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Abstract: This study aims to evaluate the thermal and mechanical performances of PET-G thermo-
plastics with different 3D microstructure patterns and infill densities. The production costs were
also estimated to identify the most cost-effective solution. A total of 12 infill patterns were analysed,
including Gyroid, Grid, Hilbert curve, Line, Rectilinear, Stars, Triangles, 3D Honeycomb, Honeycomb,
Concentric, Cubic, and Octagram spiral with a fixed infill density of 25%. Different infill densities
ranging from 5% to 20% were also tested to determine the best geometries. Thermal tests were
conducted in a hotbox test chamber and mechanical properties were evaluated using a series of
three-point bending tests. The study used printing parameters to meet the construction sector’s
specific needs, including a larger nozzle diameter and printing speed. The internal microstructures
led to variations of up to 70% in thermal performance and up to 300% in mechanical performance. For
each geometry, the mechanical and thermal performance was highly correlated with the infill pattern,
where higher infill improved thermal and mechanical performances. The economic performance
showed that, in most cases, except for the Honeycomb and 3D Honeycomb, there were no significant
cost differences between infill geometries. These findings can provide valuable insights for selecting
the optimal 3D printing parameters in the construction industry.

Keywords: additive manufacturing; thermomechanical testing; fusion deposition modelling;
PET-G filaments

1. Introduction

More than 300 million tons of plastic are produced each year globally, and Europe is
the second-largest producer. However, in contrast to the amount produced, only a small
percentage is recycled [1], while the rest is incinerated, placed in landfills, or mismanaged.
Thus, reducing plastic waste while defining strategies for integrating existing plastic waste
into value chains for reuse or recycling and promoting the circular economy is urgently
required [2].

Due to the possibilities of additive manufacturing (AM) or 3D printing, it is possible
to achieve complex geometries that would be difficult to achieve using conventional
construction techniques [3]. 3D printing has been identified as a future direction in the
construction sector due to its potential to support sustainable design [4] and can be used
to manufacture polymer and recycled polymer-based products [5]. By controlling the
internal geometry and different combinations of infill percentages, 3D printing allows for
the optimization of thermal conductivity and creates lighter components for use in the
energy renovation of buildings [6,7]. Since the building envelope accounts for 50–60%
of total heat transference, improving thermal insulation is a cost-effective solution for
increasing energy efficiency [8,9].

Most previous studies using polymer filaments for AM focused on mechanical per-
formance as a structural element [6,10] and few studies are available on thermal perfor-
mance [10,11]. Those studies typically used a smaller extrusion nozzle with a diameter of
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0.2–0.4 mm, which may not be ideal in the construction sector due to the long printing time
caused by the abundance of raw materials consumed in the sector. To overcome this limita-
tion, using a larger nozzle diameter (e.g., 1.2 mm) and changing printing configurations
to increase the printing flow rate allows for increased productivity and buildability. On
the downside, it could also reduce the precision of plastic deposition, causing a layered
finish that is not desirable in some industries. However, the construction sector often uses
finishing elements such as painting, which allows for correcting this type of problem that
may occur on the façade. Therefore, higher extrusion nozzles and increased speed printing
time are essential to raising productivity [12] and seem compatible with the construction
sector. Data evaluating compatibility is certainly highly desirable.

The thermoplastic polyethylene terephthalate glycol (PET-G) is a thermoplastic with
good UV resistance, non-toxicity, and broad use in Fusion Deposition Modelling (FDM),
which are desired characteristics for a material in a 3D-printed polymer solution for a build-
ing renovation scenario. However, other characteristics distinguish the use of PET-G in the
construction sector, for example, its transparency. There is research on the use of PET-G
as a building façade material due to its UV resistance and transparency [13–16]. In addi-
tion, plenty of additional characteristics can distinguish PET-G in the construction sector.
For example, PET-G can be used as a Shape Memory Polymer (SMP), allowing a 4D-printed
building solution to be self-assembled and adapted to thermal fluctuations [17–20]. Al-
though these characteristics are not explored in this study, PET-G additive manufacturing
is considered important in construction.

Using the Fusion Deposition Modelling (FDM) method, this study evaluates the ther-
mal and mechanical performances of a set of 3D-printed specimens with a 1.75 mm PET-G
thermoplastic filament produced by an industrial 3D printer, Builder Extreme 1500 Pro,
Amsterdam, Netherlands, using a 1.2 mm nozzle and a 0.6-mm-layer height. Different
configurations of core topologies and infill percentages were tested in the laboratory to
investigate thermal resistance variations and tensile strength (MPa). Based on the results,
the microarchitecture of the 3D printing configuration was investigated with the aim of
achieving an optimized design for thermal resistance without compromising mechanical
strength. The experiment was carried out at high print speeds and a 1.2 mm nozzle—above
the 0.4 mm used in the current literature—was used to manufacture building components
for energy renovation of building façades.

2. Materials and Methods
2.1. Printing Configurations and Materials

All the samples were printed using the industrial 3D printer model Builder Extreme
1500 Pro with 1.75 mm polyethylene terephthalate glycol (PET-G) filament in the colour
glacier white by the company Winkle. The CAD models were developed using the Sharp3D
software due to their availability and ability to export 3 MF and STL files. The chosen
slicing software for exporting the g-code was PrusaSlicer, version 2.4.0, due to its internal
library of 3D geometries. The printing settings used are listed in Table 1. Additional values,
such as retraction and printer head acceleration, were defined in previous tests, ensuring
minimal stringing, ghosting, and other printing defects.

The polymer PET-G was selected due to its low thermal conductivity, hygrothermal
performance, UV radiation resistance, and good mechanical strength compared with other
available materials [17,18]; these are some of the performance criteria generally required
for energy renovation of façade panels. However, other factors that make PET-G a suitable
material for various uses, such as its biocompatibility and transparency, were deemed less
important to the research goals. Furthermore, other polymers with these characteristics,
such as PVC, can be used to create a building insulation panel. Additionally, PET-G is
a filament that is already used in the construction sector, facilitating comparison with other
studies [14,15,21]. Other polymers that are also commonly used in 3D printing, such as PLA
and ABS, were discarded as options due to their inadequacy in meeting the requirements
for a building insulation panel, such as resistance to UV or waterproofing.
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Table 1. 3D Printing configurations used to print samples for the thermal and mechanical tests.

Parameters Adopted Values

Nozzle diameter 1.2 mm

Printing temperature 250 ◦C

Printing bed temperature 60 ◦C

Layer height 0.60 mm

First layer height 0.45 mm

Extrusion width 1.26 mm

First layer print speed 45 mm/s

Print speed 70 mm/s

The experiment was divided into twelve geometries to quantify their influence on
thermal performance, and twenty-four to test the mechanical performance—twelve in each
direction (X and Y directions). A fixed infill of 25% was used for thermal and mechanical
performance evaluation. Based on the results, the three geometries with the best thermal
performances at different densities—5%, 10%, 15%, and 20%—were printed, giving a total of
12 samples for analysis of thermal performance and 24 samples for analysis of mechanical
performance. Figure 1 illustrates the process of specimen preparation adopted in this
study. The infill geometry patterns tested were selected due to their availability in various
commercial slicing software. The following microarchitecture configurations were tested:
3D Honeycomb, Concentric, Cubic, Grid, Gyroid, Hilbert curve, Honeycomb, Octagram
spiral, Rectilinear, Stars, and Triangles. Since the goal of this study was to optimize thermal
performance without compromising mechanical resistance, lower densities, between 5%
and 25%, were evaluated since the thermal conductivity of air (0.025 W.m−1.◦C−1) is lower
than that of the thermoplastics (around 0.20 W.m−1.◦C−1) [22].
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Figure 1. Schematic of the methodology adopted in this study. First, the tests were conducted for
the 25% of infills for 12 geometries. Then, different infill densities (5–20%) were used to print new
samples for the three best thermal geometries for thermal and mechanical tests.
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2.2. Thermal Tests

The 3D-printed samples were thermally tested in a hotbox test chamber located at
the Physics and Technology Laboratory of the Department of Civil Engineering of the
University of Minho. It was built following ASTM C1363-11:2011 [23] and validated by
Teixeira and colleagues [24]. It consists of two five-sided chambers (hot and cold) with 1 m3

of internal volume each connected by a central assembly ring where the tested specimens
are placed. The envelope is well insulated and made of extruded polystyrene (20 cm thick,
thermal conductivity (λ) = 0.037 W/(m.K) to reduce heat flow through the envelope and
minimize conductive heat losses.

On the back wall of the cold chamber, two ventilation devices, which allow the
balance of the air temperature in the chamber, are positioned to maintain uniform heat flow
through the sample. In the hot chamber is a heating system whose temperature is limited
to a predefined range (32 ± 2 ◦C).

The tests were carried out on 1000 × 500 × 100 mm panels and the size of each
specimen was 175 × 250 × 100 mm, as shown in Figure 2. The panels were positioned
on the mounting ring between the two hotbox chambers to determine each sample’s
thermal resistance (R-value) using the heat flow method, based on the methodology in
ISO 9869-1:2014 [25].
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with an overall size of 1000 × 500 × 100 mm.

The experiment used green TEG equipment, positioning the sensors in the centre of the
samples to quantify the temperatures on both sides and the heat flux through the material.
Based on the manufacturer’s data, the accuracy of the temperature-measuring devices is
±0.1 K and the accuracy of heat flow measurement is ±3%. The R-Value is calculated from
Equation (1).

R =
∑n

j=1
(
Tsij − Tsej

)
∑n

j=1 qj
(1)

where

qj is the heat flux at time j;
Tsij is the inside surface temperature at time j;
Tsej is the outside surface temperature at time j.

The thermal conductivity value is obtained from the ratio between the thickness
of the tested sample and the thermal resistance obtained. The thermal tests were vali-
dated by simultaneously performing tests on a material whose thermal conductivity was
already known: an XPS plate, where a value of 0.030 W/m.K was obtained within the
range 0.029–0.036 W/m.K presented by the technical dossier from the Portuguese Danosa
manufacturer’s technical report [26] for this type of material.

The panels were printed with six internal geometry variations, totalizing 12 samples,
as illustrated in Figure 3. Subsequently, the three best internal geometries were again
subjected to thermal tests to identify the best infill patterns based on thermal performance.
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structures.

2.3. Mechanical Tests

The flexure resistance indicates the load capacity of different plastic materials and
core structures [27]. Therefore, the bending behaviour of the 3D-printed samples was
carried out following the standard ASTM C393 [28]. The standard configuration was used
considering a distance of 150 mm between the support bars and a speed test for a crosshead
displacement of 6 mm/min [28]. A steel sheet was placed in the middle of each sample
to distribute the bending force over the sample. The three-point bending test was carried
out using a universal material testing machine, MTS Exceed E45, with a 1000 Hz data
acquisition rate, to ensure accurate results. The experiments were conducted at room
temperature and the failure force (kN) was quantified. The samples were modelled using
the Sharp3D software and printing parameters of the PrusaSlicer software were used,
similar to the thermal tests.

Depending on where the load is applied (horizontal or vertical), the tensile strength
will vary due to the geometric effect. For this reason, the tests included two directions—X
and Y orientations. In addition, five specimens were evaluated per test condition to im-
prove the reliability of the results. This procedure is also suggested in the ASTM C393
standard [28]. A total of 80 samples were printed, including Stars and Honeycomb geome-
tries, four infill patterns (5%, 10%, 15%, 20%), two different orientations, and five samples
of each (2 × 4 × 2 × 5 = 80 samples). The equipment used to run the mechanical bending
test was an MST Exceed Model E45. Figures 4A and 4B illustrates the procedure used to
run the thermal tests and the bending test, respectively.
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2.4. Operational Cost Analyses

The estimation of material and energy costs considered the estimated cost differences
between the geometries; these are printing time and material costs. To define the 3D-
printing costs, the market price of the filament used was 23.00 €/Kg and the energy cost
of electricity was 0.1833 €/kWh based on the average European price for commercial
energy [29].

Due to geometry configurations, there are variations in the amount of filament used
to anchor the infill to the external perimeter of the 3D-printed object. Therefore, these
variations will result in the consumption of different quantities of materials based on the
infill geometry. The estimated weight of the 3D-printed object was based on the slicing
software. To ensure comparability of the results, the same software and slicing were used
to analyse material consumption for all the infill geometries, the PrusaSlicer. Subsequently,
the weight of each infill was converted to the price of the filament weight.

The energy cost was calculated taking into account the variations in the printing times
of each infill geometry. Next, the equipment cost was calculated based on 300 Wh 3D-
printing energy consumption. Finally, the printing time was estimated using the PrusaSlicer
slicing software.

The simulation in PrusaSlicer was done with the configuration of the Builder Extreme
Pro 1500 3D Printer, simulating the print of a 100 cm × 50 cm × 10 cm panel. The weight
and print time values were then converted to print a 1 m3 cube. The results of the estimated
cost of each infill were used to rank the infills in terms of costs. The results were later
compared to the mechanical and thermal performance costs.

2.5. Combined Information Analysis

The results of the thermal, mechanical, and cost experiments were combined through
a normalization process. The analysis considered the 12 infill geometries with 25% infill
density, as it was a common configuration in all previous experiments. The optimization
procedure used to generate the graph was an adaptation of the Mixtri 2.0 software for Mi-
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crosoft Excel [30], which was used to find an optimized geometry based on the experiments
conducted. The adaptation replaced the categories considered in the original software
with thermal performance, mechanical performance, and costs. As lower cost values are
preferred for the 3D-printed infill geometries, its normalized value was inverted in the
software, thus 0.00 represented the best value and 1.00 represented the worst value.

3. Results and Discussion
3.1. Geometric Effect
3.1.1. Mechanical Performance

The three-bending tests revealed that structural geometries play an important role
in the bending behaviour, as illustrated in Figure 5, varying between 5 and 20 kN using
a fixing infill density of 25%. Furthermore, due to the anisotropic nature of the geometries,
the performance varies between orientations.
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Figure 5. Three-point bending tests for 12 geometries using a fixed infill density of 25%. Two directions
were tested.

Concentric and Hilbert Curve have the lowest performance, with a failure force of
around 5 kN in both X and Y directions. The difference can be explained by the low
surface contact of the internal geometry with an outer perimeter of the sample, resulting in
lower structural support. Honeycombs have the best performance and the lowest variation
between directions since they have more filaments between cell walls. Honeycomb also
showed good bending performance in the literature [27].

The variations in mechanical performances observed in the X and Y directions can
be attributed to the printing layer orientation and the geometry of the infill. As shown
in Figure 6, sample X was tested parallel to the printing layer plane, while sample Y was
tested perpendicular to the printing layer plane. The infills 3D Honeycomb, Cubic, Gyroid,
Line, and Octagram Spiral gave better results when tested in the Y direction, while the
geometries Concentric, Grid, Hilbert Curve, Honeycomb, Rectilinear, Stars, and Triangles
performed better in the X direction. Since the tests samples had an external perimeter
thickness of 1.2 mm, the geometries Concentric and Hilbert Curve in the X and Y samples,
and Octagram Spiral in the X samples, mechanical performance can be attributed to the
resistance of the external perimeters more than the infill.
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For the geometries with the best thermal and mechanical results—Gyroid, Stars, and
Honeycomb—a set of samples with different densities—5%, 10%, 15%, and 20%—were
printed. The results are presented in the Section 3.2.

3.1.2. Thermal Performance

The influence of the internal microarchitecture on thermal conductivity W/(m.K) is
presented in Figure 7. The density was constant for each sample at 25% (i.e., 307 kg/m3).
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Figure 7. Conductivities (W/m.K) of twelve different geometries, with a fixed density of 25%, were
tested in a hotbox.

With a thermal conductivity of 0.057 W/(m.K), the Concentric geometry gave the
best result among the tested geometries since it made no direct contact with the exter-
nal perimeter. Although the Concentric geometry had good thermal performance, this
geometry offers no structural support to the external perimeters, which may result in
a specimen unsuitable in applications where the 3D-printed insulation may be exposed to
impact. The second-best materials in terms of thermal insulation were the Hilbert curve
and Gyroid, with 0.074 W/(m.K). Usually, a material can be considered a thermal insulator
if its conductivity is lower than 0.070 W/(m.K) [31]. Only the Concentric geometry met
this requirement.

The few studies that have evaluated the influence of 3D-printed internal geometries
on thermal performance have reported similar results. The study [32] gave a thermal
conductivity of 0.037 W/(m.K), using a porous structure made with PLA, and a density of



Polymers 2023, 15, 2268 9 of 17

366 kg/m3. Another study [33] evaluated the thermal conductivity of 3D-printed plastics
using the stereolithography (SLA) method to analyse different sizes, densities, and infill
patterns—rectilinear, Honeycomb, and triangular. The lowest thermal conductivity was
obtained for Honeycomb and rectilinear, with 0.0591 W/(m.K) at a density of 180 kg/m3.
This result is lower than that obtained in this study—0.083 W/(m.K) for rectilinear and
0.090 W/(m.K) for Honeycomb, since the density is 40% lower. The result can be justified by
the lower thermal conductivity of air (0.025 W/(m.K)) compared with that of thermoplastics
(around 0.20 W/(m.K)) [22]. In theory, increasing the air voids can lead to better thermal
performance. However, since the density is lower, the mechanical performance is also
reduced as a trade-off [34].

In the next section, the effects of infill percentages on thermal performance are evalu-
ated for the three best geometries.

3.2. Infill Pattern Effect
3.2.1. Mechanical Performance

The effect of infill on the bending performance is illustrated in Figure 8 for the Stars
and Honeycomb geometries. As expected, the variations in infill densities (%) and mechan-
ical performances follow the same trend, with increased weight increasing the bending
performance (kN). A similar trend is suggested in the literature [35]. The difference in the
mechanical performance between the X and Y samples is explained by the geometries of
the stars and honeycombs, where the X samples have the bending force applied parallel to
the printed layer.
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The uncertainty range is included and represents the minimum and maximum values
obtained from the mechanical test of each infill density (%). This variation is due to the
technological limitation of the 3D printer used to print the samples, resulting in a varia-
tion range between 3% and 28% for the minimum and maximum values. Despite being
an industrial 3D printer model, some precision limitations still influence the mechanical
flexure results.

This variation is mainly due to the differences found in the weights of samples, varying
between 0% and 9%, for each set of five samples, considering the same density and the
same X and Y directions. The higher the variation in weights between the samples, the
greater the margin of uncertainty in the bending tests.

Additionally, and for the same weight, a small variation in the flexure capacity was
found, as illustrated in Figure 9. For example, in Stars geometry in the Y direction, the
flexure capacity for 250 g varies between 8 kN and 12 kN. Despite this variation, the
results provide a good linear correlation between weight and mechanical performance,
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with a linear correlation of 0.95 and 0.73–0.85 for the X and Y directions, respectively. This
variation is due to 3D printer limitations and the absence of a controlled temperature in the
printing chamber since the printing of the samples occurred consecutively over a few days
and nights, resulting in variations in the environmental temperature.
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In the literature, the study [27] included a series of three-point bending tests performed
using 30% infill density and found a variation of 0.2–0.8 kN, which depended on the
geometry and material used (ABS and ASA). The results obtained are an order of magnitude
lower than those obtained in this study. The lower magnitude is attributed to the study [27],
which used a layer 0.2 mm thick, whereas the current study used 0.60 mm, resulting in
more material in the core structure and thus better mechanical performance. Therefore,
the results suggest that the configuration used to model the samples can produce high-
resistance thermal panels for building façade.

3.2.2. Thermal Performance

Figure 10 shows the effect of infill on the thermal performance of the internal geome-
tries that gave the highest insulation potential (Concentric, Hilbert curve, and Gyroid). The
thermal transmittance (U-value) results were presented and calculated from the R-values ob-
tained for each specimen. As can be seen, the results obtained from the attempt to optimize
the infill geometries were counterintuitive, going against the premise that lower-density
infills would allow greater air entrapment, making the solution more thermally resistant.

Based on Figure 10, the specimens with a 5% density had the worst thermal results.
This phenomenon may mainly be associated with possible printing failures arising at lower
percentage densities that affect the U-value, as seen in Figure 11, which shows the post-
test state of the Hilbert curve geometry specimen with 5% density. Analogous behaviour
was also identified in the study [36] using a robotic polymer extruder, where thermal
transmittance (U-value) varied from 1.7 to 1.0 W/(m2.K) only by changing the infill density.
The best performance was obtained using higher infill densities, which is consistent with
the values obtained in this study, where the U-values vary between 1.7 and 1.8 W/(m2.K)
for 5% infill density and 0.4–0.8 W/(m2.K) for 25% infill density. Another study [11] used
PLA filaments to print a 3D block with low infill density for thermal insulation. The authors
obtained a 1.2–1.4 W/(m2.K) U-value [11].
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Figure 11. Cross-section of the Hilbert curve specimen with 5% infill density.

According to Portuguese regulations [37], the external wall’s U-value must be below
0.35–0.50, depending on the climate zone. Based on this study’s data, the Concentric
geometry with 25% infill density has a U-value of 0.387 W/(m2.K), which complies with
the Portuguese regulations and can therefore be used as an insulation material and, at the
same time, has good mechanical performance.

On the other hand, from a resource use efficiency point of view, it would be better
to reduce the infill density in order to consume less material. A possible solution could
be combining low infill density, by using the concentric geometry, with other thermal
insulation materials. In the literature, good results were obtained using 3D-printed opaque
blocks filled with polystyrene and wool, improving thermal transmittance by 76–215%
compared with blocks with only air cavities [12]. Further research should be conducted to
evaluate this possibility and to test it using different natural insulation materials, including
renewable natural materials such as wood fibres, mineral wool, and straw [38].

3.3. Material Costs

The costs of the materials are shown in Table 2. The printed samples had similar values,
around 335 Kg/m3 for the 25% infill, 206 Kg/m3 for the 15% infill, and 77 Kg/m3 for the
5% infill. Although the results are similar, the Honeycomb and 3D Honeycomb geometries
displayed significantly higher material consumption and printing times. These higher
values in material consumption can be attributed to the higher anchorage points required
for these geometries. At the same time, the high printing time values are associated with
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the acceleration and deceleration of the printing head during the manufacturing process.
The geometries with continuous printing movements, such as Grid, Line, Rectilinear,
Stars, Triangles, and Gyroid, had the lowest printing times and, therefore, lower energy
consumption. However, due to the relatively low energy consumption associated with the
3D-printing process, the energy consumed during printing is not as relevant as the cost of
the material consumed. On an industrial scale, the cost of the printing material could be
significantly lower and therefore give more feasible values.

Table 2. Infill geometry and density cost, printing time, and material per cubic meter.

Density and Geometry Weight (kg/m3) Printing Time (h/m3) Cost (€/m3)

25% Gyroid 325.0 1495 7556.74 €/m3

15% Gyroid 193.2 651 4479.38 €/m3

5% Gyroid 73.8 212 1708.21 €/m3

25% Concentric 329.1 735 7608.70 €/m3

15% Concentric 209.4 470 4842.02 €/m3

5% Concentric 89.6 204 2072.01 €/m3

25% Grid 332.7 846 7698.05 €/m3

15% Grid 206.0 528 4767.95 €/m3

5% Grid 79.6 207 1842.16 €/m3

25% Stars 333.0 886 7706.95 €/m3

15% Stars 202.7 549 4691.35 €/m3

5% Stars 72.3 212 1673.97 €/m3

25% Cubic 335.1 919 7757.51 €/m3

15% Cubic 204.2 566 4727.29 €/m3

5% Cubic 72.5 209 1679.89 €/m3

25% Triangles 337.3 967 7811.71 €/m3

15% Triangles 205.1 589 4749.21 €/m3

5% Triangles 72.7 218 1684.55 €/m3

25% Line 339.8 864 7862.86 €/m3

15% Line 209.1 537 4839.27 €/m3

5% Line 78.6 203 1818.48 €/m3

25% Rectilinear 339.3 870 7866.51 €/m3

15% Rectilinear 210.5 546 4870.60 €/m3

5% Rectilinear 81.0 210 1874.55 €/m3

25% Octagram Spiral 337.3 1024 7814.27 €/m3

15% Octagram Spiral 208.3 633 4825.23 €/m3

5% Octagram Spiral 77.9 253 1805.15 €/m3

25% Hilbert Curve 344.1 2146 8033.45 €/m3

15% Hilbert Curve 213.0 1215 4965.81 €/m3

5% Hilbert Curve 75.9 332 1763.93 €/m3

25% Honeycomb 419.4 2969 9809.84 €/m3

15% Honeycomb 263.5 1554 6146.90 €/m3

5% Honeycomb 95.8 378 2225.13 €/m3

25% 3D Honeycomb 498.8 2868 11,630.99 €/m3

15% 3D Honeycomb 298.1 1488 6937.64 €/m3

5% 3D Honeycomb 113.9 379 2641.48 €/m3

When comparing the general costs of the internal geometries, it was observed that
although the cost decreased significantly with the decrease in infill density, the geometry
cost ranking did not change significantly. Nevertheless, a reduction of up to 75% in costs
and up to 77% in weight was observed. The 3D Honeycomb and Honeycomb geometries
had considerably higher costs compared with the other geometries. Meanwhile, Gyroid
had the lowest infill material consumption, and therefore, was the best in terms of costs,
even though it was not among the geometries with the lowest printing times, as shown in
Figure 12.
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3.4. Combined Information

The combined information between the thermal and mechanical performances was
normalized to the costs of the infill geometries to understand how the infill geometries can
be optimized based on the combined values of the results obtained. The normalized values
are shown in Table 3.

Table 3. Normalized values of the infill geometry performances.

Infill Geometry Mechanical
Performance Costs Thermal

Performance

Concentric 1.00 0.01 1.00

Hilbert Curve 0.99 0.12 0.51

Gyroid 0.28 0.00 0.50

Stars 0.00 0.04 0.38

3D Honeycomb 0.18 1.00 0.33

Rectilinear 0.33 0.08 0.32

Line 0.32 0.08 0.30

Triangles 0.38 0.06 0.30

Grid 0.25 0.03 0.28

Honeycomb 0.02 0.55 0.21

Cubic 0.22 0.05 0.05

Octagram Spiral 0.78 0.06 0.00

The normalized values can be used, to a limited degree, to compare results between
infill geometries. However, we observed that infill geometry optimization varies based on
the weighted value of each aspect.

Figure 13 shows the optimization results for the normalized values. The optimization
results revealed the three optimal infill geometries as Stars, Concentric, and Gyroid. The
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Stars infill gives the best-combined performance value for most weight variations. However,
in cases where the mechanical performance is a small percentage of the weight, the Con-
centric and Gyroid infills are optimal, with the Gyroid having a lower percentage. When
thermal performance is valued, with no importance given to mechanical performance,
the Concentric infill geometry is shown to be the optimal infill geometry configuration.
When the main concern is the cost of the solution, Gyroid is the optimal infill in this
study scenario.
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4. Conclusions

When comparing thermal performance, mechanical performance, and costs of the
above commercially available infill geometries, there was no single infill geometry and
configuration that is optimal for every scenario. However, it was observed that even
these commercial infill geometries can significantly impact the costs and performance of
a 3D-printed object, even that targeted to the construction sector. To better use and adapt
the 3D-printed infill to each case, geometric performances should be weighed based on
the importance of their use. An optimal infill for specific applications can be designed
with proper research. For example, in a 3D-printed building renovation panel, the optimal
infill should balance thermal and mechanical performance. Although an optimal infill was
identified based on the limited experiments in this research, there is plenty of research
required to obtain an accurate optimal infill geometry.

Thermal performance analysis concluded that there is a significant difference between
the different internal geometries. However, when analysing the impact of decreasing
infill density, a decrease in thermal performance was also observed. Further thermal
performance improvements can be achieved by stuffing the panel with other insulation
materials [12]. Therefore, further development of an optimized infill density and geometry
could focus on integrating insulation materials into the 3D-printed object.

The mechanical performance of the 3D-printed object varied greatly based on the
infill geometry and density. The best infill configuration for mechanical performance
was four times better than the lowest-performing geometry. Moreover, the mechanical
performance tests showed a significant variation in performance based on the printing
orientation; direction X showed better overall results in the highest-performing samples.
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A significant drop in performance was observed due to the decrease in infill density. Even
though the samples with 5% infill gave a lower score, it was observed that the samples
had relatively good performance when the external perimeter was 1.2 mm. Overall, the
results have shown that infill geometry is essential to a 3D-printed object and that infill
density is correlated with mechanical performance. Further research could be conducted to
optimize the flow rate of the polymer during 3D printing or with 4D printing programming
to optimize the object’s mechanical performance to the desired requirements.

The economic performance showed that in most cases—except for the Honeycomb and
3D Honeycomb—there is no significant cost difference between infill geometries. Complex
geometries with several acceleration and deceleration points, such as Honeycomb, 3D
Honeycomb, and Hilbert Curve, had significantly higher printing times and material con-
sumption. However, the general cost differences were less significant than the differences
in thermal and mechanical performances.

The overall characteristics of the printing and the results showed that good thermal and
mechanical performance results can be achieved even when exclusively using 3D printing
of the internal geometry. Therefore, the infill shows promising development capacity
for the proposed use and further research involving the use of the internal geometry as
an insulation solution for building energy renovation will be conducted.
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