, the interaction between the measured rewards and the
number of QMF iterations can also be taken into account.
As mentioned before, in this work the branching factor remains constant, each state has the
same number of possible actions available. Experiments with a non-constant branching factor
would be extremely valuable to further the knowledge on the behavior of the algorithm.
This might show up to not be a problem, the only constraints on the algorithm are that the
total search space has to be multiple of 4 and the environment must be deterministic.
Additionally, regarding the size of the circuits, it could be presented the average depth in
terms of the number of gates instead of the average number of queries per circuit.
Some questions arise if some pieces of the puzzle are ignored, what if instead of applying the
G25 operator to create a uniform superposition over the sampled sequences, it was utilized
an algorithm that designs a circuit that prepares said superposition. With this approach,
we could even create a superposition over any fraction of the search space because we are
no longer constrained by Grover’s operator. Would this preparation circuit be less deep, in
terms of the number of gates, than this thesis approach? How would the algorithm behave
with various fractions of the search space selected?
Lastly, the way the sequences are sampled could be improved. For example, sequences that
are selected too often or, provide the same reward as previous measurements, could have
diminishing returns, either, less chance of being selected in future iterations or have their
reward being reduced for the update of that particular iteration. This could be implemented
in the Updating phase, instead of just adding/subtracting a ”weight” dependent only on the
reward of the sequence, the updating would be dependent, additionally, on the number of
times the sequence was selected.
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