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SAFEWAY Project Synopsis 

 

 

 

According to European TEN-T guidelines, due consideration must be given to the risk 

assessments and adaptation measures during infrastructure planning, in order to improve 

resilience to disasters. SAFEWAY’s aim is to design, validate and implement holistic 

methods, strategies, tools and technical interventions to significantly increase the 

resilience of inland transport infrastructure. SAFEWAY leads to significantly improved 

resilience of transport infrastructures, developing a holistic toolset with transversal 

application to anticipate and mitigate the effects extreme events at all modes of disaster 

cycle: 

1. “Preparation”: substantial improvement of risk prediction, monitoring and 

decision tools contributing to anticipate, prevent and prepare critical assets for the 

damage impacts; 

2. “Response and Recovery”: the incorporation of SAFEWAY IT solutions into 

emergency plans, and real-time optimal communication with operators and end 

users (via crowdsourcing and social media);  

3. “Mitigation”: improving precision in the adoption of mitigation actions (by impact 

analysis of different scenarios) together with new construction systems and 

materials, contributing to the resistance & absorption of the damage impact. 

SAFEWAY consortium has 15 partners that cover  multidisciplinary and multi-sectorial 

business fields associated with resilience of transport infrastructure in Europe: national 

transport infrastructure managers & operators, a main global infrastructure operator, 

partners able to provide various data sources with large coverage in real time, 

comprehensive ITC solutions, and leading experts in resilience, risk databases, remote 

sensing-based inspection, and decision systems based on predictive modelling. 

SAFEWAY will carry-out 4 real case studies distributed through 4 countries, linked to 5 

corridors of the TEN-T Core Network. SAFEWAY has as main expected impacts: 

1. at least 20% improvement in mobility; and  

2. at least 20% lower cost of infrastructure maintenance. 
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Executive Summary 

 

The scope of this deliverable is to provide a framework for dynamic risk-based 

predictive models for transportation networks. First, an overview of the most 
common predictive models for forecasting the future condition of transportation 

infrastructures is presented. These models were built upon performance indicators 
available in large databases. Then, the possibility of updating the predictive models 

based on new collected information from different sources of data was introduced 
into the framework through Bayesian inference procedures.  

Moreover, it was addressed how the occurrence of sudden events, i.e. natural and 

human-made events, affect the transportation network performance. In this way, 
a risk-based framework which enables the understanding of the effect of hazards 

on infrastructure assets and the associated consequences for the network was 
adopted. The framework is also endorsed by local and real time data to refine the 
risk estimation. Accordingly, return periods of extreme events and its magnitude 

were used to assess the direct impacts on road and railway infrastructures at both 
asset and network level. Additionally, two approaches were presented to facilitate 

the quantification of indirect impacts arising from the disruption of the 
transportation service and its duration, together with a review of all the 
socioeconomic costs associated to both road and railway disruptions.  

Finally, the time-dependent factors influencing the risk assessment of 
transportation networks were analysed. Essentially, expected changes in the 

return period of hazards due to climate change were examined, with focus on 
floods and wildfires. Thus, direct impacts for future scenarios were assessed. 
Additionally, time variant socioeconomic attributes which affect the indirect 

impacts such as the status of a population and traffic demands were reviewed for 
the development of consequence models. Consequently, the proposed framework 

introduced in the present deliverable enables a dynamic risk assessment of 
transportation networks.  
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Glossary of Terms 

Predictive 

model 

Predictive modelling is a technique that uses mathematical and 

computational methods to predict an event or outcome. The model is 

used to forecast an outcome at some future state based upon changes 

to the model inputs.  

Deterministic 

models 

Deterministic models are dependent on a mathematical or statistical 

formula. The output of this model is expressed by deterministic values 

that represent the average predicted outcome, i.e., no randomness in 

the input nor the output is considered. 

Stochastic 

models 

Stochastic models are used to represent the dynamics of physical 

processes that evolve over time according to random phenomena. 

PI Performance Indicator(s) is/are metric(s) that define qualitatively 

and/or quantitatively the condition state an asset. 

Reliability Structural reliability is a measure of the capability of a structure to 

operate without failure when put into service. 

Hazard A dangerous phenomenon resulting from a natural process or a human 

activity, which triggers a condition that may cause loss of life, injury or 

other health impacts, property damage, loss of livelihoods and services, 

social and economic disruption, or environmental damage.  

Consequence The outcomes or potential outcomes arising from the occurrence of an 

adverse event, expressed qualitatively or quantitatively in terms of 

monetary loss, disadvantage or gain damage, injury or loss of life. 

Consequences could be characterised as direct and indirect. Direct 

consequences refer to a physical destruction of exposed elements, and 

indirect consequences stem from related impacts that this destruction 

has on the functionality of elements.  

Failure  

 

 

 

General term to refer to a different type of failures such as structural 

failure or functional failure (unavailability). Due to slow (deterioration) 

and sudden (e.g., natural hazard) processes, damages may occur that 

result in additional failure modes. These are quasi-permanent or 

transient situations that violate code specifications or owner’s/ 

operator’s provisions. Here included are situations that might 

compromise public perception of safety. 

Fragility curve Fragility curves are functions that describe the probability of failure, 

conditioned on the load, over the full range of loads to which a system 

might be exposed. The probability of failure could also encompass 

probability of exceeding predefined damage states. 

Risk 

 

 

Measure of the probability and severity of an adverse effect to life, 

health, property, economic activities or the environment. 

Quantitatively, Risk = Hazard ∙ Potential Worth of Loss. This can be also 

expressed as "Probability of an adverse event times the consequences 

if the event occurs" (ISSMGE TC32, 2004)  

Resilience The ability of a system to resist, adapt to and recover from the effects 

of a hazard in a timely and efficient manner, including through the 

preservation and restoration of its essential basic structures and 

functions through risk management. 
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1. Introduction 

A successful asset management system highly depends on determining the 

optimum intervention actions that assure structural safety, serviceability and 

reliability, while maintaining the lowest investment of financial costs related to 

available management budget and associated resources. In order to achieve this, 

one of the keys of asset management systems are predictive models that allow to 

forecast, for different time periods, the performance of the asset taking into 

account both the resistance of the asset itself, as well as the demand values the 

asset is exposed to. Hence, the subsequent modules regarding the time and the 

extent of the maintenance actions needed, depend entirely on the 

deterioration/performance model established, the load/demand values, the 

consequences triggered in case of failure, and the costs related to each type of 

intervention. 

Following Bukhsh and Stipanovic (2020), the maintenance expenditure ranges 

from 50% to 70% with respect to the overall life cycle cost of a structure. These 

outlays of maintenance are even higher in case of sudden break-down and 

rearrangement of scheduled activities. Predictive maintenance seeks to prevent 

these asset failures completely and aims at lower maintenance costs and higher 

reliability and availability. As mentioned in Karimzadeh and Shoghli (2020), 

predictive approaches for maintenance management provide optimal long-term 

planning capability and integrate risk management into asset maintenance 

planning. Furthermore, they allow for more accurate condition prediction of 

transportation assets, as knowledge about time, location and extent of foreseen 

failures help asset owners and managers to be prepared to implement associated 

interventions to prevent those failures. One of the major limitations of using 

reactive maintenance is the lack of such information. Therefore, reactive 

maintenance activities are expected to take longer than initially anticipated and 

may be relatively more expensive. This means that, for reactive management, 

budget allocation and coordination of maintenance resources are poor. In contrast, 

proactive maintenance prevents most of the failures and enables asset owners to 

manage maintenance actions. In addition, the proactive strategy improves the 

reliability of the performance of transportation assets by avoiding failures. 

Although being asset-dependent, according to estimations by Marshall Institute 

(2020), the reactive approach costs companies up to 5 times more than proactive 

types of maintenance, where predictive modelling is included.  

Moreover, predictive methods let asset managers anticipate and perform 

inspection and maintenance actions based on available information, allowing for a 

more efficient allocation of budget resources since a preventive procedure 

implementing a series of regular periodic actions with specified time intervals may 

result in unnecessary maintenance works. Lastly, these management strategies 

should also consider the fact that several infrastructure assets may be 

simultaneously affected as a result of extreme natural or human-made hazards. 
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Even though these events have a low probability of occurrence, the costs 

associated with various infrastructure assets becoming non-operational are large, 

for both infrastructure owners and users. In this sense, management strategies 

must be established considering all potential economic losses, as well as social and 

environmental impacts. Accordingly, risk-based predictive models have been 

implemented in this deliverable aiming at supporting optimal decisions for 

transportation networks.  

The impact of predictive models on the SAFEWAY project corresponds to a better 

definition of the performance of the assets for different maintenance expectance 
times attending to several conditions such as performance of the assets based on 
deterioration models, demand based on population changes, and external load 

changes either due to different frequency or intensity. Although, the involved asset 
managers already have a condition-based assessment for management and 

intervention planning, the quantitative impact analysis of the predictive models 
will be assessed within the improved management system and intervention 
planning considering their use.  

 

1.1 Scope 

This deliverable comprises the main results obtained by implementation of 
deterministic and stochastic predictive models, as well as the framework detailing 
for a dynamic risk-based model, whereby real-time data and time-variant factors 

are introduced. The models are based and validated in databases retrieved from 
different SAFEWAY partners. 

The databases and associated assets are described, and validation of the models 
is made for the assets with more substantiated data. Therefore, special attention 
was given to bridges (both roadway and railway) and pavements. Based on 

different demand scenarios, such as flood events with different return periods 
(changing periodicity and intensity), the performance of the transportation assets 

is assessed through the use of fragility functions, and respective consequences are 
estimated. The key performance indicators of the analysed system are given in 
terms of impact, both direct and indirect, assuming different traffic scenarios and 

socioeconomic conditions. Long-term consequence projections are also made 
assuming variability on the demand and exposure, and on population 

demographics. 

This report ultimately describes the framework for predictive modelling 
implementation within an asset management system. This will allow for an initial 

validation of the procedure using existing databases and highlighting both the 
possibility of updating the results by different methods and inspection information. 

Moreover, its application is possible for extension on the long-term prediction of 
consequences by assuming different variability levels. 
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1.2 Outline of the deliverable 

One of the main objectives of this deliverable is to provide a framework for 
dynamic, risk-based predictive modelling. In order to do so, the deliverable is 

organised as follows. First, an overview of the most common predictive models for 
forecasting the future condition of transportation infrastructures is presented in 

Chapter 2. Subsequently, the possibility of updating the predictive models based 
on new collected information is introduced into the framework through Bayesian 
inference procedures. The updated condition is then used to assess the probability 

of failure of the infrastructures when exposed to natural hazard events. Chapters 
3 and 4 present the framework for asset performance determination based on 

dynamic risk-based predictive models and determination of fragility curves. 

Based on the prior results, the direct and indirect consequences resulting from the 
failure of the infrastructures are estimated in order to quantify the risks. This is 

presented in Chapters 5 and 6. Considering the time-dependent characteristics of 
traffic demands and population growth, projections of long-term consequences are 

evaluated in order to obtain dynamic risk-based predictive models in Chapter 7. 

Finally, conclusions are given with respect to the obtained results as well as its 

applicability within the overall concept of the SAFEWAY project. 
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2. Overview of predictive models 

Transportation infrastructure assets deteriorate as a result of several threats such 
as exposure to adverse environmental and climatic conditions, natural and man-

made hazards. Moreover, changing load demands due to e.g., increasing traffic 
volumes resulting from population and economic growth, poor quality of 
construction materials, or insufficient maintenance, may accelerate infrastructure 

deterioration. Therefore, infrastructure managers have the challenge of defining 
optimal maintenance, rehabilitation, and replacement actions to guarantee the 

functionality of their vulnerable infrastructure systems. To achieve this goal, it is 
essential to reliably assess the condition of infrastructure assets and accurately 
predict their deterioration over their service life.  

Several condition assessment tools to estimate asset’s damage have been 
developed over the years such as visual surveys, probing, non-destructive 

techniques (NDT) and structural health monitoring (SHM) (Faleschini, Zanini and 
Casas Rius, 2019). The damages found are communicated through performance 
indicators (PIs), which are metrics that define qualitatively and/or quantitatively 

the condition state of assets. Faleschini et al (2019) classified the PIs in two main 
categories: operational and research indicators. The former indicators are based 

on a qualitative scale adopted, where one value is defined as the new condition, 
and the remaining values represent a deviation from the new condition. 
Conversely, research indicators are based on a quantitative evaluation of the 

structural safety of the assets, i.e., computing the probability of failure for a given 
limit state. 

Due to the differences among PIs, numerous predictive models have been 
developed. Many applications use operational PIs, i.e., condition ratings, due to 
the large amount of assets that transportation agencies must manage, which poses 

a challenge to implement research indicators. Applications of predictive models 
based on condition ratings is extensive and include (but is not limited to): 

deterministic models (e.g. Morcous 2011), stochastic models (e.g. Denysiuk et al. 
2016), artificial intelligence techniques (e.g. Burgueño, Zhe, and others 2008; Bu 
et al. 2014), Bayesian networks (e.g. Zhang and Marsh 2019), and Petri nets (e.g. 

Le and Andrews 2016). Among them, deterministic and stochastic Markov models 
are the most frequent predictive models used in current Infrastructure 

Management Systems (Mirzaei et al., 2014). In this section, deterministic and 
stochastic models were implemented and validated with real case studies. Given 

the limitations exhibited by stochastic Markov models, a methodology involving 
collaborative Gaussian Process Regression (GPR) was proposed (Hadjidemetriou, 
Xie and Parlikad, 2020). 

Finally, in the last part of this section, a methodology is elaborated to introduce 
structural reliability as PI to assess the condition of infrastructures together with 

the possibility of updating the measured condition based on data from remote 
monitoring technologies. This methodology based on a more quantitative indicator 
is encouraged, as the implementation of deterioration models based on operational 

PIs suffer from several shortcomings including a significant subjective variability 
of the condition ratings assigned by different inspectors, which makes it difficult to 
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observed the true state of the infrastructure and predict its deterioration reliably 
(Santamaria Ariza et al., 2020). 

2.1 Available databases for predictive models 

Infraestruturas de Portugal, S.A. (IP) is a public company managing the largest 
stock of assets in Portugal. IP manages more than 15.000 km of roads, 2.600 km 

of railways, more than 7.500 bridges and many sub-systems as signalling, 
catenary or power supply (Morgado et al., 2019). 

IP’s asset portfolio is mainly comprised by the following asset types:  

• Rail network: earth retaining structures, bridges, tunnels, tracks, switches 
and crossings (S&C), signalling systems, catenary, and power supply 

installations; 
• Road network: pavements, bridges (including overpasses, culverts, 

underpasses, cattle creeps, viaducts, pedestrian crossings, and tunnels). 

Asset management systems were developed and implemented during the last ten 
to fifteen years for road pavements and bridges (both road and rail). For the 

remaining asset types, regular inspections were carried out, but only to define 
short- to medium-term activities without implementing a formal asset 

management system.  

Given that IP resulted from a merger process between the former road network 
infrastructure manager (EP -Estradas de Portugal) and the former rail network 

infrastructure manager (REFER - Rede Ferroviária Nacional), different performance 
indicators were defined to assess the condition of each asset type. Efforts have 

been done recently to harmonize the performance indicators across multiple assets 
to better communicate and support decision making (Morgado et al., 2019). 
Nevertheless, the databases continue to maintain the asset specific performance 

indicators, which are described in the following sections and are used for the 
development of the predictive models.  

 Roadway and railway bridges database 

IP’s Bridge Management System, SGOA, is a decision support tool implemented 
since 2006 with the main goal of prioritising interventions. The SGOA is comprised 

by an inventory module which collects data regarding the assets; an inspection 
module which collects data from principal, routine and sub-aquatic inspections and 

assess the damages; and a maintenance, repair, rehabilitation, and replacement 
module for planning short-term intervention plans (IP, 2017).  

Principal inspections are performed with a frequency of 5-6 years by qualified 

engineers through a close visual observation to each bridge component in order to 
assess the bridge safety. Generally, roadway bridges comprise the components 

enumerated in Figure 1, where number 1) refers to the complete infrastructure; 
2) wing walls; 3) slopes; 4) abutment; 5) bearing devices; 6) piers; 7) deck; 8) 
kerb; 9) parapet; 10) guardrails; 11) sidewalk; 12) pavement; 13) drainage 

system; and 14) expansion joints. Accordingly, based on the inspection findings, 
a condition state (CS) for each bridge component is assigned, and consequently a 

global CS is assigned to the bridge. Table 1 presents the CS scale used for roadway 
bridges. The obtained CS defines the urgency of the intervention to be conducted. 
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Figure 1. Main components of roadway assets (source: Infraestruturas de Portugal, S.A.) 

 

Table 1. Performance indicators used for the condition of roadway bridges (source: 
Infraestruturas de Portugal, S.A.) 

Condition 

State 
Description Action 

0 Excellent Repair is no required 

1 Very Good Some repair is required 

2 Good Non-priority repairs are necessary 

3 Satisfactory 

Materials quality or their execution appears is 
poorer. The deficient operation, with special 

importance in the durability of the 
infrastructure. The intervention can be carried 
out between 3 to 5 years. 

4 Deficient 

The start of the intervention in the short term 
(2 years) must be specified. It is verified that 

the quality of the materials or their execution 
is more defective in function with importance 

in the durability and behaviour of the 
infrastructure. 

5 Bad 

The start of the intervention must be specified 
urgently or in the short term (advisable 1 year 
and a maximum of 2 years). The need for a 

reinforcement/rehabilitation project must be 
specified. Road traffic restriction measures 

must be implemented. 

 

Railway bridges generally comprise the same components as roadway bridges but 
differ in the deck slab, as the railway deck is composed of rail tracks, sleepers, and 
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ballast. As previously mentioned, the CS scale used for railway bridge components 
slightly differs from roadways as shown in Table 2. 

 

Table 2. Performance indicators used for the condition of railway bridge components 
(source: Infraestruturas de Portugal, S.A.) 

Condition 

State 
Definition Action 

0 Normal operating state - 

1 
Existence of defects that do 

not affect the operation 
No long-term corrective action 

2 
Probable or latent failure 

status 
Corrective action in the medium 
term 

3 Imminent failure state 
Corrective action in short- to 
medium-term 

4 Failure state Immediate corrective action 

 

On the other hand, routine inspections are conducted every two years, intercalated 
between principal inspections. During this type of inspections, a Maintenance State 

(MS) indicator is evaluated. This indicator may adopt two different states, namely 
“Priority” or “Non-priority”, which represents the urgency of maintenance activities 
for each bridge component. Basically, the “non-priority” indicator is characterized 

by maintenance activities which do not have to be carried out in the short-term, 
while the “priority” indicator comprises maintenance needs that should be 

performed immediately, as they can compromise the bridge and user’s safety.  

Finally, sub-aquatic inspections are carried out with a frequency of maximum 5 
years, ideally associated with the principal inspections. It should be noted that the 

frequency of the inspections is also governed by the condition state of the asset. 
In general terms, if the CS assigned for the asset is equal or higher than 3, the 

next principal inspection should be performed within 1-3 years depending on the 
surveillance regime defined, i.e. strengthen surveillance (CS=3), or high 
surveillance (CS>=4) (IP, 2017).  

The roadway database for the SAFEWAY pilot comprises inspection records from 
221 different assets by the year 2019. The earliest inspections date from 2006, 

covering a span of approximately 13 years. As the principal inspections are 
performed every 5-6 years, most of the assets have 2 records. Moreover, some 
bridges were recently built, resulting in a lower number of available inspections. 

Similarly, the railway database comprises inspections records from 168 assets by 
the year 2019. In this case, the earliest inspections date from 2000, covering a 

span of approximately 19 years. Thus, most of the assets have 3 records (see 
Table 3). In addition to recording the CS, both databases contain information about 
the assets such as structure type, year of construction, number of spans, asset 
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length and width, and deck material. Table 3 summarizes some relevant 
information about the distribution of bridges according to selected attributes.  

Table 3. Distribution of bridges according to selected parameters 

Structure Type 

 

Construction 

Year 

 

Deck Material 

 

Ro Ra Ro Ra Ro Ra 

Culvert 59 66 1850-1900 4 47 Reinforced 

Concrete 

163 92 

Pedestrian 

Crossing 

2 20 1900-1920 2 4 Masonry 31 48 

Bridge 34 27 1920-1940 9 4 Metallic 27 28 

Overpass 48 25 1940-1960 1 9    

Underpass 27 29 1960-1980 10 3    

Cattle Creep 26 (-) 1980-2000 123 33    

Tunnel 1 (-) 2000-2020 43 22    

Viaduct 24 1 NA 29 46    

Condition States 

 Roadway Railway 

1 2 3 4 5 1 2 3 4 5 

Deck – Reinforced Concrete 192 102 14 5 2 110 51 1 27 4 

Deck – Masonry 14 36 10 4 0 22 55 4 47 7 

Deck – Metallic 7 5 1 0 0 32 23 1 18 0 

Abutments 284 120 28 3 2 241 114 3 42 13 

Bearing Devices 144 39 5 2 0 84 0 32 6 3 

Expansion Joints 115 66 23 11 0 55 7 0 0 0 

Piers 181 38 9 1 0 84 22 0 10 0 

Slopes 279 105 25 6 0 304 30 2 8 3 

Wing Walls 266 113 19 8 1 208 101 4 40 7 

Ro = Roadway; 
Ra = Railway; 
NA = Not available 
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From Table 3 it can be observed that there is a low number of very low condition 
ratings in comparison with the number of available mid-condition ratings. Also, it 
should be noted that the CS from both roadways and railway assets were 

harmonized into 5 states, in order to enable their direct comparison in the 
development of stochastic predictive models (Chapter 2.3). To this end, condition 

states “0” and “1” from roadway assets were merged into a CS “1”, as both states 
(excellent and very good) are very similar and are comparable with the definition 
of the best CS from railways (normal operating state). Furthermore, some filtering 

was performed to both databases in order to remove inconsistencies before its 
implementation in the stochastic predictive models. For instance, records without 

CS were removed, along with cases where an improvement in the CS was 
observed. This latter effect can be attributed to maintenance actions, or condition 
assessment inaccuracy due to the inherent subjectivity of inspectors during the 

visual inspection technique (as further discussed in Santamaria Ariza et al. (2020).  

 

 Pavements database 

IP’s Pavement Management System, SGPav, was developed between 2003 and 

2007. The first network-wide inspections were performed in 2007, and the 
frequency of inspections has been annual since then (Morgado et al., 2019).  

The database provided by IP contains 311 km of pavements within the flood case 

study and 119 km of the fire case. Those pavement lengths are divided in sections 
of 100 m. and classified according; First, type of road such as principal routes, 

complementary routes, national roads, secondary national roads and regional 
roads1. Second, type of region such as Leiria, Coimbra or Santarem. And third, 
these sections are also classified according to the annual average daily traffic 

(AADT). The database incorporates other information such as the identification of 
each section within the National Highway Plan; year of construction, with some 

sections built since 1972 and Km descriptions (initial and final). The main 
pavement sections include annual inspections from 2012 to 2018, in which 
inspections are consigned as each of the components shown in Eq. 1 and provide 

information regarding maintenance process apply as well. Finally, it is important 
to highlight that the quality index of the complete sections depends on the average 

of all the corresponding 100 m sections. 

The quality evaluation methodology used within SGPav is based on a Quality Index 
(QI), which characterizes the pavement condition as a function of several 

parameters collected for a given network stretch. The QI is based on the PSI value 
(Present Serviceability Index), through information obtained by AASTHO. The QI 

is obtained by the Eq. (1) 

 

 𝑸𝑰𝒕 = 𝟓 𝒆−𝟎.𝟎𝟎𝟎𝟐𝟎𝟑𝟎 𝑰𝑹𝑰𝒕 − 𝟎. 𝟎𝟎𝟐𝟏𝟑𝟗 𝑹𝒕
𝟐 − 𝟎. 𝟎𝟑 𝑪𝟑𝒕

𝟎.𝟓 (1) 

 

 
1 Itinerários Principais (IP), Itinerários Complementares (IC), Estradas Nacionais (EN), Estradas Nacionais 
secundarias (End), Estradas regionais (ER) 
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Where: 

IRIt: Pavement longitudinal irregularity in year t (mm/km) 

Rt: Road depth average in year t 

Cct: Cracked area coefficient in year t (m2/100m2) 

 

QI can be measured in a range from 0 to 5, where 5 means the pavement has not 
suffered any alteration. Otherwise, the QI is divided into 4 levels according to the 
distribution shown in Table 4. 

Table 4. Performance indicators used for the condition of pavements 

Qualitative scale QI 

Good 4.50 - 3.50 

Satisfactory 3.49 - 2.50 

Requires attention 2.49 - 1.50 

Unsatisfactory 1.49 - 0.50 

The deterministic models (Chapter 2.2) were built from a set of filtered data 
according to the classifications mentioned above (type of road, type of region and 

AADT). These filters were applied in order to eliminate missing, duplicate or active 
data with important maintenance actions and obtain a reliable data set for 

deterioration models. Is important to mention that into the AADT classification 
three are different ranges AADT<2500, 2500<AADT<7500 and AADT>7500. 

 

 Rail tracks database 

Currently, there is no management system implemented for rail tracks. However, 

condition-based inspections are performed continuously. Track inspection is 
performed using the EM-120, a self-propelled car, which measures the track 
geometric parameters, such as gauge changes, longitudinal level, cross-level, 

track alignment and cant, through a laser measurement system (Morgado et al., 
2019). The condition estate is classified according to EN 14363, which provides a 

track geometry limits QN1, QN2 and QN3 (see Table 5). The quality index is 
obtained at each 200 metres. 

The information provided by IP contains three types of data, track characteristics, 
time and inspection data. First, the track characteristics concern those aspects 
inherent to the railway track, being subdivided into (i-1) line track location and (i-

2) velocity class attributed by the asset manager. Second, the time data concern 
the (ii-1) last year of renovation that was assumed as the year zero (due to the 

non-possibility of knowing the construction date) and (ii-2) inspection year that 
corresponds to the time when the measurements of data were made. Finally, the 
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inspection data concerns the type of track measurements that were made during 
each year of inspection (e.g., track geometric parameters). 

 

Table 5. Performance indicators used for the condition of rail tracks (source: 
Infraestruturas de Portugal, S.A.) 

Designation Limits Action state 

QN1 ≤ Alert limit 
Sections in perfectly normal operating 
conditions, there is no need to plan for 

additional maintenance. 

QN2 
> Alert limit,  

≤ 1.3 * alert limit 

Sections are in normal operating 

conditions. However, the need to plan 
maintenance actions should be 
evaluated, in the context of the short-

term plan of the asset management 
plan. 

QN3 > 1.3 * alert limit 

Sections that are in a deficient 
operating situation, without necessarily 

jeopardizing the sequestration. 
However, more pressing maintenance 
actions should be planned, in the 

context of the short-term plan of the 
asset management plan. 

 

Taking into account that information, the data are clustered assuming that the 

non-influence of the line track location for the track degradation. Consequently, it 
is applying a cluster regarding the velocity class and the type of track. Due to the 
existences of segments with different dates of last year of renovation, sub-groups 

are created according to that date (last year of renovation). Moreover, based on 
the time of each inspection year since the last year of renovation it was assumed 

the time after last renovation (e.g., 2 years) to be used for the evaluation of the 
degradation of the provided data over the time, in both sub-groups and analyse 

groups. 

 UK database 

The methodology proposed based on Collaborative Gaussian Process Regression 

(Chapter 2.3.2) could not be applied to the IP’s dataset since there were limited 
inspection data for every bridge. Another dataset was provided by a large transport 

infrastructure owner in the UK. The dataset consists of inspection records of 
several bridges across the UK maintained by the organisation. Bridges undergo 
regular inspections every three or four years. Maintenance is recommended when 

the condition is lower than predefined threshold values. Each bridge component is 
rated independently based on the infrastructure owner’s internal specifications.  
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The PI used by the organization for the assessment of bridges corresponds to a 
condition index, which ranges from 100 to 0, with 100 indicating perfect condition. 
Different infrastructure owners use different condition indices. However, the 

presented prediction methodology applies to any bridge element, rated by any 
infrastructure owner. 

 

2.2 Deterministic Models 

Deterministic predictive models establish an empirical formula for the relationship 

between the factors affecting infrastructure deterioration and the measured 
condition. The output of a deterministic model represents the average predicted 

condition, with no probabilities involved. Several research studies have applied 
these deterministic methods such as straight-line extrapolation, linear, non-linear, 
and stepwise regressions, and curve-fitting techniques to model infrastructure 

deterioration (e.g. (Bolukbasi, Mohammadi and Arditi, 2004; Morcous, 2011; 
Tolliver and Lu, 2012; Lu, Wang, and Tolliver, 2019). 

To develop regression models, a correlation analysis was initially carried out as an 
attempt to reveal the strength of the relationship between the PI of an asset 

component and the variables that more significantly influence its condition 
(explanatory parameters). Different regressions were implemented to the 
pavements and rail tracks database. It was necessary to apply different clusters 

for each database due to a large amount of data. Those clusters were considered 
as mentioned in section 2.1. For instance, in the pavement database, the filters 

considered among other were road type, region type, and AADT. After verifying 
that it does not follow a normal distribution, through Spearman's coefficient (using 
BMI SPSS software) a weak correlation was found between the quality index and 

the variables considered. Details of this procedure can be found in Appendix 1. 
Table 6 shows the correlation results. The table shows a minimum level of 

correlation between QI and the other variables. However, the Spearman ρ values 

are less than 0.3, indicating a minimum dependence for these variables with QI.  

 

Table 6. Spearman correlations between Quality Index and other variables 

  
Correlation 

coefficient 

Sig. (2-

tailed) 
N 

Inspection Year -0,004 0,601 20270 

ADTT 0,085** 0,000 20270 

ADT 0,101** 0,000 20270 

Year built -0,143** 0,000 20061 

Age at inspection 0,117** 0,000 20061 

Type of road -0,243** 0,000 20270 

Region -0,225** 0,000 20270 

** Correlation is significant at the level 0,01 (2-tailed). 
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Consequently, the degradation model considered the quality index as a dependent 
variable and the Age at inspection as an independent variable. Posterior, model 
regressions were applied and compared regarding R2 value, in order to select the 

model that best fits with the data. The degradation models for the national road 
(EN) in the Leiria region and an annual average daily traffic of less than 2,500, is 

shown in Figure 2.  

 

Figure 2. Model regressions for National roads in Leiria and AADT<2500 

The complete regressions and information for the databases are available in 
Appendix 1. 

 

2.3 Stochastic Models 

 Markov Chains Model 

The Markov chain (MC) approach is the most widespread stochastic deterioration 
modelling technique that has been used for predicting the performance of 

infrastructures. MC models capture the uncertainties and randomness of the 
deterioration process by accumulating the probability of transition from one 
condition state to another over multiple discrete time intervals (Morcous, 2011). 

Generally, discrete-time Markov Chain is used assuming a constant interval 
between inspections. The implementation of such model simplifies the 

mathematical formulation and its computation in order to get the performance 
prediction curve. In these cases, the transition between states is defined by 

computing the transition matrix 𝑷∆𝒕, which is typically an upper triangular matrix 

with null values below the main diagonal to simulate the natural degradation of 
the bridge component: 
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 𝑷∆𝒕 = [

𝒑𝟏𝟏 𝒑𝟏𝟐 ⋯ 𝒑𝟏𝒏

𝟎 𝒑𝟐𝟐 ⋯ 𝒑𝟐𝒏

⋮ ⋮ ⋮ ⋮
𝟎 𝟎 ⋯ 𝒑𝒎𝒏

]

∆𝒕

 (2) 

Where 𝒑𝒊𝒋 corresponds to the transition probability between the state 𝒊  and 𝒋 from 

instant 𝒕 to 𝒕 + ∆𝒕. 

However, in many cases, the assumption behind this model does not correspond 

to reality, i.e., the inspections do not occur in uniform intervals. During the last 
two decades, the scientific community has done some improvements to the original 
Markov-Chain leading to the implementation of new models into the infrastructure 

management systems, namely continuous-time versions to efficiently consider the 
actual interval between inspections. 

In the continuous time Markov Chain, the transitions between states occur in a 

structured manner. Assuming that the chain is in a particular state 𝒊 at time 𝒕 = 𝟎, 

the length of time (sojourn time) spent in the initial state 𝒊 must have the 

memoryless property according with one of the Markov properties. The main 
Markov property states that the next state only depends on the current state and 

not on the past sequence. During a continuous time process, the time between 

system state changes has an exponential distribution that depends only on state 𝒊 
(Sánchez-silva and Klutke, 2016). 

From the mathematical point of view, when intervals are not regular, the transition 

matrix 𝑷 is related to a new matrix known as the intensity matrix 𝑸 through the 

following differential equation (Denysiuk et al., 2016): 

 𝜹

𝜹𝒙
𝑷 = 𝑷𝑸 

(3) 

Where 𝑷 is the transition matrix and 𝑸 is the intensity matrix. The intensity matrix 

𝑸 represents the instantaneous transition probability between state 𝒊 and the state 

𝒋 ≠ 𝒊. In each time interval, the condition state of the component only can advance 

for the higher adjacent condition state. Thus, the elements of 𝑸 are null except for 

the main diagonal and the diagonal above. 

 𝑸 = [

−𝜽𝟏 𝜽𝟐 ⋯ 𝟎
⋮ ⋱ ⋱ ⋮
𝟎 ⋯ −𝜽𝒊 𝜽𝒊

𝟎 ⋯ 𝟎 𝟎

] (4) 

The Equation (3) is known as the Chapman-Kolmogorov equation, and its solution 

allows to compute the transition matrix for any time interval ∆𝒕 from the following 

expression: 

 𝑷 = 𝒆𝑸 ∆𝒕 (5) 

In order to start the process of building Markov model is necessary a historical 
record of condition states assigned during inspections. From a previous analysis of 
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the database, the initial estimate of matrix 𝑸 is computed through the following 

equation: 

 𝜽𝒊 =
𝒏𝒊𝒋

∑ ∆𝒕𝒊
 (6) 

Where 𝜽𝒊 represents the transition rate between the adjacent states, 𝒏𝒊𝒋 is the 

number of elements that moved from state 𝒊 to state 𝒋, and ∑ ∆𝒕𝒊 is the sum of the 

time intervals between observations for which initial state is 𝒊.  

The results obtained from the application of the Markov Chains predictive model 

to the roadway and railway databases described in Chapter 2.1.1, can be found in 
the Appendix 2. As an example, from the results, Figure 3 presents the 
performance prediction of railway bridge decks where it is possible to identify a 

similar degradation after a 75-year period for different deck materials, with a 
slightly higher deterioration observed for metallic decks. Additionally, Figure 4 

compares the prediction for the same bridge component, namely abutments, for 
both transportation modes. It can be observed from this figure, as well from the 
results obtained for other bridge components (in Appendix 2), that components 

associated with the railway network achieve higher condition states at the end of 
the period of analysis. This phenomenon might be associated with the age of 

railway assets which are in general older than roadway assets (as can be verified 
from the year of construction in Table 3). Furthermore, the amount of historical 
data for railway assets is higher when compared with roadway assets, given that 

for the majority of railway assets the condition states started to be assigned since 
2000, while for roadway assets the first condition states were assigned since 2007. 

Finally, for some components, it can be seen from the obtained performance 
prediction curves that the degradation is not very strong at the end of the studied 
period. This effect can be attributed to the fact that maintenance actions are done 

every 15 months in all the bridges, including a general cleaning of the structure 
(e.g. cutting of vegetation), cleaning and lubrication of the bearings, unblocking 

and cleaning of the drainage system and maintenance of special equipment such 
as anti-seismic hydraulic devices (Silva, 2019). Therefore, this minor maintenance 
activities are likely to delay the degradation processes, which is evidenced in the 

prolongated sojourn times at the same condition state.  
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Figure 3. Performance prediction of bridge decks through MC models 

 

 

Figure 4. Performance Prediction of bridge abutments through MC models 
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 Collaborative Gaussian Process Regression 

Presented herein is a prediction model for failures in bridge elements, using 
collaborative Gaussian Process Regression (GPR). GPR is a non-parametric and 

data-driven regression technique that generates a stochastic distribution of 
functions, mapping the inputs to corresponding outputs for a given dataset. A 

major benefit of GPR is that it can quantify the confidence of the predictions 
(Alvarez, Rosasco and Lawrence, 2011). Applications of GPR include Lithium-ion 
battery health estimation (Richardson, Osborne and Howey, 2017) and learning 

the dynamics of robotic arms (Bocsi et al., 2011).  

GPR is selected for bridge condition prediction because of the low frequency of 

bridge inspections. Since the bridges are inspected once in several years, their 
deterioration process cannot be continuously tracked. Moreover, bridges undergo 
timely maintenance activities, and thus uninterrupted inspection records from their 

new to failed states are rare. GPR is capable of extrapolating such scattered 
inspection information to unrecorded health states, and of generating a distribution 

of functions that describe bridge deterioration throughout their lifetime. 

GPR assumes a joint multivariate normal distribution for all outputs in a dataset. 

The output for any given input data point is the marginal normal distribution at 
that point. The marginal distribution for each input point is Gaussian, characterised 
by the mean and standard deviation. The mean is the predicted value of the 

output, and the standard deviation is a measure of confidence. A higher standard 
deviation implies lower confidence. The marginal distribution for unknown points 

is predicted based on their similarity with the known points from the training 
dataset. Depending on the application, the similarity is calculated, using various 
kernel functions that have larger values for points lying closer to one another and 

smaller values for those far apart (Rasmussen, 2004). The maths described here 

were extracted from Rasmussen (Rasmussen, 2004). For the input space 𝑋, the 

corresponding function is estimated as follows: 𝑓: 𝑋 → ℜ from the input space to 

the reals. 𝑓 is a Gaussian process, if for any vector of inputs 𝑥 =  [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇such 

that 𝑥𝑖 ∈ 𝑋 for all 𝑖, the vector of outputs 𝑓(𝑥)  =  [𝑓(𝑥1), 𝑓(𝑥2), . . . , 𝑓(𝑥𝑛)]𝑇is Gaussian 

distributed. GPR is specified by a mean function 𝜇: 𝑋 → ℜ, such that 𝜇(𝑥) is the mean 

of 𝑓(𝑥) and a covariance/kernel function 𝑘: 𝑋 × 𝑋 → ℜ such that 𝑘(𝑥𝑖, 𝑥𝑗) is the 

covariance between 𝑓(𝑥𝑖) and 𝑓(𝑥𝑗). We say 𝑓 ∼ 𝐺𝑃(𝜇, 𝑘) if for any 𝑥1, 𝑥2, . . . , 𝑥𝑛  ∈ 𝑋, 

[𝑓(𝑥1), 𝑓(𝑥2), . . . , 𝑓(𝑥𝑛)]𝑇 is Gaussian distributed, with mean [𝜇(𝑥1), 𝜇(𝑥2), . . . , 𝜇(𝑥𝑛) ]𝑇and 

𝑛 × 𝑛 covariance/kernel matrix 𝐾𝑥𝑥, Eq. (7). 

 𝑲𝒙𝒙 = [

𝒌(𝒙𝟏, 𝒙𝟏) 𝒌(𝒙𝟏, 𝒙𝟐) ⋯ 𝒌(𝒙𝟏, 𝒙𝒏)
𝒌(𝒙𝟐, 𝒙𝟏) 𝒌(𝒙𝟐, 𝒙𝟐) ⋯ 𝒌(𝒙𝟐, 𝒙𝒏)

⋮ ⋮ ⋮ ⋮
𝒌(𝒙𝒏, 𝒙𝟏) 𝒌(𝒙𝒏, 𝒙𝟐) ⋯ 𝒌(𝒙𝒏, 𝒙𝒏)

] (7) 

GPR sequentially evaluates the covariance for neighbouring points using a kernel 
function, followed by calculating their corresponding marginal distributions. As the 
granularity of neighbouring unknown points is increasing, it approaches a 

continuous domain and eventually is equivalent to a function with the domain of 
all possible input values. Despite poor scalability due to the computations involved, 
GPR models can be optimised and achieve a satisfactory trade-off between fitting 
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the data and smoothing. GPR is therefore a favourite solution for problems with 
small regression datasets (Chapados and Bengio, 2007).  

For the presented problem, the methodology for bridge element condition 

prediction can be separated into the following main phases: (i) clustering of similar 
bridges and pooling of their data together; and (ii) application of GPR to fit 

functions to data. Clustering similar bridges (phase 1) leads to a more descriptive 
record. For the reasons explained before, a single bridge would not have enough 
data describing its deterioration. To cluster similar bridges, features that govern 

the deterioration process are identified. Such features might be intrinsic like bridge 
material, mileage, or span count, or extrinsic like local weather conditions or 

traffic. The hypothesis is that bridges with common features are bound to 
deteriorate similarly. Such collaborative deterioration modelling has been 
presented as a successful solution to the problem of the lack of local data in recent 

literature (Palau et al., 2018). Within a cluster, the inspection records 
corresponding to different ranges of bridge health conditions are concatenated 

together and a common training dataset is attained. This dataset consists of a 
time-series of inspections starting from the best inspected health state in the 

cluster and finishing with the worst.  

It should be noted that if there is a requirement for bridges to have multiple or all 
of their features similar to be in the same cluster, then the cluster size will be 

significantly reduced. In the extremity, this would be representative of the case 
where the bridges in a cluster are required to be identical and we would fall back 

to the original problem of data scarcity. On the other hand, lenient clustering would 
cause the bridges to be too different (with their deterioration rate being different 
too) and undermine the purpose of clustering. Work in progress focuses on finding 

a trade between strict and lenient clustering. An automated algorithm will be able 
to identify the sweet spot, where a cluster holds enough data to be modelled 

confidently. In the presented case study, clustering is based on the material of 
bridge decks. There were four different materials and thus four clusters. Clustering 
was based on only one feature due to the lack of extensive data. This feature (i.e., 

material) was selected because it the major influencer amongst the available 
features, according to bridge engineers of the organisation, which provided the 

data.  

Next (Phase 2), GPR is used to predict values for unknown data points. Since the 
bridge health deteriorates over time, we need a decreasing mean value function 

for the GPR priors. This is different from conventional applications where the mean 
is usually zero, or a constant value. The mean value for regression is calculated by 

fitting a straight line using a least square fit. Using this mean value and random 
covariances, a prior distribution of functions is generated. This distribution is 
updated according to the data from the previous step, with exponential kernel (8) 

calculating covariances for unknown data points: 

 𝒌(𝒙𝒂, 𝒙𝒃)  =  𝝈𝟐𝒆𝒙𝒑(
−(𝒙𝒂 − 𝒙𝒃)𝟐

𝟐 ∗ 𝒍𝟐
) (8) 

where 𝑙 =characteristic length 

𝜎2  =signal variance        
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(𝑥𝑎 , 𝑥𝑏) =points for which covariance is calculated 

Analyses for the two clusters (amongst the four available clusters) with the highest 

number of data points (71 points for both) are presented here. To concatenate the 
data points within clusters, the average rates of deterioration were used as 
references, assuming the deck to be aged zero at condition index 100.  

 

Figure 5. Plot obtained after concatenating data points from cluster 1 

For example, the bridge age for condition index 99 would be calculated using the 

average rate of deterioration between the indices 100 and 99. This is followed until 
condition index 0. For consecutive inspections within a cluster, the first inspection 
was marked on the plot with y-axis value equal to its health index, and x-axis 

value as the corresponding reference age. For the next inspection, y-axis value 
was its new condition index and x-axis value was its previous age plus the time 

since previous inspection. Eventually, a plot with condition index on the y-axis and 
age on the x-axis was obtained. An example for such a plot for one of the clusters 
is shown in Figure 5, where the red cross-marks are individual data points. 



 
 

 

D5.1 – Dynamic Risk-based Predictive Models 31 

 

 

Figure 6. Posterior distribution of functions for cluster 1 

In Phase 2, GPR was applied for fitting distributions of functions to individual 

clusters. A straight line was first fit to obtain prior mean values, followed by 
calculating posterior distribution of the functions. Exponential kernel function with 
characteristic length (l) equal to 45 and signal variance equal to 100 was found 

suitable for calculating the covariance matrix of the clusters. Posterior distribution 
for the cluster in Figure 5 is shown in Figure 6, where the red dotted line represents 

the posterior mean and the grey region shows the standard deviation. Figure 7 
displays the same technical plot for cluster 2. Certain ambiguities can be seen in 

these plots, for example the data points corresponding to different bridges Figure 
6 and Figure 7 are not exactly similar. This is due to the fact that only a single 
feature, i.e., the deck material, was used as the basis for identifying the clusters. 

The clustering step can be further improved, depending on the application, if more 
features are incorporated while clustering the bridges. 

Summarising, the condition of a bridge deck, which has never been maintained 
and it is characterised by common features as the clusters, can be estimated based 
on its age using the plots in Figure 6 and Figure 7. The red line is the predicted 

value, and the grey region is the confidence of prediction. The quality of the 
prognosis was evaluated using 5-fold cross validation, with 80% of data being used 

for training and 20% of data being used for testing, in each run. The data points 
(i.e., actual condition values) consisting the testing set were compared with the 
predicted values (i.e., red line in Figure 5 and Figure 6), which were calculated by 

the model using the training set. The mean absolute error was equal to 8%. 
Additionally, the narrower the grey region Figure 6 and Figure 7, the more 

confident the prediction is and vice versa. As it can be observed from the plots, 
the presence of more and closely located data points causes more confident 
predictions. Moreover, for the conditions where we do not have any historical 
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inspection data, the confidence of predictions is very low. For example, the 
standard deviation of predictions is very high after t = 650 in Figure 6. In such 
situation, it is recommended for the infrastructure owner to resort to a 

conservative maintenance plan and observe the bridge deterioration more 
frequently. 

 

Figure 7. Posterior distribution of functions for cluster 2 

The proposed collaborative GPR-based model was applied to a case study, with 
several significant outcomes being extracted. Firstly, most of the data from bridge 

inspections are concentrated within 80 to 40 condition index range. In the 
examined cluster, very few bridges have inspection records for very fragile 
conditions due to a safety threshold, set by the organisation. A bridge element 

must be repaired or replaced if its condition index is below 40. The repair or 
maintenance strategy is based on the type of element and existing defects. 

Secondly, the proposed method of clustering similar bridges to expand the dataset 
is deemed applicable since the rates of deterioration are nearly constant and the 
standard deviation tight within the cluster. Moreover, when GPR was applied for 

combined data of all bridges, the grey region was more spread out. Thirdly, there 
are some outliers, but GPR can understand the common behaviour and fit a 

distribution of predictor functions. It can be observed in both Figure 6 and Figure 
7 that the grey region narrows down where the concentration of data points 
increases near the mean and broadens in the presence of the outliers indicating 

less confidence in the predictions. 
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2.4 Dynamic Predictive Models 

Structural reliability has developed rapidly and has become widely accepted among 
researchers and owners over the past decade providing valuable information about 

the structural condition of infrastructures. Taking into account that bridges are 
critical components of the road infrastructure, bridge failure or collapse can have 

adverse consequences for the economy and the environment and even the life and 
physical integrity of society (Chang and Song 2016). 

Reliability, considered one of the most important key performance indicators, is 

associated based on the uncertainty, loads, and strength of the structure. The 
procedure is carried out from the ultimate limit states (moment and shear load 

capacities) using design and construction information. This deterministic approach 
is based on individual components analysis in which the structure capacity is 
defined when any of the components reaches its maximum capacity (Czarnecki 

and Nowak, 2006).  

It is worth mentioning that applying reliability assessment requires a great effort 

in terms of information from the design phase or previous maintenance activities. 
However, a bridge management system is normally assessed by observable 

damage recorded during inspections, resulting in a qualitative measure, called a 
condition rating, condition state, condition class, along with others. The inspection 
results are generally stored in databases, while information from the design phase 

such as load combinations, safety factors are generally not stored. Even after 
maintenance interventions, where there is relevant information on safety and 

serviceability, it is not stored either. Also, in most cases when stored on paper, 
the stored information is lost due to negligence or accidents.  

Authors such as Rade Hajdin, Casas, and Matos (2019) mention that the optimal 

procedure would be to change from condition rating to reliability index, thus move 
on from a qualitative measure to a quantitative key performance indicator. Since 

condition rating is not a measure that can easily be correlated with bridge safety, 
serviceability, or reliability, another option should be considered for integrating 
both measures. Nevertheless, there is a gap in terms of procedures to incorporate 

the information obtained from visual inspections into a reliability assessment. 
Moreover, to define optimal maintenance, rehabilitation, and replacement 

strategies for bridge networks, it is necessary to consider the deterioration 
predictions as well. Therefore, the reliability model must be constantly updated 
according to the current state of the bridge throughout its useful life. 

This section describes an assessment methodology for existing infrastructures 
health based on the system reliability. To show the methodology effectiveness, a 

time-reliability analysis, and an update are developed based on the inspection 
results of one bridge of the Portugal case study (SAFEWAY, 2019c). It should be 
noted that this approach can be applied to any type of structure or material, as 

long as the necessary information is available from both design and inspection on 
the state of deterioration.  
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Figure 8. The proposed framework for bridge reliability updating 

The methodology consists of 5 main steps, as shown in Figure 8. First, the initial 
reliability level calculation. Second, incorporation of degradation models. Third, 
inspection records. Fourth, translation from condition ratings to probabilistic terms 

and Bayesian updating. And finally, after the previous steps, obtaining the time-
dependent updated reliability level. Each of these steps is explained in more detail 

below. 

 Reliability Analysis  

There are several methods for reliability assessment. However, these methods 

differ regarding precision, required input data, and computational effort. There is 
also a differentiation concerning the range of application, as it may be suitable 

procedures for reliability analysis of individual components or complete structural 
systems (Czarnecki and Nowak, 2006). 

The safety level will be assessed in terms of a reliability index (𝜷), defined as a 

function of the probability of failure. The reliability analysis is performed for the 
strength prediction models based on design code procedures, having account the 

use of yield capacity verifying when predicting ultimate moment or shear capacities 
for heavily corroded RC beams. The use of moment or shear capacities depends 

on the critical condition of elements and their influence over the whole 
infrastructure. The general form of the limit state function is expressed as (9): 

 𝒈 = 𝑹 − 𝑸 (9) 

Where 𝒈 is the limit state function; 𝑹 is the resistance and, 𝑸 the load effect. If the 

function 𝒈 ≥ 0, the structure is safe, i.e., the load-bearing capacity of the assessed 
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structure is higher than the effects (stresses or internal forces) of the applied 

loads. Otherwise, when 𝒈 < 0 the structure is not safe (Nowak, 2004). Therefore, 

in terms of failure probability, 𝑷𝒇, is given when the probability that the limit state 

function reaches a negative value (Rakoczy and Nowak, 2013) as is show in Eq. 
(10). 

 𝑷𝒇 = 𝑷(𝑹 − 𝑸 < 𝟎) = 𝑷(𝒈 < 𝟎) (10) 

Moreover, the reliability index 𝜷 is related to the probability of failure as Eq. (11):  

 𝜷 = −𝚽−𝟏 (𝑷𝒇) (11) 

Where 𝚽−𝟏 is the inverse standard normal probability distribution function. 

 

2.4.1.1  Resistance model 

This methodology focuses on resistance prediction models based on the 

procedures specified in the design codes, which refer to the elastic limit. Therefore, 
shear and yield strength are verified by predicting the ultimate moment for the 

element. Another important aspect is that the analysis is considered according to 
the critical elements involved in the resistance system. Such as elements without 
which it is possible to guarantee the safety of the structure or those segments 

and/or structure elements where the damage has the greatest impact on safety 
and serviceability. In other words, vulnerable zones can be related to various 

failure modes.  

The identification of critical elements can be mainly based on design concepts, 
which may be taken into account as conceptual weaknesses. For example, in a 

reinforced concrete bridge one of its critical elements is the girders. This is 
illustrated in Figure 9, where the conceptual weaknesses are marked with "CW" 

both at the element level and the cross-sectional level (e.g., in a prefabricated 
multicellular cross-section). 

 

Figure 9. Conceptual weaknesses for bridge systems, From (Hajdin, Kušar, Mašovic, et al. 
2018) 
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Another way to identify vulnerable areas is through inspection experience. On 
another hand, damage detected outside vulnerable areas can sometimes also incur 
failures, although it occurs only in cases where the extent of the damage is 

significantly greater than in vulnerable areas. Additionally, there are elements 
buried or embankment, which are difficult to access. But there are symptoms such 

as structure or embankment deflection/settlement that can indicate a hidden 
damage process. Therefore, an additional failure mode associated with the 
observed damage must be considered (Hajdin, Kušar, Mašovic, et al. 2018). 

Returning to the example of a reinforced concrete bridge, where the most critical 
element is the beams. The yield strength is directly proportional to the section 

strength (and the capacity of the reinforcing bar), where ultimate flexural capacity 
(Mu) of a singly reinforced RC beam can be expressed as Eq. (12) (ACI 318 2014): 

 𝑴𝒖 =  𝑨𝒔𝒇𝒚 (𝒅 −
𝑨𝒔𝒇𝒚

𝟏. 𝟕𝒇𝒄
′  𝒃

) (12) 

Depending on the concrete compressive strength (𝒇𝒄
′ ), the effective depth (𝒅), 

beamwidth (𝒃), the yield stress (𝒇𝒚) and the cross-sectional area of reinforcement 

(𝑨𝒔). Meanwhile, the ultimate shear capacity of a girder with shear reinforcement 

(𝑽𝒖) comprises the shear capacities of the concrete (𝑽𝒄) and the shear 

reinforcement (𝑽𝒔) as is shown in Eq. 8, 9, and 10. 

 𝑽𝒖 = 𝑽𝒄 + 𝑽𝒔 (13) 

 𝑽𝒄 = 𝟎. 𝟏𝟕 √𝒇𝒄
′ 𝒃𝒅 (14) 

 𝑽𝒔 = 𝒏𝒗𝑨𝒗𝒇𝒚 (15) 

Where 𝒏𝒗 is the number of stirrups and 𝑨𝒗 is the cross-sectional area of shear 

reinforcement (stirrup) (ACI 318 CODE, 2014). 

It is worth explaining that in a system with components in a series configuration 

arranged, the system failure is conditioned by the failure of any member. 
Therefore, the component with the lowest reliability is the one that has the greatest 

effect on the reliability of the system. The best example for this is a chain, where 
all the rings are in series and if any of the rings break, the system fails. Thus, the 
weakest link dictates the chain strength in the same way that the weakest 

component/subsystem dictates the reliability of a series system. Whereas a system 
with its components distributed in parallel is at least as strong as its strongest 

member. Consequently, the system does not fail until all its members fail. As 
opposed to a series system, in a parallel configuration, the component with the 
highest reliability is the one that has the greatest effect on the reliability of the 

whole system (Estes, 1997). 

The resistance capacity of a reinforced concrete section considers 𝒏 number of 

reinforcing bars in a parallel system. Likewise, the total capacity of the structure 

can also be considered, with 𝒏 number of beams in a parallel system. This principle 

can be applied to any infrastructure, considering the infrastructure as the sum of 
its most critical elements in a series-parallel system regardless of the type of 

material. 
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On the other hand, it is important to highlight that in this analysis some terms of 
the resistance model are treated as random variables. In which, a random variable 
is a function conceived in intervals on the axis of the real numbers (Nowak & 

Collins, 2013). The resistance represents the load-carrying capacity of the 
infrastructure according to the critical element evaluated, which is affected by 

uncertainties because of the variability in the strength of the materials, the 
dimensions, and the analysis procedures (Rakoczy and Nowak, 2013). The 
selection of the parameters to be considered as random variables (RVs) is 

performed considering previous knowledge and engineering judgment. Therefore, 
most of the terms for the expression shown in Eq.(12) or Eq. (13) can be treated 

as a probabilistic parameter such as concrete compressive strength (𝑓𝑐
′), 

reinforcement yield strength (𝑓𝑦), and steel area (𝐴𝑠). Also incorporating an 

uncertainty model (𝜃) into the equations Eq.(12) and Eq. (13) (Estes and 

Frangopol, 1999). 

 

2.4.1.2 Load model 

The load model considers the main components such as dead load, live load, 

dynamic load, environmental loads (temperature, wind, earthquake) among others 
(collision, braking). These charges are taken into account according to the 

availability of the information available in each case. It is worth mentioning that 
the load is described through a cumulative distribution function, including a bias 
factor (the relationship between the mean and the nominal value) and the variation 

coefficient, in order to consider the load variation (Czarnecki and Nowak, 2006). 

The most common combination is normally dead and live load. Dead load involves 

gravity loading due to the self-weight of permanently attached structural and non-
structural components. Meanwhile, live loads which depend on use and capacity 
due to those loads are translated to loads that vary over time, such as people or 

moving objects. In both cases, dead or live loads, the codes provide a calculation 
of equivalent loads for different types of structures, according to experience and 

accepted practice (Nowak 1995). 

For instance, consider the load model for a bridge. In terms of dead load, maybe 
include the weight of the beams, deck slab, wear surface, barriers, sidewalks, and 

diaphragms, where applicable. In this case, the bias factor must also be included, 
which depends on the manufacture of the items considered as factory-made 

components or cast-on-site components (Nowak 2004).  

Regarding live load for bridges, this is typically represented by a specifically 
designed truck, rail cargo, or military cargo. Whit this proposes fixed or constant 

variables are assumed such as the axle spacing and percentage of the total load 
per axle, while variables such as the gross vehicle weight or the transverse position 

of the truck within the roadway (curb distance) are assumed as random variables. 
Besides, the distribution factor (fraction of the total truckload per beam) may be 
included as well (Czarnecki and Nowak, 2006). 

Dynamic loading is due to the same dynamic properties of the bridge, surface 
roughness, and the vehicle's suspension system. Defining dynamic load factor as 

the ratio of dynamic deformation (or deflection) and static deformation 
(deflection). A dynamic load factor can be conservatively assumed as 0.10 and the 
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coefficient of variation as 0.80 (Nowak 2004). An example of statistical parameters 
for the load model can be found in the available literature ( Nowak 1995; Estes 
and Frangopol 2003). 

 Analytical Degradation Models  

Structures tend to deteriorate over time according to their materials. In the case 

of reinforced concrete, the poor durability of the concrete and especially the 
reinforcing steel corrosion has been identified as one of the major causes of the 
premature rehabilitation of reinforced concrete structures (Tuutti, 1982). During 

this time, the chloride ions are diffusing through the concrete cover until the steel 
surface and thereby initiate corrosion (Ma et al., 2013), especially those 

infrastructures exposed to aggressive chloride environments. Corrosion-initiated 
can be present as a uniform reduction of steel area across the section or as 
localized corrosion pits along the length of the rebar (Higgins and Farrow, 2006) 

(Ghosh and Sood, 2016). Area reductions in the cross-section of the element can 
become significant, for instance, up to 80% loss of cross-section was observed in 

a 40-year-old Canadian bridge (Palsson and Mirza, 2002). There is also evidence 
to suggest that corrosion not only causes area loss but also results in the linear 

degradation of yield strength of reinforcing bars (Stewart, 2009; Jnaid and 
Aboutaha, 2016). 

Taking into account the impact of environmental conditions, the curing of the 

concrete and the densification of the cement paste, the migration of chloride ions 
through the concrete can be represented. In this case, Fick's second law of 

diffusion is used through a semi-infinite solid medium, in which the corrosion onset 
time can be generically represented as Eq.(16) (Enright and Frangopol, 1998): 

 𝑻𝒊 = {
𝒙𝟐

𝟒𝒌𝒆𝒌𝒄𝑫𝒄𝒍,𝟎(𝒕𝟎)𝒏𝒅
[𝒆𝒓𝒇−𝟏 (

𝑪𝒔 − 𝑪𝑪𝒓

𝑪𝒔
)]

−𝟐

}

𝟏
(𝟏−𝒏𝒄𝒍)

 (16) 

Where, 𝑻𝒊 is the corrosion initiation time (𝒚𝒆𝒂𝒓𝒔), 𝒙 is the concrete cover depth 

(𝒎𝒎), 𝑫𝒄𝒍,𝟎 is the reference diffusion coefficient (𝒎𝒎𝟐/𝒚𝒆𝒂𝒓) determined from 

compliance tests, 𝒌𝒄 is the curing factor, 𝒌𝒆 is the environmental  factor, 𝒕𝟎 is the 

age of concrete in years when the compliance test is performed, 𝒏𝒄𝒍 is the age 

exponent that incorporates the densification of cement paste due to further 
hydration, Cs is the equilibrium chloride concentration at the exposed concrete 

surface, 𝑪𝒄𝒓 is the critical chloride concentration, and 𝒆𝒓𝒇 is the Gaussian error 

function. 

Then assuming a continued steel area loss, the uniform corrosion model, equally 

around the cross-section with the residual cross-sectional area 𝐴𝑟
𝑢(𝑡) at time 𝑡 

calculated as Eq. (17). 

 
𝑨𝒓

𝒖(𝒕) =
𝝅 [𝑫𝟎 − 𝟐 ∫ 𝒓𝒄𝒐𝒓𝒓(𝒕𝒑)𝒅𝒕𝒑

𝒕

𝑻𝒊
]

𝟐

𝟒
 

(17) 
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In which, 𝑫𝟎 is the initial steel diameter before corrosion initiation (𝒎𝒎), 𝒓𝒄𝒐𝒓𝒓(𝒕𝒑) 

is the time-dependent corrosion rate (𝒎𝒎/𝒚𝒆𝒂𝒓) calculated at 𝒕𝒑 years since 

corrosion initiation as a function of 𝒊𝒄𝒐𝒓𝒓(𝒕𝒑) (𝝁𝑨/𝒄𝒎𝟐) as Eq.(18). 

 𝒓𝒄𝒐𝒓𝒓(𝒕𝒑) = 𝟎. 𝟎𝟏𝟏𝟔 ∙  𝒊𝒄𝒐𝒓𝒓(𝒕𝒑) (18) 

Where 𝒊𝒄𝒐𝒓𝒓(𝒕𝒑) can be calculated as Eq. (19). 

 𝒊𝒄𝒐𝒓𝒓(𝒕𝒑) = 𝟎. 𝟖𝟓 𝒊𝒄𝒐𝒓𝒓,𝟎𝒕𝒑
−𝟎.𝟐𝟗 (19) 

𝒊𝒄𝒐𝒓𝒓,𝟎 is the initial corrosion rate (𝝁𝑨/𝒄𝒎𝟐) calculated as a function of concrete cover 

depth (𝒙) and water-cement (𝒘/𝒄) ratio, how is shown in Eq. (20). 

 𝒊𝒄𝒐𝒓𝒓,𝟎 =
𝟑𝟕. 𝟖 (𝟏 − 𝒘/𝒄)−𝟏.𝟔𝟒

𝒙
 (20) 

It is important to highlight that the value of concrete cover depth (𝒙) must be in 

𝒎𝒎 for this equation (Ghosh and Sood, 2016). 

Since corrosion causes area loss and it consequently results in the degradation of 

yield strength causing structural strength decrease. Du, Clark, and Chan (2005) 
mention that the reinforcing yield stress is reducing approximately linearly with 
corrosion loss as Eq. (21): 

 𝒇𝒚(𝒕) = [𝟏. 𝟎 − 𝜶𝒚

𝑨𝟎 − 𝑨(𝒕)

𝑨𝟎
∙ 𝟏𝟎𝟎] ∙ 𝒇𝒚𝟎 (21) 

where 𝒇𝒚𝟎 is the yield stress, 𝑨𝟎 is the area of the uncorroded steel bar. 𝑨(𝒕) is the 

area of corroded steel bar which changes with time, and 𝜶𝒚 is an empirical 

coefficient that depends on the material properties in a specific corrosive 
environment, assuming to be normally distributed with a mean of 0.009 and a 

standard deviation of 0.001. In this way, the section resistance (and the capacity 
of the reinforcing bar) is directly proportional to the yield capacity which is equal 

to the product of the yield stress and the cross-sectional area, both affected by 
corrosion. by bite. 

On the other hand, To consider the corrosion penetration in the case of steel 
elements, the model developed by Albrecht and Naeemi (1984) will be 
implemented. This model predicts corrosion loss through a regression analysis of 

a database collected in the field. Where the corrosion penetration 𝑪(𝒕) (𝝁𝒎) at any 

time (𝒕) (𝑦𝑒𝑎𝑟𝑠) may be expressed as Eq. (22). 

 𝑪(𝒕) = 𝑨𝒕𝑩 (22) 

In which 𝑨 and 𝑩 parameters are based on different environments such as rural, 

industrial, and marine environments, besides the type of steel. For more detailed 

information on parameters 𝑨 and 𝑩 see (Albrecht and Naeemi, 1984). 
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2.4.2.1  Inspections 

By taking the degradation models into account, the reliability index can be 

calculated at any time (𝒕), which allows identifying when the infrastructure is no 

longer considered safe. Since this analysis is based on a predictive model, periodic 
inspections are highly important in order to provide additional data regarding the 

structure state. It is not only to validate and update the models but to support 
decision-making about design, construction, maintenance; and structural 

intervention, made by infrastructure management over time. Inspection data can 
be used to update structural features, increasing the accuracy of the models (Hall, 
1988). Therefore, at shorter intervals between inspections, the greater the 

reliability analysis confidence. Thus, providing a tool for evaluating the future 
condition and performance of structures, allowing adequate inspection and 

maintenance strategies to maintain reliability at an acceptable level (Ellingwood 
and Mori, 1993). 

There are two main categories when it comes to in-service structural evaluation 

methods (Ellingwood, 2007). The first category corresponds to methods for 
detecting faults and measuring their extent. Typically, these methods are based 

on visual inspection, which makes it easier to identify surface defects than internal 
ones. However, this has some disadvantages, such as difficulty in accessing all 
parts of the structure for inspection or incorrect conclusions. On the other hand, 

the second category refers to the methods that indicate the strength in situ, either 
directly or indirectly. Given that the materials of the structures in service can vary 

considerably from the values assumed during the design stage, not considering 
these changes in the degradation model can lead to an erroneous reliability 
estimation. The methods implemented in this category may be non-destructive 

evaluation (NDE) (rebound hammers, ultrasonic pulse velocity measurements) or 
may involve local damage to the structure (tensile coupons, drilled cores, pull-out 

tests). It is worth mentioning that no category is uncertainty exempt in the 
degradation analysis. 

There are also uncertainties associated with the inspection process itself, 

complicating the effects on structural performance (Ellingwood, 2007). Which arise 
from: 

• Differences in codes and design standards for components of different ages. 
• Lack of measurements and records in service. 

• Temporal and spatial variations in-service loads. 
• Models limitations to quantify time-dependent material changes and their 

contribution to structural capacity. 

• Limitations in NDE technologies application. 
• Deficiencies in existing rehabilitation and repair methods. 

 

This is why an aging management approach developed within a framework of 
structural reliability is required. Consequently, there are different guidelines for 

infrastructure inspection practices, which differ considerably from country to 
country. But generally, the evaluation may be divided into phases. This implies a 

preliminary evaluation, a detailed investigation, expert evaluation, and, finally, an 
advanced evaluation, depending on the structural condition of the infrastructure 
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(Saviotti, 2014). Based on these phases, Omar and Nehdi (2018) classify the most 
relevant techniques for condition assessment into five different groups, as shown 
in Figure 10. 

 

Figure 10. Condition Assessment Mechanisms, from Omar and Nehdi (2018) 

However, there are still many limitations to the use of this type of evaluation and 
monitoring techniques of the state of infrastructures. Each of the mentioned 

categories has different scopes and limitations. For more detailed information on 
each of the categories refer to Omar and Nehdi (2018). 

 

2.4.2.2 Bayesian Updating 

Bayesian updating techniques are very useful to combine inspection data of these 

parameters and prior information into a predictive model. Bayesian updating uses 
both the prior information and new inspection information to find the relative 

uncertainty associated with each (Frangopol and Estes, 1997). 

Therefore, Bayesian statistics purpose is to represent the prior uncertainty about 
the model parameters with a probability distribution and update it with current 

data to provide a posterior probability distribution with parameters that contain a 
lower degree of uncertainty. Since from the Bayesian approach, any quantity 

whose real value is uncertain can be represented with probability distributions. 
Bayes' theorem, expressed in terms of probability distributions, appears as Eq. 
(23) (Lynch, 2007). 

 
𝒇(𝜽|𝒅𝒂𝒕𝒂) =

𝒇(𝒅𝒂𝒕𝒂|𝜽)𝒇(𝜽)

𝒇(𝒅𝒂𝒕𝒂)
 

(23) 

Where 𝒇(𝜽|𝒅𝒂𝒕𝒂) is the posterior distribution of 𝜃 parameter, 𝒇(𝒅𝒂𝒕𝒂|𝜽) is the data 

sampling density (which is proportional to the likelihood function, only differing by 

a constant that makes it a proper density function), 𝒇(𝜽) is the prior parameter 

distribution and 𝒇(𝒅𝒂𝒕𝒂) is the marginal probability of the data, computed as Eq. 

(24) for a continuous sample space. 
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𝒇(𝒅𝒂𝒕𝒂) = ∫ 𝒇(𝒅𝒂𝒕𝒂|𝜽)𝒇(𝜽)𝒅𝜽 

(24) 

The integral of the sampling density multiplied by the prior over the sample space 

𝜽. This quantity is sometimes called the "marginal probability" for the data and 

acts as a normalization constant to make the posterior density suitable. 

For instance, assuming an influencing parameter of strength described as a 

random variable 𝜽, believed to have a density function 𝒇′(𝜽) where 𝜽 is the 

parameter of that distribution (i.e., the deterioration model). On the other hand, 
in an inspection, there is a set of values x1, x2 … xn that represent a random 

sample from a population 𝑥 with underlying density function 𝒇(𝒙) are observed and 

are fit to a new density function 𝒇(𝒙𝒊) (i.e., the visual inspection results 𝑓(𝑑𝑎𝑡𝑎|𝜃)). 
The updated or posterior density function 𝒇′′(𝜽) which uses both sets of information 

and provides the best use of both (𝑓(𝜃|𝑑𝑎𝑡𝑎)) can be expressed as Eq. (25) (Estes 

& Frangopol 2003). 

 𝒇′′(𝜽) = 𝒌 𝑳(𝜽) 𝒇′(𝜽) (25) 

where 𝑳(𝜽) is the likelihood function and 𝒌 is the normalizing constant. For the case 

where both 𝒇′(𝜽) and 𝒇(𝒙) are normally distributed, the posterior function 𝒇′′(𝜽) is 
also normally distributed and has the mean value and standard deviation, 
respectively, as Eq. (26). 

 𝝁′′ =
𝝁(𝝈′)𝟐 + 𝝁′(𝝈)𝟐

(𝝈′)𝟐 + (𝝈)𝟐
     𝝈′′ = √

(𝝈′)𝟐(𝝈)𝟐

(𝝈′)𝟐 + (𝝈)𝟐
 (26) 

Where 𝝁, 𝝁′ and 𝝁′′ are the mean values of the inspection results, the prior 

distribution, and the posterior distribution, respectively, and 𝝈, 𝝈′ and 𝝈′′ the 

standard deviations of those same distributions. 

 

2.4.2.3  Target reliability 

There are three different outputs for reliability index use. First, it is the probability 

of failure itself, which also serves to determine which variables have the greatest 
influence on the structure reliability. Second, for a single structure, the reliability 

index can be directly compared to some target value depending on the structural 
type and failure mode, which is generally defined by design codes. And finally, for 
multiple structures, classification and prioritization of the infrastructures can be 

established in terms of their respective reliabilities and a target value. Although 
there is no absolute certainty regarding the reliability analysis, particularly 

concerning the probability of failure and the comparison of a target value. This 
procedure allows the judgment of the relative bridge safety concerning the 
inherent safety level of the code, expressed as a ratio. However, there are still 

gaps in the interpretation of a ratio that is close to unity (Lark and Flaig, 2005). 

Different guidelines and codes present recommended values to be used in the 

design and assessment of infrastructures, such as JCSS publication and the 
standard ISO 13822. 
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 Case study: application example 

The selected bridge is located between Albergaria dos Doze-Alfarelos in central 
Portugal, crossing the Arunca river. The bridge is operating since 2005 and is part 

of the railway network of the Santarém/Leiría Region. It has four simply supported 
spans for a total length of 66.63 m. Regarding superstructure, the cross-section is 

a “H” shape in each direction, which consists of two beams of 1.35 m high and a 
0.4 m slab that serves as a connection between both beams as shown in Figure 
11. 

 

Figure 11. Simões railway bridge. a) Deck cross-section detail. b) Lateral view. Source: 

Infraestruturas de Portugal 

It is considered that the critical elements are the simply supported beams of the 
superstructure. Therefore, they are established as the element that most 
influences the reliability of the entire bridge, that is, considering that the failure of 

the beams will cause the collapse of the bridge. 

Likewise, it is important to mention that for the practical example, the bridge will 

only be analyzed for moment loading (flexural strength), focusing on the beams 
as a critical element. However, the methodology is applicable in the same way for 
the shear effects and for evaluating the reliability of all the bridge components 

needed for obtaining total structure reliability. 

 

2.4.3.1  Resistance model 

The resistance model that represents the bridge load capacity is mainly affected 

by the uncertainties due to the variability in the materials resistance, dimensions, 
and the analysis procedures (Rakoczy and Nowak, 2013). Taking into account the 
above, the flexural strength for the entire section can be calculated as Eq.(27) 

(Santamaria et al., 2019): 

 
𝑴𝑹 = 𝑨𝒔𝟏𝒇𝒔𝟏𝒅𝒔𝟏 + 𝑨𝒔𝟐𝒇𝒔𝟐𝒅𝒔𝟐 + 𝑨𝒔𝟑𝒇𝒔𝟑𝒅𝒔𝟑 + 𝑨𝒑𝟏𝒇𝒑𝟏𝒅𝒑𝟏 + 𝑨𝒑𝟐𝒇𝒑𝟐𝒅𝒑𝟐 − 𝑨𝒔𝟒𝒇𝒔𝟒𝒅𝒔𝟒 −

𝟎. 𝟖𝟓𝒇𝒄𝒎𝒃𝝀𝟐 𝒙𝟐

𝟐⁄   
(27) 
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where 𝑨𝒔𝒊 (𝒊=𝟏,..,𝟒) are to the total reinforcement steel positioned at 𝒅𝒔𝒊 level; 

𝑨𝒑𝒋 (𝒋=𝟏,𝟐) are the total prestressed steel positioned at 𝒅𝒑𝒋 level; 𝒇𝒔𝒊 is the 

reinforcement steel strength at the particular fiber; 𝒇𝒑𝒋 is the prestressing steel 

strength at the particular fiber; 𝒇𝒄𝒎 is the mean concrete compressive strength; 𝝀 

is the effective height of the compression zone equivalent to 0.8 for characteristic 

concrete strength less than 50MPa, and 𝒙 corresponds to the neutral axis depth as 

is shown in Figure 12.  

 

Figure 12. Stresses and strains distribution in the cross-section  

Solving the static equilibrium of the entire section (i.e., compression and tensile 

forces equality) the depth of the neutral axis is found. Assuming that the extreme 

compression fiber reaches the maximum compression deformation (𝜀𝑐𝑢=0.0035) 

and the elastic limit of (𝜀𝑠𝑖=0.0028; 𝜀𝑝𝑖=0.01). Therefore, the flexural strength of 

the section is expressed as Eq. (28). 

 
𝑴𝑹 = (𝟏. 𝟑𝟐𝑨𝒔𝟏 − 𝟎. 𝟎𝟒𝑨𝒔𝟒)𝒇𝒚 +

𝑬𝒔
𝒙⁄ (𝟎. 𝟎𝟎𝟑𝟕𝑨𝒔𝟐 + 𝟎. 𝟎𝟎𝟏𝟕𝑨𝒔𝟑) +

𝑬𝒑
𝒙⁄ (𝟎. 𝟎𝟎𝟒𝟗𝑨𝒑𝟏 + 𝟎. 𝟎𝟎𝟐𝟔𝑨𝒑𝟐)

− 𝑬𝒔(𝟎. 𝟎𝟎𝟐𝟒𝑨𝒔𝟑 + 𝟎. 𝟎𝟎𝟑𝟔𝑨𝒔𝟐) + 𝑬𝒑(𝟎. 𝟎𝟎𝟏𝟖𝑨𝒑𝟏 + 𝟎. 𝟎𝟎𝟏𝟑𝑨𝒑𝟐)

− 𝟎. 𝟑𝟑 × 𝟏𝟎𝟎𝟎𝟐𝒇𝒄𝒎𝒙𝟐 [𝑵. 𝒎] 
(28) 

Those parameters are considered as random variables (RVs) to estimate the 
flexural capacity and were selected from the most prominent of the scientific 

literature and engineering judgment as are presented in Table 7. RVs are assumed 
with normal distributions. The statistical characteristic such as the mean value and 

the coefficient of variance (CoV) were defined according to the probabilistic model 
code from the Joint Committee on Structural Safety (JCSS) (JCSS 2001) and the 
statistical analysis performed by Wisniewski, Ferreira, and Cruz (2006), based on 

experimental tests of materials produced in Portugal during the years 2000 and 
2001. 
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Table 7. Probabilistic parameters of RVs for the resistance model 

Parameter Mean value CoV (%) Distribution 

Concrete compressive 

strength (𝑓𝑐𝑚) 
43 [MPa] 10 Normal 

Reinforcement yield 

strength (𝑓𝑦) 
560 [MPa] 5.4 Normal 

Reinforcing steel young 

modulus (𝐸𝑠) 
200 [GPa] 2 Normal 

Prestressing steel young 

modulus (𝐸𝑝) 
195 [GPa] 2 Normal 

Steel area (𝐴𝑠, 𝐴𝑝) Nom. area [mm2] 2 Normal 

Neutral axis depth (𝑥) 0.70 [m] 5.6 Normal 

Model uncertainties (𝜃) 1.2 15 Lognormal 

 

In this case, the neutral axis depth is considered as a random variable as well. 
Since x is a function of all random variables. Therefore, a set of 10.000 RVs values 
was generated using the Latin Hypercube sampling method (see Figure 13). 

Subsequently, the depth of the neutral axis is calculated for each pair of values 
and normal distribution is adjusted to determine its mean and coefficient of 

variance, as shown in Table 7. 

 

 

Figure 13. Normal distribution fitted to the neutral axis depth  
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2.4.3.2  Load model 

For this analysis, it is considered that the bending moment is caused by the effect 
of the structure's weight, permanent loads, and loads from railway traffic. 

Therefore, the dead load is assumed as a normal distribution, with CoV = 0.10. 
This value of CoV is assumed due to the variability in terms of the dimensions and 

specific weight of the materials (e.g., concrete, ballast). On the other hand, the 
rail traffic load is considered according to the specifications of EN 1991-2 (CEN, 
2003) with the Load Model 71 (LM71). This model includes 4 loads of 250 kN per 

axis, spaced 1.60 m from each other, and to two distributed loads of 80 kN/m 
spaced 0.80 m from the axle loads, as shown in Figure 14. The load was applied 

in the most critical position to obtain the maximum bending moment, i.e., the 
mean value of the axle loads (207 kN) and distributed load (63.4kN/m) in the most 
critical position of the beam. Furthermore, the characteristic values corresponding 

to the 98th percentile of the rail freight PDF following a normal distribution 
(Sustainable Bridges, 2007). 

 

 

Figure 14. Load Model 71: railway traffic loads in the critical position (CEN, 2003) 

Furthermore, a dynamic factor (Φ) is considered, which serves to consider the 

dynamic magnification of stresses and vibration effects in the structure due to the 
railway moving loads. The dynamic factor is a deterministic value calculated 
according to equation 6.5 of EN 1991-2 (CEN, 2003). 

Finally, the acting bending moment for the load model is expressed as Eq. (29) 
and the overall parameters and their respective statistical information are 

summarized in Table 8. 

 𝑴𝑸 = 𝟐𝟏. 𝟓𝟖𝑾𝑫 + 𝟗𝑾𝑳 + 𝟏𝟒𝑷𝑳 [𝒌𝑵. 𝒎] (29) 

 

Table 8. Statistical parameters of the random variables for the load model 

Parameter Mean CoV (%) Distribution 

Self-weight and additional dead 

loads (𝑊𝐷) 
150.7 [kN/m] 10 Normal 

Railway traffic load (𝑊𝐿) 63.4 [kN/m] 10 Normal 
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Parameter Mean CoV (%) Distribution 

Railway traffic load (𝑃𝐷) 207.4 [kN] 10 Normal 

Dynamic factor (Φ) 1.36 - Deterministic 

 

2.4.3.3  Reliability evaluation 

Once the resistance and load models have been determined, the flexural limit state 
is calculated from Eq. (28) and Eq. (29) as shown in Eq. (30). 

 

𝒈 = [(𝟏. 𝟑𝟐𝑨𝒔𝟏 − 𝟎. 𝟎𝟒𝑨𝒔𝟒)𝒇𝒚 +
𝑬𝒔

𝒙⁄ (𝟎. 𝟎𝟎𝟑𝟕𝑨𝒔𝟐 + 𝟎. 𝟎𝟎𝟏𝟕𝑨𝒔𝟑) +
𝑬𝒑

𝒙⁄ (𝟎. 𝟎𝟎𝟒𝟗𝑨𝒑𝟏 + 𝟎. 𝟎𝟎𝟐𝟔𝑨𝒑𝟐) −

𝑬𝒔(𝟎. 𝟎𝟎𝟐𝟒𝑨𝒔𝟑 + 𝟎. 𝟎𝟎𝟑𝟔𝑨𝒔𝟐) + 𝑬𝒑(𝟎. 𝟎𝟎𝟏𝟖𝑨𝒑𝟏 + 𝟎. 𝟎𝟎𝟏𝟑𝑨𝒑𝟐) − 𝟎. 𝟑𝟑 × 𝟏𝟎𝟎𝟎𝟐𝒇𝒄𝒎𝒙𝟐] × 𝟏𝟎−𝟑 −

(𝟐𝟏. 𝟓𝟖𝑾𝑫 + 𝟗𝑾𝑳 + 𝟏𝟒𝑷𝑳)  

(30) 

The defined limit state function is computed using the first-order reliability method 

(FORM). The obtained results indicate a reliability index of 𝛽 = 5.11 corresponding 

to a probability of failure of 𝑃𝑓 = 1.609 × 10−7. 

 

2.4.3.4  Acceptance criteria 

The target values to compare the bridge reliability index are shown in Table 9. The 
present target reliability levels are retrieved from the Joint Committee on 

Structural Safety publication (JCSS 2001) and the standard ISO 13822, for the 
ultimate limit state and normal relative costs of safety measures. Note that the 
related reference period differs for each reference. 

When comparing the reliability index obtained, if this is a value higher than the 
target values specified in the guidelines, then the Simões bridge can be considered 

safe in the ultimate limit state. 

Table 9. Target reliability levels for ultimate limit state 

Consequences of failure 

Target reliability indices 

JCSS*  

(JCSS 2001) 

ISO 13822** 

(ISO, 2018) 

Very low  - 2.3 

Low 3.7 3.1 

Medium 4.2 3.8 

High 4.4 4.3 

* 1-year reference period 

** standard period for safety e.g., 50 years 
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2.4.3.5  Analytical Degradation Models  

Since the bridge was commissioned in 2005, it has been inspected four times and 
some minor maintenance actions have been applied. However, the last available 

inspection (2016) found some cracking on the deck with water infiltration. This 
finding is not significant for the bridge performance in the short term, as it does 

not represent a failure scenario for long term maintenance. Nevertheless, this type 
of failure can trigger the onset of corrosion, which is one of the biggest sources of 
bridge deterioration. 

Therefore, the equations described in section 2.4.2 are applied. Assuming a 
uniform area reduction in the bottom reinforcing rebar cross-section. Corrosion is 

not assumed in prestressed tendons because they have a ticker concrete cover 
(160 mm) bigger than ordinary reinforcing steel (30mm) and therefore corrosion 
is not governed by carbonation or chloride penetration through the concrete cover 

(Sustainable Bridges 2007). For this, the data of average temperature and relative 
humidity were assumed according to the information available in a meteorological 

station in the region of Coimbra, where the bridge is located (IPMA, 2020). 
Furthermore, an w/c ratio of 0.5 is assumed. The remaining random variables used 

in this section are shown in Table 10. After calculations, the reduction in cross-
sectional area is obtained after the corrosion onset time, as shown in Figure 15. 

 

Table 10. Random Variables Used in Girders Reliability Analysis 

Definition of 

Rvs 
Notation 𝝁 𝝈 Distribution Reference 

Concrete 
cover depth 

𝑥 
Dnom+0.8 

mm 
3.6 
mm 

Normal (Vu and Stewart, 2000) 

Reference 
chloride 
diffusion 
coefficient 

𝐷𝑐𝑙,0 
473.0 

mm2/year 
43.2 
m2/s 

Normal 
(Ghosh and Sood, 
2016) 

Model 
uncertainty 
coefficient - 
Fick's law 
idealization 

𝑋1 1 0.05 Lognormal (Choe et al., 2008) 

Environmental 
correction 
factor 

𝑘𝑒 2.92 11.0 Gamma 
(Ghosh and Sood, 
2016) 

Correction 

factor for tests 
𝑘𝑡 0.832 0.024 Normal (Choe et al., 2008) 

Curing time 
correction 
factor 

𝑘𝑐 
a = 1.0, b = 4.0  

p = 2.15, q = 10.7 
Beta 

(Ghosh and Sood, 
2016) 

Aging factor or 
age exponent 

𝜂𝑐𝑙 
a = 0.0, b = 1.0  

p = 17.2, q = 29.3 
Beta 

(Ghosh and Sood, 
2016) 

Chloride 
surface 
content 
regression 
parameter 

𝐴𝑐𝑠 7.76 1.36 Normal 
(Ghosh and Sood, 
2016) 

Chloride 
surface 

𝜀𝑐𝑠 0 1.11 Normal 
(Ghosh and Sood, 
2016) 
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Definition of 
Rvs 

Notation 𝝁 𝝈 Distribution Reference 

content error 
term  

Critical 
chloride 

concentration 

𝐶𝑐𝑟 0.50 0.10 Normal 
(Ghosh and Sood, 
2016) 

 

 

Figure 15. Reinforcement area variation over time 

Additionally, in Figure 16 is possible to observe the directly proportional 

relationship between the reinforcement area reduction in the cross-section and the 
bearing capacity reduction of the bridge. It is important to highlight that in some 

cases the reliability indices are lower than the target values shown in Table 9. 

 

 

Figure 16. Reliability index variation due to corrosion 

From this, it can be concluded that a loss of more than 40% of the cross-sectional 
steel area lowers the reliability indices below the target values. This percentage 
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could be reached after 65 years of bridge life, which is designed for a longer 
lifespan. 

 

2.4.3.6  Inspections 

The inspection process will be based on the AASHTO Bridge Element Inspection 

Guide Manual (AASHTO, 2010), which serves as a resource for agencies to perform 

element level bridge inspections in the United States (US). This latter version 

replaced the AASHTO Guide to Commonly Recognized Structural Elements from 

1994. It is a reference for standardized element definitions, quantity calculations, 

condition state definitions, element feasible actions, and inspection conventions 

(AASHTO, 2010). This manual consists of assigning a condition classification to the 

different elements of the bridge through visual inspections. Structural and non-

structural elements are included (e.g., railings, joints). Moreover, different types 

of materials such as concrete, steel, or wood can be addressed. Inspections must 

be performed by a trained inspector who can classify each item in one of the 

specified condition states. For this case in which the beams are analysed as a 

critical element of the Simões bridge, the classification designated in element 110 

shown in Table 11 must be taken into account. 

 

Table 11. AASHTO (2010) Suggested condition state ratings for Reinforced Concrete 

Girder / Beam 

Condition 

State 
Cracking 

Spalls / 

Delaminations/ 

Patched Areas 

Efflorescence Load Capacity 

1 None  None None No reduction 

2 

Narrow size 

and/or density 

Moderate spall or 

patch areas that 

are sound 

Moderate 

without rust 
No reduction 

 < 0.0625 

inches  

(1.6 mm) 

N/A 

Spacing Greater 

than 3.0 feet 

(0.33 m) 

NA 

3 

Medium size 

and/or density 

Severe spall or 

patched area 

showing distress 

Severe with rust 

staining 
No reduction 

0.0625 – 

0.125 inches          

(1.6 – 3.2 

mm) 

Spall less than 1 

inch (25 mm) deep 

or less than 6 

inches in diameter 

Spacing of 1.0 - 

3.0 feet 

(0.33 – 1.0 m) 

Surface white 

without build-

up or leaching 

4 

The condition is beyond the limits established in condition state three (3) 

and/or warrants a structural review to determine the strength or 

serviceability of the element or bridge.  
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Condition 

State 
Cracking 

Spalls / 

Delaminations/ 

Patched Areas 

Efflorescence Load Capacity 

>0.125 inches 

(3.2 mm) 

Spall greater than 

1 inch (25 mm) 

deep or greater 

than 6 inches in 

diameter or 

exposed rebar 

Spacing of less 

than 1 foot 

(0.33 m) 

Heavy build-up 

with 

rust staining 

However, there are some problems with using inspection data to update reliability. 

The first problem is that the condition state-assigned is equal to the entire beam 

length and does not offer an adequate beam identification regarding deterioration 

or damage. The element location is necessary due to, according to the location is 

possible to attribute the damage to the correct failure mode (i.e., if the damage is 

located near the beam centre, the moment limit state is the most affected). 

Another problem is regarding use the data effectively in reliability analysis because 

the data (i.e., thickness loss caused by corrosion) must be defined in probabilistic 

terms, which is not possible from a visual inspection. 

Therefore, some conservative assumptions are made to provide a reliability 

assessment taking into account the information from the inspections. 

Consequently, to overcome the location problem, the procedure suggested by 

Hearn and Frangopol (1996) and Estes, ASCE, and Frangopol (1999) is adopted. 

It consists of inspection by segments following the AASTHO guidelines, assigning 

the conditions state in specific locations of the structure. In other words, the bridge 

is divided into small, easily definable segments and each segment is classified 

separately. To make this process easier, it is recommended to have a drawing of 

the structure as part of the inspection report (an example is shown in Figure 17). 

It is important to mention that subdividing the structure into several segments 

does not alter the work time required during the inspection. Just a preliminary 

time to develop the drawing. 
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Figure 17. Segment-based inspection reporting results for the superstructure 

Figure 17 presents a procedure example illustrated for the case study. However, 

the assigned condition states do not correspond to the actual ones. First, because 
the existing inspection reports were not developed with the procedure described 
here. Second, the most recent report is from 2016. Although it was possible to 

assign condition states in some bridge elements, as shown in Figure 18. These 
condition states were made based on the available visual inspection reports 

provide by “Infraestructuras de Portugal” and taking into account the descriptions 
in Table 11. 

 

Figure 18. Segment-based damaged identification from visual inspection reports 
(Source: Infraestruturas de Portugal) – Simões bridge girders 

After inspection, each beam segment may have different assigned condition states 
(e.g., 3.BL4, In which R corresponds to the right side and L to the left side). 
Therefore, a global beam condition state is assigned depending on the most critical 
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value received according to the reported failure mode (e.g., condition state 3 for 
BL4). However, the reported damages are not significant for the failure mode 
studied, which in this case corresponds to the bending moment. 

On another hand, to refine the reliability calculation, it is necessary to know the 
parameters with the greatest influence on the structure reliability. Variables 

identification may be achieved through sensitivity analysis, which provides a 
measure of the importance of the variation coefficient of a specific parameter 
concerning the structure reliability. Subsequently, it is possible to apply the 

Bayesian updating to the predetermined distributions of the identified key 
parameters. Lark and Flaig (2005) have identified the main parameters that can 

influence the capacity of corroded RC beam are the corrosion loss of reinforcing 
bars, concrete cover, and strength. Since the only parameter that can be evaluated 
from a visual inspection is the concrete cover. For the next section, the example 

continues under the assumption that the deterioration identified in the inspections 
reports affects the failure mode by bending moment of the beams, specifically BL3, 

which is the most affected by corrosion and therefore greater probability of 
occurring concrete cover loss, reinforcement loss area and consequently capacity 

loss. 

It is worth noting that SAFEWAY project aims to complement visual inspections 
with laser scanner (LiDAR-based systems) measurements, which are described in 

SAFEWAY (2019c). It is intended to identify damages such as those shown in 
Figure 19, developed by Isailović et al. (2020). Nevertheless, such inspection 

inputs were not available for this report. 

 

Figure 19. Geometric representation of damage through Photogrammetry-based 3D point 

cloud. Adapted from: Isailović et al. (2020). 
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2.4.3.7.1. Condition states into probabilistic terms.  

Condition states will be translated into probabilistic terms assuming that the 
condition states are linear over time and deterioration intensity values are normally 

distributed. The parameters such as mean value and standard deviation are 
determined by the component condition and the quality of the inspector (Estes and 

Frangopol 2003). Table 12 shown the condition state suggested to classify concrete 
cover in beams. This information is not part of the AASTHO manual specifications 
but is created based on it to quantify the observed concrete cover damaged. Since 

the experience of the inspector is also taken into account. Frangopol and Estes 
(1997) recommend considering three possible cases, inspectors qualified as very 

experienced, experienced, and inexperienced. Frangopol and Estes (1997) 
recommend considering three possible cases, inspectors qualified as very 
experienced, experienced, and inexperienced. Assuming the ratings provided by 

them are correct 95%, 85%, and 75% of the time respectively. 

 

Table 12. Assigned concrete cover loss from a Condition Index Inspection 

Condition 

State 
Description  

Section 

lossa 

1 
No significant cracking areas, spalls/laminations exist or 

the area is 5% or less of the beam surface 
0 - 5 % 

2 
The cracking/spalls/delamination area is 10% or less of 

the beam surface 
0 – 10 % 

3 
Cracking/spalls/delamination area is more than 10% 

but less than 25% of beam surface 
10 - 25 % 

4 
Cracking/spalls/delamination area is more than 25% of 

beam surface 
> 25 % 

a
Not part of the AASHTO definition - created to quantify the observed concrete cover 

damaged. 

For instance, to build the probabilistic distribution of condition state 3 (CS 3). From  

Table 12 is possible to observe the range of concrete cover loss is from 10% to 

25%, the mean value (𝜇) would be 17.5%. On another hand, and assuming that 

the inspector will classify the structure correctly 90% of the time the standard 

deviation 𝝈 can be computed as Eq. (31). 

 𝝈 =
(𝒗𝒎 − 𝝁)

𝚽−𝟏(𝑬𝑰)
= 𝟓. 𝟗 (31) 

Where 𝝂𝒎 is the maximum value of the range, 𝝁 the mean value, 𝚽−𝟏 is the inverse 

standard normal an 𝑬𝑰 is the inspector’s experience. The mean value increases 

linearly until reaches a maximum value (𝝂𝒎) of 25% concrete cover, where it will 
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remain until an inspector classifies the deck as condition state 4 in a future 
inspection (Estes, Foltz, and Mckay 2005).  

 

Figure 20. Probability density distributions associated with condition state (CS) ratings 
for concrete cover loss 

All condition states are presented as a normal distribution except the first and last 

condition states, which are assumed to be lognormal, CS1 to reflect that the 
section will not increase in the area due to corrosion and CS4 to represent that the 
negative area is not possible for a cross-section (Estes and Frangopol, 2003). All 

probability distributions in Figure 20 were built assuming an inspector correctly 
assigns the condition states 90% of the time. 

 

2.4.3.7  Bayesian updating 

The parameter under study (concrete cover) was initially specified as a random 

variable from the definition of the corrosion parameters in analytical models (see 
section 2.4.3.5, Table 10). From the inspection data, a condition state 3 is assumed 

for the longitudinal beam of the third spam (3BL see Figure 18), consequently, the 
concrete cover loss due to corrosion can be estimated and its reliability updated 
as is shown in Table 13. Other examples of Bayesian update techniques can be 

found at (Ang and Tang, 1975; Melchers and Beck, 2018). 

 

Table 13. Comparison of concrete cover results for 3BL based on Deterioration Model 
Prediction, Inspection Results, and Updated Posterior Distribution 

Condition 

state 
  Model prediction 

Inspection 

results 

Posterior 

distribution 

3 

Cover 𝒙 

(mm) 
𝝁 𝝈 𝝁′ 𝝈′ 𝝁′′ 𝝈′′ 

40 40,08 3,6 33 5,9 38,16 3,07 
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Note: Inspection results are based on a very experienced inspector. 

𝝁 and 𝝈 are the mean values and standard deviations for the respective distributions. 

After obtaining the posterior distribution for the concrete cover, it is proceeded to 

update the degradation models (section 2.4.3.5). This is summarized in Figure 21, 
in which the area reduction of the reinforcing bars due to corrosion can be observed 
for the three cases (i.e., predictive model, inspection results, and with the 

information obtained from the Bayesian update).  

 

 

Figure 21. Comparison of Area and Strength rebar reduction based on concrete cover 
model Prediction, inspection Results, and updated posterior distribution. 

With the information obtained from the Bayesian update, there is a difference in 
the area reduction of 0.12% and a difference of 3.9 MPa in the 𝑓𝑦. It means that 

without the parameter update the structural damage is underestimated. It should 
be noted that after updating the degradation models, the prediction of the 

reliability analysis over time must also be updated. 

Finally, it should be highlighted that this methodology can be applied in the update 

of any of the parameters selected within the framework as random variables, as 
long as the information from inspections is available. It can also be applicable to 
any type of infrastructure or material. 
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3. Dynamic Risk-based Predictive Models 

Managers of transport infrastructures have the continuous task to plan and execute 
interventions to guarantee the operational state of their networks, even in the 

aftermath of hazard events (Hackl et al., 2018). As the resources available to 
managers to protect their infrastructures are limited, it is essential for managers 
to be aware of the probable consequences (i.e., risk) in order to set priorities and 

be resource-efficient (Eidsvig, Kristensen and Vangelsten, 2017).  

A risk-based framework facilitates a rational and balanced approach for evaluating 

the effect of hazards on systems, possible failure modes, and associated 
consequences (Lounis and McAllister, 2016). A conceptual risk model for 
assessment of impacts to asset systems triggered by natural events was presented 

in SAFEWAY (2020). Nevertheless, there are many uncertainties involved in the 
estimation of risk, i.e., uncertainties in the hazard frequency and intensity; 

uncertainties in the infrastructure performance when subjected to the hazard; and 
uncertainties in the socio-economic impacts associated with the possible 
disruptions in the network; which can be reduced by means of observations to the 

system. Moreover, the risk might not be stationary into the future (Beven and Hall, 
2014). Thus, a risk-based framework should account for the variability of the 

analysed system over time. For instance, the condition of the infrastructures 
deteriorates over their service life. Likewise, time-dependent socio-economic 
factors such as population growth (or decline) and future traffic demands affect 

the prediction of impacts. Therefore, an integrated framework for dynamic risk-
based predictive models is herein proposed, whereby real-time data and time-

variant factors are introduced.  

The proposed framework is presented in Figure 22. The core of the framework is 
the three main components of a risk-based methodology, namely the hazard 

module, the infrastructure performance, and the quantification of possible 
consequences (represented with grey boxes). It can be observed that time-variant 

factors (represented with yellow boxes) are integrated in order to i) consider the 
actual condition of the infrastructure into the fragility assessment under the natural 
hazards; ii) address the dispersion of future hazards due to climate change 

projections; and iii) account for the actual population affected and the real traffic 
demands when computing the socio-economic impacts involved with the failure of 

the assets. Furthermore, real-time data (represented with green boxes) can be 
used for monitoring the hazard, monitoring the infrastructure condition, and 

provide crowd sourcing data. Monitoring the key indicators of hazard, e.g., the 
water level for flooding hazard, the uncertainties in the hazard magnitude/intensity 
can be reduced. Similarly, by means of monitoring the infrastructure using 

emerging digital technologies, e.g., remote technologies such as LiDAR systems, 
the uncertainties in defining the infrastructure condition can be reduced. Finally, 

crowd sourcing data can be used for traffic rerouting after hazard occurrences in 
order to reduce the impact of traffic-related consequences. 
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Figure 22: Integrated framework for Dynamic Risk-based Predictive Models 

The proposed framework can be applied to any hazard or multiple hazards. In the 

context of the present deliverable, the methodology will be further detailed to 
roadway and railway infrastructures exposed to flooding hazard. Accordingly, the 

SAFEWAY pilot located in Santarém, Portugal, will be the focus of study. 
Nevertheless, it can be extended to other type hazards identified within SAFEWAY 
pilots (SAFEWAY, 2019a, 2019c). 

In the following subchapters, an overview of the methodologies used for the 
assessment of the dynamic risk-based components are briefly presented. Section 

3.1 defines the boundaries of the system to be analysed; Section 3.2 explains how 
the hazard module will be treated within SAFEWAY; Sections 3.3 and 3.4 give 
introductory remarks regarding the evaluation of infrastructure performance and 

the quantification of consequences, respectively. Both of these components will be 
further studied in the remaining chapters of this report.   

 

3.1 System boundaries 

One of the first steps in conducting a risk assessment is to define spatially and 
temporally the boundaries of the system that is going to be analysed (Adey et al., 
2016). Table 14 summarizes the system boundaries that were specified for the 

implementation of the proposed dynamic risk-based framework.  

 

Table 14. Definition of the system boundaries 

Type of boundary Definition 

Spatial boundaries The spatial boundary of the system is shown in red in 

Figure 23. The following municipal councils from the 
Santarém district are at the considered boundaries of 

the case study: Abrantes, Almeirin, Alpiarça, Cartaxo, 
Chamusca, Constância, Entrocamento, Golegã, 
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Type of boundary Definition 

Salvaterra de Magos, Santarém, Tomar, Torres Novas, 

and Vila Nova da Barquinha. The selected boundaries 
(red polygon) cover an area of approximately 1200km2.  

Besides the main watercourse, namely the Tagus river, 
the following watercourses relevant to the study area 

are included: Almonda, Alviela, Torto, and Zêzere 
rivers. The hazard corresponds to slow-onset flood 
events associated to these watercourses.  

The objects are comprised by roadway and railway 
bridges located over the selected watercourses, 10 

road sections, and 6 rail sections; all within the spatial 
boundary from in Figure 23.  

The traffic model (Chapter 6.2) includes all the 
transportation network from the municipal councils 

within the spatial boundary from Figure 23. Thus, the 
transport related consequences correspond to the ones 
generated within this area.   

Temporal boundaries The risk will be assessed for several time periods, 
namely the current year 2020, and future scenarios at 

years 2030, 2040, 2050, and 2070. 

As proposed in the framework from Figure 22, the 

system representation is dynamic, i.e. the 
infrastructure performance evolves over time 

(degradation/improvement), as well as the socio-
economic factors (e.g. traffic demands and population 
growth) which dominate the consequences.  

 

It should be noted that some assumptions were considered regarding the 

modelling and the response of the system. Consequently, some possible situations 
outside the considered system are not being modelled. For instance, some 

consequences could be generated outside the specified spatial boundary, and 
physical damage to other types of roadway and railway assets (e.g. culverts) could 
also occur.   
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Figure 23. Representation of the spatial boundary of the system analysed 

 

3.2 Hazard assessment 

Floods are considered a major hazard in the Santarém demonstration site, as roads 
and railway infrastructures are placed along the basin of the Tagus River where 

slow-onset floods are particularly predominant (SAFEWAY, 2019c). The EU 
directive 2007/60/CE on the assessment and management of flood risks (DAGRI), 

established the need for elaborating hazard and risk maps for several return 
periods. Consequently, flood hazard (water depth, flux velocity, inundation 

boundary), consequence and risk maps were elaborated for Portugal for several 
return periods (20, 100, 1000 years) (APA, 2014). SAFEWAY (2019a) produced 
hot-spot maps for the Santarém region by overlapping the hazard maps with road 

and railway networks, so the most exposed areas of the transportation system 
were indicated.  

The flood maps offer a first approximation of the flood inundation extent, water 
levels and flow velocities for the chosen probabilities of exceedance. However, they 
do not explicitly account for the multiple sources of uncertainty involved when 

deriving these maps, including topography data, estimated flood discharges for 
the chosen design event, choice of a hydraulic model, choice of model parameters 

(e.g. hydraulic roughness coefficients), and model assumptions (Beven, Leedal 
and McCarthy, 2014). Among these, it is recognized that the precision (or 
resolution) and accuracy of river channel and floodplains topography is one of the 
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most critical factors which influences the hydraulic modelling results (Casas et al., 
2006). Consequently, several studies have been carried out for evaluating the 
impact of the topographic data quality on the results of hydraulic models (for an 

overview refer to Md Ali, Solomatine and Di Baldassarre (2015)). The available 
flood maps for Santarém region were derived by using a digital elevation model 

(DEM) generated primarily from vectorial cartography (1:25000 scale) from 25 m 
contour intervals, complemented with data from the NASA global model derived 
from the Shuttle Radar Topography Mission (STRM), and at lower extent by LiDAR 

data available at specific areas (APA, 2014). This DEM resolution frequently 
provides a valuable source for large-scale flood studies, as it is able to simulate 

the flooding pattern and inundated area extent with reasonable accuracy. 
However, it has been found that the extent to which DEM resolution and accuracy 
influences the hydraulic outputs depends on the shape of the valleys and channel 

slope. Overall, small rivers with steeper channel slope, V-shaped valleys and urban 
land use are more influenced by DEM resolution and accuracy (i.e. contain larger 

errors) than flat channel slopes with deeper U-shaped valleys (Saksena and 
Merwade, 2015). 

Therefore, in order to assess at asset level the flood hazard exposure within the 
SAFEWAY case study, the flowchart from Figure 24 is herein proposed. Essentially, 
based on the location of the exposed asset, and thus the river valley shape and 

channel slope, the decision whether to use or not the available flood hazard maps 
is taken. In the case they are employed, the uncertainties on the flood estimates 

at the asset location will be introduced by fitting a probability distribution with 
uncertainty intervals. Conversely, if the flood hazard maps are not used, the 
existence of flow discharge data at the site of interest should be verified. In case 

of flow data availability, flood frequency analysis should be performed, and the 
most appropriate probability distribution should be selected to describe the peak 

flow discharge with confidence intervals. In case of an ungauged site location, the 
peak discharges should be derived from hydrological models for each flood event. 
Then, a probability distribution will be fitted to the peak flow estimates with 

uncertainty intervals. If the site where the information is available does not 
correspond to the asset location, a transposition of flows is required. Finally, a 

hydraulic analysis is necessary to obtain the water depth and the flow velocity 
estimates to quantify the hydrodynamic load applied to the infrastructures. For 
this last step, the sources of hydraulic uncertainty should be also considered during 

the analysis (for further details see Lagasse et al. (2013)). 

It should be pointed out that the flowchart from Figure 24 was proposed given the 

data availability constraints but could be replaced by a complete and detailed 
hydrologic-hydraulic modelling of the system defined in Section 3.1, with full 
consideration of the uncertainties involved in the modelling processes. However, 

this approach for the large system under analysis is very complex, time-
consuming, and requires a large number of inputs which are usually unavailable 

especially with high accuracy (e.g. DEM models). Conversely, the alternatives 
included in the flowchart correspond to data which is usually readily available by 
national organizations in each country (such as the SNIRH and APA in Portugal), 

in order to comply with the EU directive 2007/60/CE demands.   
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Figure 24. Flowchart implemented to treat the flood hazard at asset level in SAFEWAY 

case study 

The following sub-chapters describe in more detailed the three main branches of 
the flowchart. It should be pointed out that the proposed flowchart is followed for 

a detailed analysis of each asset given its particular characteristics and the data 
availability for each case. However, if the scope of the analysis is at a network 

scale, the existing flood hazard maps may be directly applied as proposed in 
Sections 5.2 and Sections 6.1.   
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 Characterization from existing flood hazard maps 

As previously mentioned, flood hazard maps are subject to large amounts of 
uncertainties. Some of them are aleatory, i.e. related to the natural variability in 

the occurrence of floods, and others are epistemic, i.e. related to our limited 
knowledge about the hydrologic and hydraulic processes being modelled. Many 

studies have investigated the effect of these uncertainties on flood hazard 
predictions and have demonstrated that they can be significant. Therefore, 
methodologies and frameworks have been developed aiming at assessing these 

uncertainties reliably (refer to Beven and Hall (2014); Beven, Leedal and McCarthy 
(2014)).  

The degree of detail regarding how to assess the uncertainty can vary from a 
qualitative expert judgement to a detailed analysis involving many runs of a 
hydraulic model accounting for various uncertain input factors. Detailed analysis 

are computationally expensive as the time for one simulation to run can take up 
to 50 minutes for fine resolution models for a basin of 2000km2 (as reported by 

Savage et al. (2016)). For this reason, a trade-off between the use of models with 
coarser resolutions has been a research interest to optimize the computational 

time and perform a larger number of simulations, as well as conducting sensitivity 
analysis to understand which are the dominant sources of uncertainty and 
therefore reduce the number of uncertain inputs.  

In this report, the intention was to express a confidence interval to the existing 
flood model predictions.  Therefore, a qualitative analysis based on literature 

review was used to estimate the extent of the uncertainties. As this topic is 
relatively new, it is difficult to find a consensus regarding the importance of 
different sources of uncertainty and the appropriate assumptions for different 

types of application. Recently, Thomas Steven Savage et al. (2016) performed a 
global sensitivity analysis to investigate the influence of the spatial resolution, the 

Manning’s friction coefficient parameters, the inflow hydrograph and the DEM 
resolution on the flood hazard predictions. It was found that the most influential 
factor for the average maximum water depth and the maximum flood extent were 

the boundary conditions, i.e. the river discharge. Even though there are limitations 
to extrapolate these findings to other locations, for different flood return periods, 

and for other predictions besides water depth such as flow velocity, it was assumed 
herein that the river discharge uncertainties are likewise the predominant source 
of uncertainty in the flood hazard predictions of this study. According to McMillan, 

Krueger and Free (2012), river discharges have been shown to be uncertain by at 
least ±10–20% for medium or high (in-bank) flows and up to ±40% for out of 

bank flows. Therefore, for the 20-year return period estimates (both water depth 
and flow velocity), an uncertainty of ±20% was assumed; while for the 100- and 
1000-year return period estimates, an uncertainty of ±30% was considered. It 

should be noted that these uncertainties do not account for effects of climate 
change (refer to Section 7.1 for climate change considerations). These 

assumptions made will ultimately contribute to define if a more detailed analysis 
is justified or not. 

Following Lagasse et al. (2013), a Lognormal distribution was assumed for water 

depth and flow velocity estimates for each return period. Thus, the estimates which 
correspond to the mean values were transformed to the logarithmic space, and 
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the lognormal standard deviations were obtained from the uncertainties previously 
defined. The expected values and standard deviations were input to Monte Carlo 
(MC) realizations for each variable per return period. Subsequently, a regression 

analysis was performed in order to provide extrapolations of the flood estimates 
for different return periods. To this end, probability plots were used to verify the 

adequacy of a specific theoretical distribution. These plots are designed by 
transforming the scale of the probability axis, so that a given distribution is 
represented by a straight line.  

The water depth estimates at a specific asset location for each exceedance 
probability were plotted into a Gumbel probability plot, where it was evidenced 

that the variable is represented appropriately by this distribution as it is 
represented by a straight line (Figure 25). The results of the Gumbel regression 
with lower and upper bounds of the uncertainty interval representing the 5th and 

95th percentiles are shown in Figure 25. Similarly, flow velocity exhibits the same 
behaviour as displayed in Figure 26.  

 

 

  

Figure 25. Fitted Gumbel distribution for water depth with uncertainty intervals 
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Figure 26. Fitted Gumbel distribution for flow velocity with uncertainty intervals 

 

 Statistical analysis of flow discharge data  

One of the most widespread approaches for assessing the flood hazard consists of 

estimating the peak discharge for a given exceedance probability based on the 
statistical analysis of annual peak flows records. This method, frequently referred 

to as flood frequency analysis (FFA), is conditioned by the availability of flow data 
at the site of interest. That is, the accuracy of the estimated flood frequency curve 
depends on the records sample size, its representativeness, and the 

appropriateness of the chosen distribution  (England Jr et al., 2019). 

On the main stretch of the Tagus River, there are three hydrometric stations, 

namely Tramagal, Almourol and Santarém/Ómnias (see Figure 27). Annual peak 
discharge data recorded at these stations are accessible free of charge through the 
website of the National Information System for Water Resources (SNIRH)2.  

The data are available from 1974/1975 until the year when the stations were 
presumably discontinued, namely year 1999 for Santarém, year 2008 for 

Tramagal, and year 2017 for Almourol. However, some years of records are 
missing between these intervals, resulting into 25-30 years of records 
approximately. It should be noted that the complete period of records corresponds 

to the post-dam regimen. Therefore, the flow regime depends on the discharges 
of Alcántara and Cedillo dams in Spain, and Fratel, Pracana, Belver, and Castelo 

de Bode dams in Portugal (see Figure 27).  

 

 
2 https://snirh.apambiente.pt/ 
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Figure 27. Location of hydrometric stations: Tramagal, Almourol and Santarém/Ómnias 
(blue rectangles) and Spanish and Portuguese dams (red rectangles) (Azevêdo, Nunes 

and Ramos, 2004) 

 

The FFA analysis was performed following the Bulletin 17C methodology (England 

Jr et al., 2019). In general terms, the procedure includes plotting positions; finding 
the best distribution that represents the extreme discharge flows at a given 

location; estimate the parameters of such distribution; methods to handle zero 
flows and potentially influential low floods; record extension for achieving a more 
representative sample if necessary; and confidence intervals for quantiles. It is 

worth noting that flood records describe a sequence of random natural events that 
do not fit any specific known statistical distribution. Thus, the distribution is usually 

selected based on different criteria such as goodness-of-fit statistics, e.g. 
Kolmogorov-Smirnov and Chi-squared tests, or national standardization such as 

the log-Pearson Type III distribution which is indicated for FFA in the US. Despite 
that there is no standardization proposed at Portuguese level, a Gumbel 
distribution is assumed to represent more appropriately the flow peak discharges 

as suggested by the Management Plan of the Tagus Hydrographic Region (PGRH-
Tagus) (ARH Tejo, 2012).  The method of moments was used to estimate the 

parameters of the Gumbel distribution. Record extension was not applied as the 
number of records is higher than the minimum recommended for FFA in Bulletin 
17C (10 years), and also there are not nearby stations with longer time period of 

records.  Gumbel probability plots and Chi-squared goodness of fit tests showed 
that the peak annual discharge, for all three stations can be reasonably well 

modelled by Gumbel probability distributions (see Figure 28).  

Finally, it is acknowledged that the obtained flood frequency curve is not an exact 
approximation, as the record of annual peak flows at a given location is a random 

sample of the underlying population of annual peaks. Then, to quantify the 
accuracy of this approximation, an interval which contains the population 

frequency curve with high degree of confidence is commonly constructed (usually 
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95% of confidence is used) (England Jr et al., 2019). In this manner, the 
uncertainty in the flood event magnitude due to sampling variability is considered, 
yet conditional on the choice of a particular distribution.  

Table 15 presents the results of the FFAs performed in the three hydrometric 
stations, as well as the 95% confidence limits of the estimated values. Recurrence 

intervals of 5-,20-,50-,and 100-years were selected to facilitate the comparison 
with the the PGRH-Tagus (ARH Tejo, 2012). The mean values reported for 
Tramagal and Ómnias/Santarém stations are very similar to those reported in the 

PGRH-Tagus; while the values for Almourol station are slightly different 
presumably because herein new records (from 2012-2017) were used. It can be 

observed that for smaller, i.e., more frequent events, the reliability of the 
discharge estimation is greater than for larger events (very wide confidence 
intervals). This is expected as the database of past events is sparse, i.e., only 25-

30 years of records are available. Thus, there are significant uncertainties in the 
estimated river discharges obtained through this statistical approach. As more data 

becomes available, it is expected that the estimates improve and consequently the 
confidence intervals narrowed.  

 

  
a) 

 
b) 
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c) 

Figure 28. Flood frequency estimates with 95% confidence intervals for a) Tramagal 
station; b) Almourol station; c) Ómnias/Santarém station 

 

Finally, for purposes of quantifying the hydraulic loads on the infrastructures and 

predicting processes like scour, it is necessary to associate the flow discharge with 
the hydraulic parameters, i.e. the flow depth and velocity. To this end, HEC-RAS 
modelling (USACE, 2016), or more advanced 2-D or 3-D models can be performed. 

Yet, the Gauckler-Manning-Strickler formula can be considered for the hydraulic 
analysis under the assumption of uniform flow conditions (Manning et al., 1890). 

Regardless of the method chosen for the hydraulic analysis, the estimation of the 
hydraulic parameters involves uncertainties such as i) model uncertainties due to 
the simplification of complex physical processes; ii) parameter uncertainties from 

the difficulty in estimating variables such as manning’s roughness coefficient; and 
iii) randomness due to the fluctuation of parameters over time such as changes to 

floodplain vegetation. Therefore, it is necessary to incorporate these sources of 
hydraulic uncertainty through e.g. MC simulation (see Lagasse et al. (2013)).  
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Table 15. Flood frequency analysis for gauge stations along Tagus River  

Recurrence 

interval 

(years) 

Discharge (m3/s) 

Tramagal Almourol Ómnias (Santarém) 

Mean 

95% Confidence 

Mean 

95% Confidence 

Mean 

95% Confidence 

Lower Upper Lower Upper Lower Upper 

5 5175 3846 7869 5840 4500 8334 5224 3704 8517 

20 8430 6309 13179 9478 7317 13864 8678 6279 14497 

50 10492 7819 16596 11784 9052 17417 10868 7849 18348 

100 12038 8940 19167 13511 10343 20089 12508 9013 21246 

 

 

 



 
 

 

D5.1 – Dynamic Risk-based Predictive Models 70 

 

 Flow discharge from hydrologic modelling 

As previously mentioned, the selection of the FFA approach for assessing the flood 

hazard is conditioned by the availability of flow data at the site of interest. Then, 
another approach broadly applied consists of the physical modelling of the 

complete hydrological process of dendritic watershed systems. This method is 
frequently referred as rainfall-runoff modelling (Beven, 2011). The main limitation 

of this approach is the complexity and the need of good data such as a good digital 
elevation model, run-off coefficients, and rainfall data.  

The PGRH-Tagus developed a HEC-HMS model, and the obtained results for the 

sub-basins included within the system boundaries are shown in Table 16. It should 
be noted that these values correspond to the outlet sections of the sub-basins. 

Thus, at the exact asset locations the discharges are transposed through the Meyer 
formula using the regionalization coefficients reported in the PGRH-Tagus (ARH 
Tejo, 2012).  

 

Table 16. Peak flow discharges obtained from hydrologic model  (ARH Tejo, 2012) 

Sub-basin 
Reference 

Section 

Discharge (m3/s) 

T=5 years 
T=20 
years 

T=50 
years 

T=100 
years 

Zêzere 
River 

Fábrica de 
Matrena 

476 699 844 954 

Almonda 
River 

Outlet 
section 

144 220 269 306 

Alviela 
River 

Outlet 
section 

375 550 663 748 

Vala de 
Alpiarça 

Outlet 
section 

214 326 398 453 

Ribeira de 
Muge 

Outlet 
section 

187 318 408 478 

 

Using the same procedure described in Section 3.2.1, a regression analysis can be 

performed to the peak flow discharges from Table 16 in order to extrapolate them 
for different return periods and define lower and upper bounds of the uncertainty 

interval. Figure 29 depicts the results of the Gumbel regression with uncertainty 
intervals for the flow discharges from Almonda River.  

Subsequently, for the quantification of the hydraulic loads on the infrastructures, 

the approaches described in the previous section can be also applied.   
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Figure 29. Fitted Gumbel distribution for Almonda River discharges with uncertainty 
intervals 

 Real-time data  

As stated within the dynamic risk-based framework and demonstrated in the 
previous sub-chapters, the flood hazard assessment involves many epistemic and 
aleatory uncertainties. Therefore, monitoring systems can provide an input for 

updating existing hazard models. For instance, Crotti and Cigada (2019) installed 
different monitoring systems on a bridge over the River Po, Italy, namely an 

anemometer to measure wind intensity and directions, a hydrometer to measure 
water level, video cameras to check the debris accumulation upstream of the pier, 
and an echo sounder and a novel device called BLESS to measure the river bed 

level (scour).  Moreover, monitoring systems provide a tool for early-warning 
systems (EWS), i.e. by adverting the occurrence of external loads that may 

compromise an infrastructure safety, and therefore giving an alarm for closing or 
evacuating certain areas in due time.  

On the Santarém demonstration pilot, fiber Bragg grating (FBG) sensors will be 

installed on bridges along the Tagus River. This fiber optic sensing technology has 
been implemented before to perform real-time monitoring and early warning of 

natural hazards such as landslides, debris flows, land subsidence, earth fissures, 
among others (for a review refer to Zhu, Shi and Zhang (2017)). The application 
of FBG systems on SAFEWAY, will allow to implement two different levels of early 

warning procedures, namely a warning level and an alert level. In the former, the 
probability of failure is “moderate”, i.e. there is need for confirmation on the site 
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if the situation can become worse, and thus there is sufficient time to make this 
inspection. Conversely, for the alert level, there is a high probability of failure (e.g. 

overtopping is about to happen), so the road sections have to be closed and the 
traffic should be rerouted. Other types of activities besides inspection or closing 
the road could also be proposed based on the necessities and available responsive 

options.   

 

3.3 Infrastructure performance functions 

The performance of transport infrastructures is based on its ability to resist the 
actions to which it is subjected. This performance has been commonly expressed 

through damage-, loss- or fragility functions (refer to SAFEWAY (2020) for a 
thorough overview). The choice of the type of functions to be used depends on the 

type of analysis that is intended, i.e. the scope, the level (asset level or network 
level) and the type of consequences to be analysed.  

For the case of linear transportation infrastructures, vulnerability functions are 

useful for quantifying the functionality loss due to a given hazard intensity (refer 
to Chapter 5.2). For the case of infrastructure assets with complex failure modes 

such as bridges, fragility functions are frequently constructed to communicate the 
probability of exceeding an undesirable limit state for a given intensity of the 
hazard (refer to Argyroudis et al. (2019)). A limit state defines the boundary 

between two different damage conditions often referred to as damage states (DS) 
(Pitilakis, Crowley and Kaynia, 2014). The damage is measured through 

engineering demand parameters (EDPs), which represent a structural response to 
assess the performance of a component. Different damage criteria exist depending 
on the asset and hazard type. Based on a qualitative approach, a common 

classification may be defined as: No damage, minor, moderate, extensive, or 
complete damage (see Figure 30). The selection of the number of DS is usually 

related with the functionality loss and repair duration (D’Ayala et al., 2015).  
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Figure 30. Example of fragility functions  

Fragility functions are often described by a lognormal probability distribution 
function as (Pitilakis, Crowley and Kaynia, 2014): 

 
𝑷𝒇[𝒅𝒔 ≥ 𝑫𝑺𝒊 | 𝑰𝑴] = 𝚽 [

𝟏

𝜷𝒕𝒐𝒕
𝐥𝐧 (

𝑰𝑴

𝑰𝑴𝒎𝒊
)] 

(32) 

Where 𝑃𝑓 denotes the probability of being at or exceeding a damage state, 𝐷𝑆𝑖, for 

a given hazard intensity level defined by the intensity measure 𝐼𝑀, Φ is the 

standard cumulative probability function, 𝐼𝑀𝑚𝑖 is the median threshold value of the 

hazard intensity measure 𝐼𝑀 required to cause the 𝑖𝑡ℎ damage state, and 𝛽𝑡𝑜𝑡 is the 

lognormal standard deviation, which describes the total variability associated with 

the fragility curve. Generally, there are three primary sources of uncertainty 

namely uncertainty in the capacity, 𝛽𝐶, uncertainty in the demand, 𝛽𝐷 , and 

uncertainty in the definition of damage states, 𝛽𝐷𝑆. Thus, assuming the 

uncertainties are stochastically independent and lognormally distributed, the total 

variability can be obtained as (Pitilakis, Crowley and Kaynia, 2014):  

 

 
𝜷𝒕𝒐𝒕 = √𝜷𝑪

𝟐 + 𝜷𝑫
𝟐 + 𝜷𝑫𝑺

𝟐 
(33) 

The selection of the appropriate 𝐼𝑀 is related to the adopted hazard model, the 

typology of the asset, the considered damage modes and the method of fragility 
analysis (Argyroudis et al., 2019). The fragility assessment of different asset 

infrastructures exposed to the flood hazard is thoroughly studied in Chapter 4.  

0

0.2

0.4

0.6

0.8

1

𝑃
𝑓

[ 
𝑑
𝑠

≥ 
𝐷
𝑆
𝑖

| 
𝐼𝑀

]

Intensity Measure [IM]

Minor damage
Moderate damage
Extensive damage
Complete damage



 
 

 

D5.1 – Dynamic Risk-based Predictive Models 74 

 

3.4 Consequences to infrastructure network 

The occurrence of natural or human-induced hazards may trigger consequences to 

transportation infrastructure networks. The assessment of probable consequences 
is essential, so infrastructure managers can make informed decisions about the 
execution and prioritization of different risk-reducing interventions (Lam and Adey, 

2016). The consequences are diverse and generally depend strongly on the specific 
characteristics of the hazard as well as the location where it occurs and the assets 

which are exposed (JCSS, 2008). As a general rule, consequences should be 
assessed in regard to loss of human lives and injuries, damages to the qualities of 
the environment and economic losses. An overview of monetisation of different 

consequence types was given in SAFEWAY (2019b) and SAFEWAY (2020).  

Consequences of hazard events are frequently classified as direct, i.e. as caused 

directly by the event including casualties, injuries, and damage to infrastructure; 
and indirect, resulting from the unavailability of the impaired transport 
infrastructure, e.g. additional travel time and travel distance, and the loss of 

access to certain areas (Erath, 2011). A more detailed description of direct and 
indirect consequences is presented in Chapter 5 and Chapter 6, respectively. 

Moreover, consequences depend on the economic activities and population 
situation at future times. This variation of the socio-economic factors for the 
computation of the indirect consequences is addressed in Chapter 7.  

 Crowd sourcing data 

Vehicle monitoring systems or more in general road users monitoring systems 

have evolved during last two decades from traditional roadside equipment-based 
monitoring systems towards floating vehicle monitoring systems, resulting in 
various types of data and network coverage. The number and diversity of sensors 

present in vehicles are continuously increasing, giving an opportunity to obtain 
insights on the vehicle surroundings based on data gathered by those sensors. The 

produced floating car data (FCD) are quite different compared to the roadside 
equipment-based data. FCD has in principle a wide area coverage, so covering all 
roads where vehicles are moving. It is also producing speeds and instead of 

number of vehicles, travel times. This information can be valuable for the condition 
assessment of certain assets on the road infrastructure (e.g. pavement, lane 

markings, traffic signs, protective barriers, overpasses, etc.). The connectivity 
capabilities of modern vehicles also allow to evaluate mobility conditions more 

efficiently and to establish ways of communication with the drivers and 
infrastructure operators to trigger actions consequently. Alternatively, it is based 
on a less than 100% sample size, because not all vehicles are producing FCD and 

are connected to a cloud service. On the other hand, these systems are relatively 
cheap, the costs are partly paid by the users as they are buying their smartphone 

or satnav and they are also paying a subscription fee for the traffic service, in a 
one-off when buying the Satnav or by a monthly licence fee. 

The growing availability of smart devices with advanced sensors has increased the 

opportunities for citizen science applications for empirical monitoring. This type of 
monitoring can provide more specific and actionable guidance for improving road 

network resilience and disaster management in different areas with diverse 
environmental and socio-economic conditions. Few empirical approaches are 
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available for evaluating road network vulnerability or resilience in real disaster 
events. The existing approaches are primarily based on simulation models, 

predicting the potential degradation of network performance in hypothetical 
hazardous conditions (Taylor, Sekhar and D’Este, 2006; Miller-Hooks, Zhang and 
Faturechi, 2012). However, the actual performance of road networks in real hazard 

events is dynamic and complex, dependent on not only physical network properties 
(e.g. topology, road type and capacity), but also environmental (e.g. weather and 

topography) (Pregnolato, Ford, Glenis, et al., 2017) and human factors (e.g. 
mitigation, emergency management and individuals’ travel behaviour) (Zheng and 
Ling, 2013; Jacobsen, Leiren and Saarinen, 2016). Empirical observations of road 

network performance are needed to validate the predictions of the theory-based 
models and unravel the complex interplays among the various factors. 

Crowdsourcing strategies have also been exploited to confront safety issues in road 
work zones, with the aim on obtaining richer information about the situation 
surrounding these areas. A method to analyse post-event impact of road works 

was developed by TTI (Pesti and Brydia, 2017), based on data gathered with 
Bluetooth probe tracking technology, using readers that automatically identify 

individual vehicles by matching Bluetooth MAC addresses. Travel time delays are 
quantified, as well as traffic queue length, to assess the deployment of queue 
warning systems and the best start time for lane closures. The feasibility of using 

connected vehicle data, crash data and geometric data from on-board installed 
LiDAR is addressed in (Mekker et al., 2018) to analyse congested conditions 

upstream of work zones and trigger alerts to infrastructure operators via a real-
time queue alert system.  

Throughout the developed world, road agencies acquire the data used to manage 

traffic on their roads from roadside sensors such as induction loops, radar or 
cameras – a monitoring infrastructure, which is costly and requires ongoing 

maintenance. Increasingly, step-by-step in a low pace, they are supplementing 
data from these sensors or even seeking to replace them altogether with FCD 
generated by mobile devices moving on their network. In this way they are moving 

towards integrated usage of FCD data in their daily traffic management business.  
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4. Fragility functions for flood hazard 

The assessment of the physical damage that transport infrastructures will 
experience when exposed to a given intensity of the flood hazard is of paramount 

importance to define the direct and indirect impacts on the transportation system 
functionality. SAFEWAY (2020) presents a thoroughly explanation of different 
methods for the development of fragility curves, namely judgemental, empirical, 

analytical and hybrid approaches. Moreover, an extensive review on available 
fragility functions for different hazard types and infrastructure assets was 

elaborated. However, it was concluded therein that the availability of such 
functions was limited, and there is a need for developing new functions and 

updating existing ones in order to consider various natural events and related 
failure modes. Therefore, this subchapter elaborates a quantitative, yet 
straightforward procedure for fragility assessment of bridges exposed to flood 

hazards to be applied at network scale and therefore be adopted on the SAFEWAY 
case study. Furthermore, fragility functions for other type of transport 

infrastructure assets namely roads, roadway and railway embankments, are 
reviewed to be adopted on the SAFEWAY case study.  

4.1 Bridge fragility functions 

Published literature on fragility functions for bridges exposed to flood hazard are 
less common than for other natural hazards such as earthquakes. The HAZUS 

methodology for estimating losses due to flood hazard (Hazus-MH, 2013) proposed 
bridge failure probabilities for different flood return periods as a function of the 
scour potential, waterway adequacy and span type, which are available attributes 

within the FHWA bridge inventory database. The failure probabilities and 
associated losses were defined by expert judgement as no comprehensive 

database of bridge damage due to flood hazard was identified. Moreover, the focus 
was only given to bridge foundation failure.  

On the other hand, some efforts have been done recently to assess the combined 

effect of flood-induced scour on the seismic fragility of bridges by analytical 
approaches (e.g. Dong, Frangopol, and Saydam (2013); Ganesh Prasad and 

Banerjee (2013); Yilmaz, Banerjee, and Johnson (2018)). However, these studies 
account for the scour as an aggravated condition for the seismic fragility, rather 
than as a collapse failure mechanism itself. Conversely, Tanasić, Ilić, and Hajdin 

(2013) developed fragility functions for multiple span RC bridges supported on 
shallow foundations, where pier sinking was assumed as the bridge failure 

mechanism as a result of the degradation of the bearing capacity of the soil 
beneath the foundation during the scouring event. Also, D’Ayala et al. (2015); 
Hackl et al. (2018) obtained fragility curves for bridges that could fail as a result 

of local scour, assuming the failure as the probability of reaching certain scour 
depth thresholds.  

It can be observed that the research focus has been given to foundation failure 
during extreme flood events, i.e. scour damage, while other types of failures can 
be also present, namely deck or pier failure due to hydraulic pressures (Mondoro 

and Frangopol, 2018). In this regard, (Turner, 2016) analysed the deck failure 
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induced by hydrodynamic lift forces to develop fragility curves for eight bridges. 
Also, Kim et al. (2017) constructed flood fragility curves for a bridge, considering 

multiple failure modes due to local scour, deterioration due to corrosion and 
increased hydrodynamic pressure due to debris accumulation. However, these 
research efforts are very case specific and time-consuming (involving finite 

element modelling), which hinders the possibility of implementing them at a 
network level scale, i.e., for a large portfolio of assets.  

Therefore, a methodology for construction of flood fragility curves for a portfolio 
of bridges is proposed herein aiming at i) overcoming the fact that observations 
(i.e., damage records) are usually insufficient to construct empirical flood fragility 

curves for bridges; ii) providing a more accurate estimation based on an analytical 
approach rather than a pure judgemental approach; iii) accounting for different 

bridge failure modes. The general methodology is illustrated in Figure 31, where it 
should be highlighted that the key step is the definition of bridge classes among 
the bridge stock. Bridges within the same class are expected to perform in the 

same way, i.e., share the same predominant failure mode so that a single limit 
state equation can be used to construct representative fragility curves for the class. 

To this end, an analysis of the characteristics of the bridge and the watercourse is 
needed in order to define the scenario induced by the flood and the possible 
associated failure modes. This analysis is thoroughly explained in the next 

subsection. Then, the classes defined for the SAFEWAY bridge stock are presented, 
and the damage limit state equations to be used for these classes are proposed. 

Lastly, the remaining sections are dedicated to the justification of the selection of 
the intensity measure to represent the flood hazard, the definition of the bridge 
functionality after the occurrence of each damage state, the treatment of 

uncertainties, and the possible degradation factors to be considered to construct 
time-dependent fragility curves. To demonstrate the methodology, an illustrative 

example from SAFEWAY case study is presented at the end of this section.  

It should be noted that the approaches proposed herein can be validated with 
experimental data and observations in the aftermath of hazard events. 
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Figure 31. Methodology for construction of flood fragility curves for a portfolio of bridges 

 

 Bridge failure modes in a flooding event  

Failure can be defined as complete or partial damage of bridge components leading 
to a reduction of the bridge functional performance. A relatively large number of 

failure modes can be identified since each bridge component may fail differently 
when exposed to an extreme flood event. Birdsall and Hajdin (2008) identified five 
different failure scenarios in which a flood can cause partial or complete failure of 

a bridge. These failure scenarios may be grouped into three flood-induced 
scenarios, namely bridge overtopping, scour at bridge foundations or hydraulic 

overloading as depicted in Figure 32. Essentially, if the characteristics of the flood 
conducts to bridge overtopping, a roadway/railway might be buried, a 
superstructure might fail horizontally, or the superstructure-substructure 

connection might fail. Similarly, the bridge might fail due to the undermining of its 
foundations, if the characteristics of the streambed material subjected to the flow 

conditions result in scour on bridge foundations. Finally, bridge piers might fail 
horizontally if the hydraulic loading exerted are beyond the design loads, e.g., 
when exacerbated by debris accumulation.  
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Figure 32. Bridge failure scenarios induced by the flood event 

The occurrence of a particular flood-induced scenario depends on the 
characteristics of the bridge structure, the watercourse, and the flood event, as 
shown in Figure 31. Table 17 summarizes all the necessary data to be collected 

and analysed in order to define the most probable scenario. This list is adapted 
from the factors proposed by (Lamb et al., 2017) to be considered when assessing 

scour risk to bridges. These factors allow to evaluate not only if scour is a problem 
for the structure under analysis, but also if bridge overtopping or hydraulic 
overloading might take place and cause a bridge failure.  

It should be noted that factors such as channel modification (e.g. due to dredging) 
or the presence of floating debris, are sometimes considered as causes of failure 

(Benn, 2013). However, both factors are known to affect bridge structures by 
intensifying scour depths and/or hydraulic loadings. Therefore, they are not 

assumed as additional bridge failure scenarios, but as relevant factors to predict 
the scour extent and quantify the hydraulic load magnitude.    

 

Table 17. Input data for the definition of the flood-induced scenario (adapted from 
(Lamb et al., 2017)) 

Group Factors Comments 

Characteristics of the 

bridge structure 

• Structure type and span 

• Foundation type and depth 

• Construction date 

• Scour history and protection 

• Flow constriction at the bridge 

Information to be 

retrieved from bridge 

inventory database and 

inspection reports 
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Group Factors Comments 

Characteristics of the 

watercourse 

• Bed material 

• Stability of the watercourse 

• History of weir removal and 

sand/gravel extraction 

• Debris accumulation potential 

Information to be 

retrieved from bridge 

inventory database, 

inspection reports, and 

maps, aerial 

photographs, and survey 

data to define debris 

potential (or debris 

hazard map if available). 

Characteristics of the 

flood event 

• Flow velocity 

• Water depth 

Information to be 

retrieved from hazard 

maps at the bridge 

location (or through the 

flowchart from Figure 

24)  

Finally, it can be observed from Figure 32 that each of the failure scenarios can 

conduct to different bridge failure modes (FMs). For instance, bridge piers 
subjected to high water pressures could fail in a shear or a flexure failure mode. 

Similarly, the superstructure-substructure connection could fail horizontally, i.e., 
sliding-off bearings failure mode, or vertically, i.e., uplift failure mode. 

Nevertheless, the definition of bridge FMs due to scour at bridge foundations is 
represented in Figure 32 as a triangle (transfer symbol), as it requires a large 
discretization of many other parameters involved as it will be discussed in the 

following. 

Briaud et al. (2011), defined four typical bridge FMs due to scour namely big scour 

hole, settlement and rotation of the pier, loss of the deck, and loss of the pier. 
However, these FMs are defined based on observed damages and do not explain 
how the failure develops. On the other hand, Van Leeuwen and Lamb (2014) 

introduced the resistance of multiple bridge components by dividing the failure 
mechanisms as secondary mechanisms resulting from primary mechanisms. 

Essentially, scour can undermine shallow foundations or cause destabilisation of 
deep foundations through erosion of the riverbed; this can lead to settlement or 
tilting of piers/abutments, or tilting of group of piles (primary mechanism), which 

in turn might result in structural damage to superstructure, or deck sliding or 
falling off abutments/piers due to differential settlements or tilting of supports 

(secondary mechanism) (see Table 18).  

Fundamentally, the possible FMs due to scour are governed by the combined 
resistance of a soil-bridge system. Tanasić (2015) elaborated this concept for the 

case of multiple span RC bridges supported on shallow foundations. The soil 
resistance to local scour is governed by the soil erodibility and its geotechnical 

properties: internal angle of friction, cohesion and self-weight; while the bridge 
resistance is governed by its ability to redistribute the internal forces due to the 
removal of supporting soil at bridges substructures. Therefore, the bridge 

resistance depends on the following aspects: 



 
 

 

D5.1 – Dynamic Risk-based Predictive Models 81 

 

• Bridge geometry, material properties, quantities/detailing of reinforcement 
• Type and detailing of bearings, joints between superstructure and 

substructure, and dilatations  
• Elements’ (deteriorated) condition  

From this work, it was found that the lowest resistance to local scour is exhibited 

by bridges with no horizontal restraint on the top of the affected substructure. 
Conversely, in presence of horizontal restraint, the superstructure capacity and 

adjacent substructure are relevant for the ultimate bridge resistance. This 
highlights the importance of defining the failure modes for each bridge type.  

More recently, COST TU1406 Action (Hajdin, Kušar, et al., 2018) developed a 

comprehensive failure mode analysis for girder/frame bridges and masonry arch 
bridges exposed to local scour at substructures. The main FMs types identified are 

presented in Table 18. This table summarizes the possible bridge FMs in a flooding 
event defined by different research works for various bridge types. It can be 
observed that FMs differ significantly among masonry arch bridges and RC bridges, 

and between bridges supported on shallow and deep foundations. Moreover, it can 
be noted that there is no full agreement between the possible FMs defined for the 

same type of bridges among different research works (e.g. (Lin et al., 2014; Kim 
et al., 2017)).  



 
 

 

D5.1 – Dynamic Risk-based Predictive Models 82 

 

Table 18. Possible bridge failure modes in a flooding event for different bridge types 

Type of Bridge Flood-induced 

scenario 
Failure modes Reference 

Girder/frame 

bridges supported 

on shallow/deep 

foundations 

Local scour at 

substructures 

FM1: Pier or abutment settlement due to loss of support, leading to 

structural damage to superstructure or deck 

FM2: Pier or abutment tilting (or tilting of group of piles for deep 

foundations), leading to superstructure or deck falling off pier or 

abutment  Van Leeuwen 

and Lamb 

(2014) Hydraulic loading FM3: Piers, abutments or footings damaged by hydraulic loading, 

possibly aggravated by debris accumulation 

FM4: Superstructure or deck sliding off supports due to hydraulic or 

debris loading or collision  

FM5: Superstructure or deck damaged by collision of debris  

Masonry Arch 

bridges 

Local scour at 

substructures 

FM1: Fragmentation of a pier 

FM2: Symmetrical, in-plane failure mode 

FM3: Non-Symmetrical, in-plane failure mode 

FM4: Fragmentation of an abutment 

FM5: Out-of-plane failure and spandrel wall displacement 

R. Hajdin, 

Kušar, et al. 

(2018) 

Zampieri et al. 

(2017) 

Girder/frame 

bridges supported 

on shallow 

foundations 

Local scour at 

substructures 

FM1: Loss or serious damage of substructure leading to deck failure 

FM2: Tilting/rotation of substructure not restrained by the 

superstructure 

FM3: Settlement of substructure restrained by the superstructure 

R. Hajdin, 

Kušar, et al. 

(2018) 
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Type of Bridge Flood-induced 

scenario 
Failure modes Reference 

FM4: Loss or serious damage of substructure, no deck failure 

Bridges supported 

on deep 

foundations 

Local scour at 

substructures and 

hydrodynamic 

forces 

FM1: Loss of soil bearing capacity (insufficient penetration for friction 

piles, undermine of pile tip for end bearing piles) 

FM2: Buckling of piles 

FM3: Lateral failure (pushover failure, structural hinging or kick-out of 

foundations) 

FM4: Torsional failure due to skew flow 

C. Lin et al. 

(2014) 

Bridges supported 

on deep 

foundations 

Local scour at 

substructures and 

hydrodynamic 

forces 

FM1: Lack of displacement ductility of bridge piers and piles 

FM2: Steel reinforcement rupture of bridge piers and piles  

FM3: Deck loss due to relative displacements 

Kim et al. 

(2017) 

Girder bridges 

 

Deck overtopping FM1: Transverse failure 

FM2: Uplift failure 

Mondoro and 

Frangopol 

(2018) 

 

Hydrodynamic 

forces on pier 

FM3: Flexural and axial failure of bridge pier 

FM4: Shear failure of bridge pier 

Scour at pier 

foundation 

FM5: Flexural and axial failure of pile group 
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 Definition of bridge classes for SAFEWAY pilot 

Conducting an asset-specific fragility model for a large portfolio of assets would be 

a far too time-consuming and computationally expensive task. Therefore, it was 
proposed in SAFEWAY (2020) to categorise the assets into classes and apply a 
fragility function describing a representative asset type and its failure mode.  

The classes are defined initially by grouping bridges having similar structural 
characteristics and comparable characteristics of the watercourse (Figure 31). 

Then, following the analysis presented in Figure 32, the key assumption is that all 
bridges within the same class are expected to have the same predominant failure 
mode when subjected to the same flood-induced scenario. 

It should be pointed out that complete data of the assets was not available. Some 
information was albeit obtained from geo-information systems, inspection reports 

and other available datasets. The unavailability of high-quality data for the proper 
understanding of bridge performance is a current issue shared by many countries 
and highlighted by many researchers (Hajdin, Casas and Matos, 2019; Pregnolato, 

2019). This issue was tackled herein by using the available information from actual 
bridges and making assumptions in absence of reliable data for the purpose of 

illustration and demonstration of the methodology. 

The results of the definition of Classes for the case study are presented in Table 
19. Bridges belonging to Class I and Class II correspond to multiple span and single 

span masonry arch bridges, respectively, which constitute a significant proportion 
of the bridge inventory in the case study. These structures are typically founded 

on shallow footings (usually of unknown depth) or on timber piles, which given 
their environmental exposure and due to ageing might be severely weakened. 
Even though there is no information available regarding the soil characteristics to 

define their vulnerability to scour, it is recognized that masonry arch bridges are 
extremely vulnerable to this phenomenon due to their rigid behaviour which does 

not allow significant settlements (Zampieri et al., 2017). Accordingly, scour at 
bridge foundations was defined as the flood-induced scenario for both classes, and 
the predominant failure mode was defined in accordance with Hajdin, Kušar, et al. 

(2018).  

Bridges within Class III correspond to a particular type of bridges found along the 

Tagus river, which are of great geographical importance since they communicate 
municipalities located on the riverbanks. These bridges are characterized by having 

multiple spans (with total spans between 400-600m), masonry wall piers, steel 
truss structures for the deck, and were built between 110-150 years ago. The 
foundation of these type of bridges consists of a deep prolongation of the piers 

until reaching a soil stratum with sufficient capacity, i.e. loads are transferred by 
direct bearing to dense soil. From geotechnical surveys conducted during the last 

decade, it has been found that some of the bridge piers within this class were 
founded on soils with insufficient bearing capacity. Moreover, these surveys 
revealed the presence of coarse sands in the upper soil layers, which renders the 

bridge susceptible to scour. In fact, during sub-aquatic inspections, scour has been 
found in several piers, reaching depths up to 1.5m (Figure 33a). As a 

countermeasure, the riverbed has been protected with rock fill layers around piers. 
However, during subsequent inspections, it is evidenced the displacement or 
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“washed away” of the protective fills (Figure 33b). Given these conditions, scour 
is considered a relevant threat for the bridge safety, acknowledging the fact that 

deep foundations are by design considered to be more resistant to this 
phenomenon. However, the loss of supporting lateral soil, together with the fact 
that the bridge piers are founded on weak soils, and the presence of a significant 

water pressure over the pier during flood events (water depths reach 
approximately 12-14m during a 100-year flood), this scenario could lead to 

instability of the pier and thus to the collapse of the complete bridge (as exhibited 
by the Hintze Ribeiro bridge collapse (Sousa and Bastos, 2013)).  

 
a) b) 

Figure 33. Presence of local scour in bridges within Class III 

Class IV bridges have a similar structural type to Class III, i.e. steel truss 

structures for the deck supported on masonry abutments and wall piers and were 
built approximately 130 years ago. One of the main differences relies on the 

characteristics of the watercourse, as the river channel sections for the bridges 
within this class are smaller (as shown in the reference figure of the class in Table 
19). According to available drawings, the abutments are supported on timber piles, 

which given the year of construction of the bridge are expected to be in an 
advanced state of deterioration. This hypothesis is also founded on existing crack 

patterns which have been evidenced during principal inspections, and presumably 
correspond to differential settlements (see Figure 34). Consequently, the 
occurrence of scour at bridge abutments could represent a potential threat, as the 

timber piles might not be able to withstand the unsupported pile height and might 
exceed their buckling capacity leading to the abutment failure.  
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a) b) 

Figure 34. Presence of cracking at bridge abutments within Class IV 

Finally, Class V corresponds to multiple span RC integral bridges with deep 
foundation.  Bridges within this class are localized at watercourses with V-shaped 
valleys (as shown in the reference figure of the class in Table 19). Given these 

conditions and the characteristics of the flood events, Class V bridges could be 
subjected to rather hydraulic overloading or bridge overtopping scenarios. 

However, as the connection between superstructure-substructure is monolithic, it 
is not expected that significant physical damages would take place during 
overtopping as it is in the case for simply supported structures (as studied in 

Mondoro and Frangopol (2018)). Conversely, hydraulic overloading, probably 
exacerbated by debris accumulation due to the watercourse characteristics, could 

lead to a pier flexural/shear failure mode.  

It should be noted that only the most likely flood-induced scenario and the 
expected predominant failure mode were defined for each class, acknowledging 

that more than one scenario could occur, and/or multiple failure modes can 
develop in different bridge elements. For instance, bridge overtopping is also likely 

to happen in Class I bridges. Under this scenario, some research has been done to 
investigate the reduction in the load-carrying capacity of fully flooded masonry 
arch bridges (e.g.(Hulet, Smith and Gilbert, 2006)). Thus, combining both failure 

modes at bridge system level would be required (as proposed by (D’Ayala et al., 
2015)). However, the approach herein proposed seeks to identify the most 

probable scenario and the most likely failure mode, and it is presumed that the 
probability of any other failure mode is negligible.  
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Table 19. Bridge Classes defined for SAFEWAY case study 

Class 
Structural 

System 

Flood-

induced 

scenario 

Predominant 

failure mode 

Example bridge within the class 

Class 

I 

Multiple span 

masonry arch 

bridges founded 

on shallow 

footings 

Scour at 

bridge 

foundations 

Local pier scour 

leading to a 

symmetrical (or 

not symmetrical), 

in-plane failure 

mode 

 

 

 

Class 

II 

Single span 

masonry arch 

bridges founded 

on shallow 

footings 

Scour at 

bridge 

foundations 

Fragmentation of 

abutment due to 

local scour 
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Class 
Structural 

System 

Flood-

induced 

scenario 

Predominant 

failure mode 

Example bridge within the class 

Class 

III 

Multiple span 

steel truss 

bridges 

supported on 

masonry piers 

Scour at 

bridge 

foundations 

Instability of bridge 

piers due to local 

scour 

 

 

Class 

IV 

Multiple span 

steel truss 

bridges 

supported on 

masonry piers 

Scour at 

bridge 

foundations 

Abutment failure 

due to buckling of 

timber piles 

 

 

Class 

V 

Multiple span RC 

integral bridges, 

deep foundation 

Hydraulic 

overloading 

 

Pier flexure/shear 

failure 
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 Intensity Measure 

The most frequent intensity measures to describe the flood hazard magnitude for 

fragility analysis are the peak flow discharge and velocity, flood height (water 
depth) and scour depth. Nevertheless, it can be argued that the later does not 
represent the loading of the hazard but a consequence of the flood event. Lamb et 

al. (2017) applied a formal process of expert elicitation to explore the relevant 
factors when assessing scour risk and to derive bridge failure probabilities 

conditional of flood event severity for different scenarios. Within the scope, the 
loading conditions for a scour fragility function was also discussed. Debris load and 
other four factors related to hydraulic conditions during a flood event were 

preferred, including duration of high flow and flood flow, flood flow return period, 
and flow velocity, which are intrinsically linked. Among them, the flood return 

period (or alternatively, the exceedance probability) is considered a more abstract 
measure of the load intensity, as it is flexible in regard of the methods applied to 
define a flood event and estimate its probability, and more standardised regardless 

of the physical scale of the system (e.g., channel width and depth). For these 
reasons, the flood return period is herein adopted as the intensity measure for the 

development of the flood fragility functions.  

 

 Treatment of uncertainties 

As briefly mentioned in Section 3.3, there are three primary sources of uncertainty 
when assessing the fragility of an infrastructure subjected to a hazard action: 

uncertainty in the capacity, 𝛽𝐶, in the demand, 𝛽𝐷 , and in the definition of damage 

limit states, 𝛽𝐷𝑆 (Figure 31).  

The uncertainty in the capacity is associated to the structure and soil parameters 
such as the geometric and mechanical properties, and to the uncertainty due to 

structural modelling simplifications, i.e. the soil-structure capacity variability.  The 
uncertainty in the demand was largely discussed in Section 3.2 for the flood hazard 
and represents the variability of the hydraulic actions on the structure for each 

return period. Additionally, the model uncertainty associated to the accuracy of 
existing methodologies to estimate water pressures or predict flood-induced 

phenomena such as scour should also be considered (Lagasse et al., 2013). Lastly, 
the uncertainty in the damage limit states is related to the fact that the thresholds 
specified for each damage state are not known (Argyroudis et al., 2019).   

Given all the different sources of uncertainty involved in the development of 
fragility curves, it is acknowledged that a proper treatment of uncertainties is a 

challenge. Thus, it is important to determine appropriate distributions to model 
each random variable in the limit state-equations and find their parameters, i.e. 
mean and standard deviation. Based on the probability distribution parameters, 

sampling approaches such as the Latin Hypercube or MC techniques, can be used 
to generate random combinations of the uncertain parameters. By means of 

decreasing the computational cost of the statistical sampling and the number of 
simulations, sensitivity analyses can be used to investigate which are the most 
significant parameters on the performance of the infrastructure and thus reduce 

the number of uncertain inputs (e.g. (Yilmaz, Banerjee and Johnson, 2018)).  
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Finally, real-time data and monitoring techniques as proposed in the framework 
from Figure 22, could assist at reducing the uncertainties and provide means for 

updating fragility functions in order to represent more reliably the response of 
infrastructures to the hazard events.  

 

 Time-dependent fragility assessment 

As mentioned in Chapter 2, transportation infrastructure assets deteriorate as a 

result of exposure to adverse environmental and climatic conditions, ageing, 
changing load patterns, among other factors. This time-dependent deterioration 
effects can significantly increase the fragility of the of bridge components over 

time (Argyroudis et al., 2019).  

There are different deterioration mechanisms that can develop in the asset 

structural elements, earthworks and streambed material. For concrete structural 
elements, corrosion of reinforcing steel is one of the main causes of loss of 
structural resistance. Corrosion is usually modelled by reducing the cross section 

area of reinforcement as a function of time (see Figure 35), and secondary effects 
such as cracking and spalling of concrete, loss of bond strength, among others, 

should be also considered to investigate the total loss of structural strength due to 
corrosion (Ghosh and Padgett, 2010).   

 

Figure 35. Time-variant area of the concrete element reinforcement (Ghosh and Padgett, 

2010) 

Likewise, corrosion also affects steel bearings, anchor bolts and keeper plates, 
which results in reduced stiffness and reduced ultimate strength in the bearing 

assemblies. Ghosh & Padgett (2010) derived the ultimate lateral strength for fixed 
bearings in the longitudinal direction affected by corrosion (see Figure 36).  

Bridge substructure can also be affected by different deterioration mechanisms. 

For instance, during an underwater inspection, it was found that the I-10 Bridge 
over the Jourdan River in Mississippi, USA, supported on friction steel piles, had 

an average of approximately 50% of steel pile cross section loss as a result of 
severe corrosion. Due to the reduced cross section the web and flanges of the piles 
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had buckled locally. The corrosion was originated due to significant scour that 
exposed the steel piling (Avent and Alawady, 2005).  

 

Figure 36. Reduction of ultimate lateral strength of fixed bearings due to corrosion of 
anchor bolts (Ghosh and Padgett, 2010) 

On the other hand, scour has been also regarded as a history-dependent and time-

dependent phenomenon. In other words, bridges are exposed during their service 
life to multiple floods, some of which exceed the discharge corresponding to the 

design return period, while some correspond to a very low return period, but still 
capable of causing scour. These latter events of minor intensity may not result in 
the critical scour depth being exceeded, but may cause partial erosions which 

accumulate as a consequence of multiple floods and may lead to bridge failures 
(Tubaldi et al., 2017). For instance, the cause of collapse of the Malahide viaduct 

on the railway line from Dublin to Belfast on 21 August 2009 was reported as the 
result of a combination of factors including the accumulative scouring action over 
a long time period, and the inappropriate inspection and maintenance activities 

(Benn, 2013). 

 

Figure 37. CCDF of the scour depth at different times of observation T (from 1-100 years) 
(Tubaldi et al., 2017) 
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 Damage states and bridge functionality 

As stated in Section 4.1.1, failure can be defined as complete or partial damage of 

bridge components leading to a reduction of the bridge functional performance. As 
such, the number of bridge damage states is variable, moving from none to 
extensive, or complete collapse. Each damage state is associated to a level of 

functionality loss, which is defined by the traffic capacity of the infrastructure, i.e. 
from full service to completely closed to traffic. Intermediate functionality levels 

are usually defined as load restrictions, only one lane open, speed restrictions, or 
emergency access only. These levels have been defined based on observed data 
from past hazard events (Hazus-MH, 2013), or data collected from expert opinion. 

Additionally, each damage state can be associated to an estimated duration of the 
repair operations, i.e. a restoration time, and to a repair cost. Table 20 summarizes 

the findings from an expert-based survey done within the INFRARISK research 
project (D’Ayala et al., 2015), where four damage states were defined and the 
expected functionality losses, downtime durations and repair costs (as a 

percentage of the replacement cost) were estimated. These values support a 
roughly quantification of direct and indirect consequences. However, there is no 

full agreement yet in the literature (nor in practice) regarding these estimates, as 
they vary significantly among different hazards and bridge structure types. 
Nevertheless, efforts have been done recently to provide systematic data to relate 

damage levels to repair decisions and traffic closures for different natural hazards 
(refer to Section 5.1). 

 

Table 20. Functionality loss of different damage states according to INFRARISK expert-
based survey (D’Ayala et al., 2015) 

Damage State Functionality loss Duration Costs 

DS1: Slight 

damage 

- - - 

DS2: Minor 
structural damage 

0%-25% (speed) 1-90 days 0%-20% 

DS3: Extensive 
damage 

100% closed lanes 60-120 days 20% 

DS4: Collapse 100% closed lanes 90-150 days 20%-100% 
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 Example of bridge fragility function 

Based on the methodology proposed in Figure 31, a fragility function is herein 

constructed for bridges within Class I, i.e. multiple span masonry arch bridges 
founded on shallow footings. Although this is a realistic example, some information 
was not available. Therefore, some assumptions were made for the purpose of 

illustration of the methodology. 

In most approaches found in the literature, failure of bridges on shallow 

foundations is assumed to occur when the predicted local scour depth reaches the 
foundation base, which has been demonstrated to be a conservative assumption 
for multiple span RC girder bridges (Tanasić, 2015) as well as for masonry arch 

bridges (Zampieri et al., 2017). Consequently, it is important to identify the 
maximum scour depth and extent (i.e., the geometry of the scour cavity) beneath 

the foundation level that the soil-bridge structure may withstand before collapse 
(see Figure 38). This limit might be found by assuming a rigid plastic behaviour of 
the soil and bridge elements and applying the upper bound theorem of the theory 

of plasticity (see (Tanasić, 2015)), or by a soil-bridge structure finite element 
model. For instance, Zampieri et al. (2017) elaborated a soil-bridge structure finite 

element model of a masonry arch bridge in order to analyse the scour layout able 
to induce a collapse mechanism. To this end, increasing local scour profiles 
(symmetric and not-symmetric) were applied through the removal of soil 

elements. This loss of supporting soil due to the erosional process conducted to 
vertical settlements for the symmetric scour layout and combined vertical-

rotational settlements for the not-symmetric layout. As expected, with the increase 
of local scour, settlement values become significant leading to cracking 
phenomena at the arch intrados and extrados, and finally to rigid block sliding 

failure. 

 

 

 

Figure 38. Maximum scour cavity that a soil-bridge structure may withstand adapted 
from (Tanasić and Hajdin, 2018) 

In order to conduct the fragility assessment of bridges within this class, a four-
span masonry arch bridge was considered as representative of the typical layout 

of arch bridges with short to medium span length found in the demonstrative pilot. 
The geometry of the bridge is shown in Figure 39. It should be noted that the 

dimensions, bridge materials and soil characteristics do not correspond exactly to 
any actual bridge. It is assumed that the soil corresponds to an alluvial deposit 
mostly granular, with coarse sands loosely cohesive.  
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Figure 39. Representative masonry arch bridge for Class I 

Considering that finite element models are computationally expensive to carry out 

probabilistic analysis and even more to perform fragility analysis which describe 
the probability of failure over a range of loads, discontinuity layout optimization 

(DLO) which is a numerical limit analysis technique is used herein as a less costly 
but powerful computational alternative (Smith and Gilbert, 2007). DLO is an upper 
bound method that has been recently used for verifying the safety of masonry arch 

bridges (Gilbert et al., 2019), which is incorporated in the LimitState:GEO 
software, freely available for academic use (http://www.limitstate.com). However, 

as limit analysis-based methods are founded on plasticity theory, their aim is to 
estimate the collapse load of a structure. Thus, the masonry arch bridge is 
analysed only in relation to its ultimate damage state. If the interest is to define 

and investigate intermediate damage states (as shown in 4.1.6), finite element 
analysis would be required.  

Masonry units were modelled using a rigid material model, and masonry joints 
were modelled using a Mohr–Coulomb model with zero cohesion and an angle of 
friction derived from the coefficient of friction. A Mohr-Coulomb model was also 

considered for the backfill and the foundation soil. The material properties used in 
the analysis, i.e. masonry compressive strength, unit weights for each material, 

and internal friction angles can be found in Appendix 3. The probability 
distributions selected to describe each variable are also provided, following the 
suggestions from previous research works (Moreira et al., 2016). The bridge 

dimensions are considered deterministic as these uncertainties can be effectively 
reduced by means of LiDAR technologies for acquiring the external geometry of 

the bridge in its current condition (Conde et al., 2020). It is worth to mention that 
a sensitivity analysis can be performed before the probabilistic analysis in order to 

select the most influent input variables and consequently reduce the computational 
effort of these analyses.   

The bridge is assumed to be located at the outlet section of Almonda River. Then, 

the Gumbel distribution fitted to the flow discharges from Figure 29, is used herein 
to quantify the hydraulic loads on the masonry arch bridge. To this end, the 

Gauckler-Manning-Strickler formula is considered for the hydraulic analysis under 
the assumption of uniform flow conditions (Manning et al., 1890). Probability 
distributions for the hydraulic parameters, i.e. manning roughness coefficient and 

channel slope are adopted from Lagasse et al. (2013) (refer to Appendix 3). From 
the hydraulic analysis, the water depth and flow velocity are determined for each 

return period and are fitted to a Lognormal probability distributions. Figure 40 
depicts the PDF functions of the flow discharge, water depth and flow velocity for 
the 5-, 20-, 50, 100-, 500-, and 1000-year return periods.  
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a) 

 
b) 

 
c) 

Figure 40. PDF functions of the a) flow discharge, b) water depth and c) flow velocity for 
the 5-, 20-, 50-, 100-, 500-, and 1000-year return periods. 
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Based on the hydraulic loads and the soil characteristics, local scour at a bridge 
pier is investigated. It is worth noting that the contribution from contraction scour 

and long-term degradation could be also added to obtain the total scour. 
Nevertheless, local scour is commonly the ultimate cause of bridge failures during 
extreme flooding events (Sheppard and Renna, 2010). Thus, only local scour is 

considered and its depth is estimated following the FDOT methodology (Sheppard 
and Renna, 2010).  

 
a) 

 
b) 

Figure 41. PDF function of the local scour depth a) without model uncertainties, b) with 
model uncertainties after (Lagasse et al., 2013) 
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Figure 42a shows the PDF functions of the estimated local scour depths for the 5-
, 20-, 50-, 100-, 500-, and 1000-year return periods. It can be observed that the 

scour depths do not vary significantly among the return periods studied. This effect 
is evidenced as the FDOT methodology is not too sensitive to the hydraulic 
conditions as shown by previous studies when testing the performance of scour 

predictions (refer to (Yang et al., 2019)). This epistemic uncertainty associated 
with the accuracy of the FDOT method to predict scour can be considered through 

the application of bias factors with a coefficient of variation obtained from the ratio 
of observed scour with predicted scour as suggested by Lagasse et al. (2013). The 
application of these factors to the scour estimates results in the PDF functions from 

Figure 42b. It can be seen that the inclusion of this model uncertainty leads to the 
scour depth for a return period of 5-years being higher than the scour depth for a 

100-year return period. This effect occurs due to the large coefficient of variation 
of the bias factor and reflects the need for a better assessment and understanding 
of the epistemic uncertainties associated to scour predictions. Therefore, the scour 

estimates without model uncertainties are employed for the fragility assessment 
of the masonry arch bridge under study. 

Figure 43 shows the masonry arch bridge modelled in LimitState:GEO (LimitState, 
2019) for the no-scour condition (Figure 43a), scour due to a 5-year flood (Figure 
43b), and scour due to a 1000-year flood (Figure 43c). For modelling the geometry 

of the scour cavity, the experimental results from Vijayasree et al. (2019) were 
followed. It should be noted that a symmetrical in-plane failure mode es assumed, 

as the water flow is aligned with respect to the pier plan orientation (if skewed, 
the expected failure mode would be not-symmetrical). 

 

a) 

 

b) 
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c) 

Figure 42. DLO model of the masonry arch bridge in LimitState:GEO (LimitState, 2019): 
a) no scour condition, b)scour due to a 5-year flood, c) scour due to a 1000-year flood 

An adequacy factor, which is defined as the factor by which specified loads must 
be increased in order for the system to reach a collapse state, was obtained in 

LimitState:GEO for each intensity measure (return period) after modelling the 
corresponding conditions, i.e. the scour cavity and hydrodynamic load conditions. 
Subsequently, the probability of failure was computed using the first order 

reliability method (FORM).  

 

Figure 43. Fragility functions for Class I bridges 
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The obtained fragility curve with uncertainty bounds is shown in Figure 43. As 
previously mentioned, the curve was constructed for the ultimate limit state. Thus, 

the bridge functionality associated to this damage level is 100% loss of service. It 
should be noted that in this example the degradation processes were not yet 
included. However, time-dependent fragility functions as described in Section 4.1.5 

can be obtained by introducing the reduction in the compressive strength of the 
masonry units due to deterioration, as well as the accumulation of scour as a 

consequence of multiple floods. These effects will be addressed in future work.  

4.2 Road fragility functions 

Floods can manifest over hours or days. This exposure (daily or hourly) can have 

a temporary or definitive impact on the loss of road functional capacity. Especially 
flash floods (which start as a result of heavy rains) are the predominant cause of 

weather-related disruptions in the transport sector (DfT 2014a).This problem 
seriously affects the road network in urban areas, where there is a large number 
of impermeable surfaces. Therefore, when excessive rains occur, large surface 

water flows cause drains to exceed their capacity and consequently increases the 
economic and social effects.  

Currently, there are insufficient studies regarding the relationship between adverse 
weather (rains and floods) and traffic flow and congestion. In SAFEWAY (2020) 
simple and sophisticated models for the evaluation of mobility on roads are 

described. Among them, the simplest approach consists of assuming two 
scenarios. One in which the road is fully operational and the other in which the 

road is completely blocked, which would allow defining a threshold for the depth 
of the water on the road by comparing the two scenarios. Meanwhile, more 
sophisticated approaches address the capacity reduction or the reduction of the 

vehicle speed according to the water depth. Among other studies, Lam et 
al.(2013), proposed an equation to estimate vehicle speed/density under various 

rainy conditions. Pregnolato, et al. (2017) propose a relationship between the 
standing water depth and the vehicle speed, identifying that a road is impassable 
when a water level of 30 cm is reached. From these investigations, Lee (2017), 

develop a traffic interruption map taking into account the rain-flood depth curves 
and the vehicle speed-flood curves as shown in Figure 44. 
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Figure 44. Rainfall–depth–vehicle speed relation. From: Lee (2017) 

4.3 Roadway embankment fragility functions 

Floods can often cause damage to transportation systems. Damage ranging from 

natural landslides to damage to slopes and embankments due to scour processes 
is a relevant failure mechanism in transportation infrastructure (Benn, 2013; Van 

Leeuwen and Lamb, 2014).  

It is relatively difficult to derive fragility functions for geotechnical assets, such as 
road slopes and embankments, due to their inherent heterogeneity. However, 

McKenna et al., (2021) proposed an approach for fragility functions derived to 
predict the displacement, and therefore the damage of a road over a granular 

embankment that is subject to flooding. The fragility evaluation is provided 
through numerical simulations, considering parameters drained of the soil 
materials, for a gradually increased water table, followed by scouring hole 

development at the toe of the embankment slope. 

The curves construction process consists of five main stages. First, perform 

numerical analysis to increase the intensity of hazards including 
slope/embankment and foundation soil, and imposed hazard effects (i.e., water 
table and scour due to flooding). Second, define the damage states based on the 

range of preset measurement values. Third, plot the intensity measure against the 
corresponding damage measure and use the best-fit regression to derive the 

probabilistic data (i.e., the median) of the threshold intensity measure at each 
damage state. Fourth, uncertainty values calculation of the components and 
subsequent combinations to calculate the total uncertainty values. Finally, the 

normal logarithmic cumulative distribution function is calculated, using the values 
obtained in the previous steps to derive the fragility curves. Those frafiligy curves 

proposed by the authors are shown in Figure 45. 
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Figure 45. Fragility functions for roadway embankment scour (McKenna et al., 2020) 

Moreover, McKenna et al. (2020) recommended these fragility functions for use in 
the design processes, as they provide information for the performance of assets 

under various hazards considering different levels of design of hazard magnitudes 
and frequencies. 

 

4.4 Railway embankment fragility functions 

Railways are significantly vulnerable when rail tracks are inundated or overtopped, 

given that a short section of track being washed out causes the entire railway 
system to experience delays. The most common failure mechanisms of rail tracks 

due to flood overtopping are scouring of the embankment fill which supports the 
rail tracks and/or scouring of the ballast. (Tsubaki et al., 2016) developed fragility 
curves based on railway scour damage recorded during two flood events. The 

upstream flood water level was used as the intensity measure for the fragility 
curves, and the damage states defined were “no damage”, “ballast scour”, and 

“embankment scour”. Figure 46 displays the obtained fragility curves for ballast 
scour, embankment scour, and the combination of ballast and embankment scour. 

The overtopping water depth, ∆ℎ, corresponds to the difference between the 

upstream flood water level 𝐻 and the elevation of the railway track, 𝑧, i.e., 𝐻 = 𝑧 +
∆ℎ. Ballast scour was fitted to a normal fragility curve, while embankment scour 

and the combination of ballast and embankment scour were fitted to log-normal 
fragility curves. 
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Figure 46. Fragility curves for ballast scour (Bal. only), embankment scour (Emb.), and 
ballast and embankment scour (Bal. and Emb.) from (Tsubaki et al., 2016) 

Given that the type of records used for the development of ballast and 
embankment fragility curves are not available at the Santarém case study, the 

aforementioned fragility curves from literature will be implemented on the 
application for SAFEWAY.  
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5. Assessment of direct impacts  

5.1 Assessment of direct impacts at asset level 

After the occurrence of extreme hazard events, infrastructure assets which 

experienced physical damages must be repaired to restore the complete 
functionality of the transportation system. As mentioned in Section 4.1.6, these 
intervention costs are a function of the damage level attained by the infrastructure 

and may be expressed as a percentage of the replacement cost, or by absolute 
costs in e.g., euros per m2. Even though most of available studies focus on seismic 

damage and post-hazard disruptions, some surveys have been recently carried out 
to associate bridge damage caused by flood-induced scour to repair decisions, 

repair costs, functionality loss, and closure times. For instance, Hackl et al. (2018) 
estimated the restoration costs composed of a fixed part, i.e. site setup, and a 
variable part, i.e. per m2 of reconstruction material, from the survey conducted by 

D’Ayala et al. (2015). The estimated values are shown in Table 21 in Swiss franc 
(CHF) adjusted to 2017 price levels. However, the repair actions are not clearly 

stated for each damage state and thus it is difficult to extrapolate these values to 
other applications.  

 

Table 21. Functionality loss and restoration costs for bridge scour according to (Hackl et 
al., 2018) 

State Functionality loss Fixed costs 

[CHF] 

Variable costs 

[CHF/pier] 

S0: Operational - - - 

S1: Monitored - 16,000 24,000 

S2: Capacity 

reduced 

20% reduction in 

capacity 

30,000 40,000 

S3: Closed 100% closed lanes 48,000 64,000 

 

On the other hand, Misra et al. (2020) have recently conducted an online survey 

to experts in the field of roadway and bridge inspection and repair, to characterize 
post-hazard restoration planning. Flood-related damages to bridge components 

were related to repair decisions, repair time, traffic closure decisions and closure 
times, as summarized in Table 22. These data can be used to develop statistical 
models to construct restoration functions, which are important for the 

quantification of indirect consequences (see further details in Section 6). 

It is worth mentioning that current efforts are being done to collect surveys from 

a pool of experts to define restoration tasks after flood-induced damages and loss 
of functionality of bridges, in order to enable the quantification of the resilience of 
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bridges and transportation networks in the UK (refer to Mitoulis and Argyroudis 
(2021).  

 

Table 22. Bridge repair and closure actions after flood-related damages (Misra et al., 
2020) 

Damage 
state 

Description Repair decision 

Repair 

time 
(days) 

Bridge 

closure 
action 

Bridge 

closure 
duration 

(days) 

BS1 

Scour at 

abutment 
leading to 

piles being 
exposed 

No action (0%) 

Repair (79%) 

Replace 
component (11%) 

Replace bridge 
(5%) 

NA (5%) 

Mean 
(21.7) 

Median 

(14) 

COV 

(1.31) 

No action 

(16%) 

Complete 
closure 

(63%) 

Partial 

closure 
(21%) 

Mean 

(15.7) 

Median 
(14) 

COV 
(0.98) 

BS2 

Scour at 
column base 

leading to 
exposed 

foundation 

No action (26%) 

Repair (63%) 

Replace 

component (0%) 

Replace bridge 
(0%) 

NA (11%) 

Mean 
(21.6) 

Median 
(10) 

COV 
(1.95) 

No action 
(53%) 

Complete 

closure 
(23.5%) 

Partial 
closure 
(23.5%) 

Mean 
(12.6) 

Median 

(0) 

COV 

(1.89) 

BS3 

Scouring 
leading to 

settlement 
at pier 

No action (0%) 

Repair (0%) 

Replace 
component (42%) 

Replace bridge 

(25%) 

NA (33%) 

Mean 

(194.3) 

Median 

(165) 

COV 
(0.77) 

No action 
(0%) 

Complete 
closure 

(100%) 

Partial 
closure 

(0%) 

Mean 
(158.1) 

Median 
(150) 

COV 
(0.84) 

NA= Not answered 
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5.2 Assessment of direct impacts at network level 

In this section, the risk has been evaluated measuring the probability and severity 

of an adverse effect (ISSMGE Glossary of risk management terms) to linear 
transportation infrastructures, considering direct, material impacts. 

 Methodology 

5.2.1.1 Risk calculation 

We performed a quantitative risk analyses based on the formulations of Varnes 

(1984) and Fell et al. (2005), where the frequency of the event, the probability of 
reaching the element at risk, the vulnerability (i.e., degree of loss) and costs of 
rehabilitation have been considered.    

For the risk evaluation, Equation (34) was considered (Kaplan and Garrick, 1981; 
Varnes, 1984): 

 𝑹 = 𝑯 × 𝑽 × 𝑬  (34) 

where the risk is calculated as a combination of hazard (H), vulnerability (V) and 
element exposed (E). Three different flood scenarios were assessed, each one 

representing different return periods and flood intensities. The exposed length of 
infrastructure was evaluated per each territorial unit with a geometric analysis 

carried out in GIS. The vulnerability term, V, was evaluated as a function of the 
flood category that affect a railway/road. We used fragility curves from literature 
where 3 different ranges have been identified for the V of linear infrastructures: 

lower, mean, upper (Table 25). 

To evaluate the annual loss, the formula from Fell et al. (2005) was considered 

(Equation (35)). The calculation considers the costs for total rehabilitation (C) of 
a railway/road, the vulnerability of the linear infrastructure classified in three 
different ranges as a function of the category of flood depth, and the conditional 

probability of impacting a line in a given region. The formulation has been applied 
for a range of floods frequencies (see Table 24). The expected annual loss is 

calculated by the summation of all plausible flood scenarios. 

 𝑨𝒏𝒏𝒖𝒂𝒍 𝒍𝒐𝒔𝒔 (𝑴€) = 𝑷(𝑭) × 𝑷(𝒊 |𝒇𝒍𝒐𝒐𝒅) × 𝑪 × 𝑽  (35) 

Where 𝑃(𝐹) is the frequency of flooding, 𝑃(𝑖 |𝑓𝑙𝑜𝑜𝑑) is the probability of line 

exposure (affected / tot) in a given region, 𝐶 is the total rehabilitation value of 

railway/road in a region [M€] (cost per unit m * tot meter), and 𝑉 is the 

vulnerability of the element at risk to flooding. 
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Table 23. Probability classes and flood scenarios used in the assessment 

Verbal description 
of probability 

Return period 
Representative flood 
scenario used in 

analyses 

Neglectable < 3 years No loss 

Low 3-30 years 10-yr 

Medium 30-300 years 100-yr 

High >300 years 500-yr 

 

5.2.1.2 Concept 

The practical approach applied to evaluate the expected annual loss and the risk 
of damage is described in Figure 47. Open access databases on natural hazards 

have been collected from different online sources (SAFEWAY; 2019a). The linear 
infrastructure database has been obtained from Open Street Map (OSM). Hazard 

and linear infrastructure maps were overlapped in a GIS environment to assess 
the exposure of the assets in different scenarios. The administrative region was 

chosen as the minimum territorial unit for our analyses. It is important to mention 
that one can apply this procedure even for a smaller territorial unit, such as the 
municipal border. The approach illustrated in Figure 47 is applicable for a variety 

of natural hazards. In the following sections, river flood has been considered as 
the natural hazard for carrying out our analyses. In a quantitative flood risk 

assessment all plausible floods need to be considered. In this assessment, three 
different flood scenarios are assessed, each one representing a different return 
periods and flood intensities as indicated in Table 24. 

 

Figure 47. Overview of the analysis steps for this assessment 
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5.2.1.3 Vulnerability evaluation 

Vulnerability relations are used to express the degree of physical loss/material 

damage to an asset. The vulnerability for roads and railway has been defined 
considering the vulnerability relations available in literature. The Swiss road 
authorities provide guidelines for assessment of material damage of roadways 

caused by flooding. The guidelines relate the damage degree of the road segment 
to the intensity of the flooding. The criteria for classification into intensity classes 

are described in Table 24. As a function of the flood depth, 3 different vulnerability 
classes were defined: low, medium, high. For each vulnerability class, lower, 
mean, and upper bounds of vulnerability were defined (Table 25). As vulnerability 

is dependent on the flow velocity, the estimates found in FEDRO (2012), were 
divided into either static (v<1m/s) or dynamic flooding (v>1m/s). Upper bounds 

were picked in accordance with the dynamic case, while the mode reflects the 
static case. 

 

Table 24. Classification of intensity of flooding (Bundesamt für Strassen ASTRA, 2012) 

Flood intensity 
class 

Quantitative 

description of 
intensity for flooding 

Explanation 

Low h < 0.5 m (or v ∙ h < 0.5 
m2/s) 

h: flow depth 

v: flow velocity 

For static flooding (v < 1m/s) the 

intensity class is distinguished 
from flow depth only, i.e. the first 

part of the criteria will always be 
the strictest one. 

Medium 0.5 < h < 2 m (or 0.5 < 

v ∙ h < 2m2/s) 

High h > 2 m (or v ∙ h > 2 

m2/s) 

 

Table 25. Vulnerability relations adapted from Bundesamt für Strassen ASTRA (2012) 
and Oberndorfer, Sander and Fuchs (2020) 

Class 

Vulnerability (Degree of loss of road segment) 

Lower bound Mean Upper bound 

Low 0 0,001 0,05 

Medium 0,001 0,01 0,05 

High 0,01 0,1 0,35 
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5.2.1.4 Rehabilitation cost estimation 

The rehabilitation cost for road types and railway were estimated considering 

references from literature. Specifically, for railways, the "Assessment of unit costs 
of rail projects" (Attina et al., 2018) has been considered. The rehabilitation cost 
has been defined as construction works mainly related to improvement work that 

are conducted to reinstall the design characteristics of an existing line (e.g. design 
speed, capacity, etc.) which has worsened in quality (Attina et al., 2018). To 

consider possible uncertainties we have defined three ranges for the rehabilitation 
costs: lower, average and upper bound. The values are presented in Table 26. 

Table 26. Rehabilitation cost values for railways.  

Rail costs 
Low 

[M €/km] 

Mean 

[M €/km] 

High 

[M €/km] 

Rehabilitation 1,55 3,1 4,81 

The cost for roads is also taken from literature. The estimation of average 

construction costs for motorways in Europe is based on numbers of construction 
costs and total costs for motorways reported in (ECA, 2013). The motorway 
construction costs (Table 27) is also in accordance with numbers reported by an 

Austrian economy magazine for highways 
https://www.derstandard.at/story/2292578/oesterreichs-autobahnen-kommen-

teuer 

For assessment of construction costs for other road types, we assumed similar 
relationship between motorways – trunk roads and local roads as for the indicative 

total road infrastructure cost reported in Doll, van Essen and others (2008). Those 
costs indicate the annual depreciation of the investment, so we chose not to use 

directly those values, but to consider the relations between the different road 
types.    

Assessment of construction costs encompass construction costs for motorways, 

primary roads, trunk roads and local roads. Local roads include secondary and 
tertiary roads. A summary of the construction costs applied in the assessment is 

provided in Table 27. 

Table 27. Construction costs for roads (ECA, 2013) 

 
Low 

[M €/km] 

Average 

[M €/km] 

High 

[M €/km] 

Highways, 

Primary roads 
1.41 7.9 10.1 

Trunk roads 0.12 0.6 0.66 

Local roads 0.06 0.42 0.81 

https://www.derstandard.at/story/2292578/oesterreichs-autobahnen-kommen-teuer
https://www.derstandard.at/story/2292578/oesterreichs-autobahnen-kommen-teuer
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5.2.1.5 Montecarlo simulations and uncertainty 

To handle the uncertainty of the vulnerability and the costs expressed from Table 

25 to Table 27, a Monte Carlo simulation was conducted in order to estimate the 
expected annual loss. To sample values for the cost and vulnerability, it was 
necessary to specify a distribution associated with the values specified in the 

tables. To associate a distribution with the suggested bounds we have applied the 
Beta-PERT distribution. The Beta-PERT distribution is more centred around its 

mode, and less sensitive to extreme min or max values compared with the 
triangular distribution. For more details, see Oberndorfer, Sander and Fuchs 
(2020). However, also for the Beta-PERT distribution due to the skewness of the 

upper and lower bounds in comparison with the mean, the associated distribution, 
applying the mean as a mode, will only partly reflect the specification of the mean 

value. In Table 28 the associated mean and median values of the Beta-PERT 
distribution associated with Table 25, are displayed. In particular the low intensity 
category is highly skewed, due to the large discrepancy between static and 

dynamic flooding. 

Table 28. Associated mean and median values for the Beta-PERT distribution associated 
with the given vulnerability parameters in Table 25. 

 Mean Median 

Low 0.0090 0.0070 

Medium 0.0152 0.0138 

High 0.1267 0.1200 

 

As for the vulnerability estimates, a Beta-PERT distribution with the given values 

as min, mode and maximum has been applied for the cost from Table 26 and Table 
27. The same considerations as above regarding the skewness of the mean applies 

to the sampled values. However, the mean cost is more centred than the mean 
vulnerability.  

When sampling the numbers for vulnerability and cost, it is necessary to make 

some assumption regarding the dependency of the random variables. In the given 
simulation we assumed that cost and vulnerability could be sampled independently 

for each type of structure, within each region. It is well worth noting that 
assumptions regarding independence may have a considerable impact on the 
estimate, and further that it is likely to underestimate the uncertainty. In the below 

results we applied 1000 simulations to generate the statistics. 
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 Application and results 

 

5.2.2.1 The GIS procedure and preliminary results 

The roads and railways used in the analysis were downloaded from Open Street 
Map. Polygons defining administrative units originates from the NUTS 2016 

datasets provided by Eurostat 
(https://ec.europa.eu/eurostat/web/gisco/geodata/reference-

data/administrative-units-statistical-units/nuts). Raster datasets defining the 
flooded areas were downloaded from the Joint Research centre data catalogue, 
representing flooding with return periods 10, 100 and 500 years.  

The analyses were performed using vector data as input, therefore the flood maps 
needed to be converted to polygons. During this process, the flood depths were 

reclassified into 5 classes. The intersection between the transportation 
infrastructure (roads and railways), and the flooded areas were computed using 
the Identity tool. The input features (roads/railways) or portions thereof that 

overlap flooded areas will get the attributes of the flooded areas, including the 
flood depth. The same method was used to intersect roads and railways with 

administrative units. In this way, the two-line datasets with roads and railways 
contains all the attributes needed (length of segment, flood depth, administrative 
unit, and road type for roads). 

Statistics could then be extracted from the roads for each combination of road type 
and return period, and from railways for each return period. In GIS we evaluated 

the percentage of infrastructures exposed to flood for each region as a function of 
the three different scenarios analysed and the flood depth categories. Figure 48 
shows the percentage of highway, primary roads and railway exposed to different 

return period flood scenarios. In this case, the flood categories have been 
aggregated. A comparison between highway and railway for the same flood 

scenario (i.e., 10 years return period) shows that in general, railways are more 
exposed to flooding than highways and primary roads. 

https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts
https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts
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Figure 48. Flood exposure of roads and railways in Europe  

However, it is also possible to show the exposed infrastructures dividing among 

the different categories of flood depth. Figure 49 to Figure 52 show the results 
aggregating the exposition to flood depth on national bases. The national 
abbreviations refer to the ISO3166-1 country codes. In Slovakia (SK) we can see 

that almost 20% of highway are exposed to a 10-year return period flood scenario. 
Considering the primary roads with a 10-years return period flood scenario Serbia 

(RS), Netherlands (NL) and Bosnia (BH) have more than 10% of exposed road. 
The results for railways considering the same flood scenario show an exposure in 
the range 10-20% for Austria (AT), Bosnia (BH), Lichtenstein (LI), Macedonia 

(MK). With Bosnia and Macedonia with 10% or railway exposed to more than 2 
meters flood depth.  
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Figure 49. Flood exposure of roads (Highway) for the 10-year return period flood 
scenario – as a function of flood depth categories 

 

Figure 50. Flood exposure of roads (Primary) for the 10-year return period flood scenario 
– as a function of flood depth categories 

 

Figure 51. Flood exposure of railway for the 10-year return period flood scenario – as a 
function of flood depth categories 
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5.2.2.2 Description of the results 

Figure 52 shows the results of the risk assessment in terms of probability of 

damage and annual loss for railways, aggregating the three different flood 
scenarios analysed. The results have been presented in box-and-whiskers plots, 
representing the median, the quartiles (25 and 75), the caps and the whiskers. 

The median annual loss for railway is lower than 50 M€ for most of the nations. 
However, Germany (DE) and France (FR) have respectively, around 75 and 100 

M€ as median expected annual loss.  

Figure 53 depicts the annual total loss for roads, grouping together highway, trunk, 
primary, secondary and tertiary roads.  Germany (DE), France (FR), Italy (IT) and 

Netherlands (NL) show the largest ranges of expected annual loss. France has a 
median value of ca. 140 M€, Germany of 135 M€ and Italy around 85 M€. 

 

Figure 52. Results of the risk assessment for railways, per country, in terms of expected 
annual loss in M€. 
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Figure 53. Results of the risk assessment for roads, per country, in terms of expected 

annual loss in M€. 
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6. Assessment of indirect impacts  

The key aspect for the quantification of indirect impacts is the assessment of the 
disruption of the transportation service. The service disruption could occur directly 

from the natural event, e.g. floodwater on a road, or could occur from the physical 
damage to an asset, e.g. collapse of a bridge. In the former case, functional 
vulnerability functions could be used to describe the functionality loss due to a 

given hazard intensity. For the latter case, a more detailed analysis is needed 
among the asset physical damage, its degree of functionality loss, and the service 

disruption introduced at the network level. To this end, transportation traffic 
models are needed to support this type of analysis. In this chapter, both 

possibilities are examined. Firstly, a simplified assessment of indirect impacts of 
flooding is performed, by assessing the probability and duration of service 
disruption. Afterwards, a traffic model for the demonstration pilot is constructed 

for an accurate quantification of the functionality of the network after the failure 
of infrastructure components.   

Moreover, disruptions of the transport infrastructure also have extraordinary 
consequences for an industry, terminal, service centre, among others, due to 
massive failures, single access roads being cut off, or critical links made unusable. 

These consequences need to be assessed reliably (e.g. see (Molarius et al., 2012; 
Ludvigsen and Klæboe, 2014; Frauenfelder et al., 2017)), in order to increase the 

resilience of transportation systems.  

An example of indirect damages that often occur in the Tagus basin consists of 
closed roads, i.e. cut-off over a period of one or more weeks by flooding (see 

Figure 54). Given the strategic importance of the Tagus valley to agriculture and 
groundwater resources within Portugal, such events have led to economic 

consequences, as well as harmful social and health conditions (Santos et al., 
2020). 

 

Figure 54. Isolation of Reguengo de Alviela due to flood event during April/2013. Photo: 

A terceira Dimensão (http://portugalfotografiaaerea.blogspot.com/2013/04/cheias-do-
rio-tejo.html) 
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6.1 Simplified assessment of probability of flooding and duration of 
service disruption 

Transportation infrastructure systems connect businesses and support supply 
chains and services and offer accessibility to vital resources for daily activities and 
in emergency circumstances (Faturechi and Miller-Hooks, 2015). Flooding (or 

other extreme events) may lead to a disruption of the transportation service, with 
social and economic consequences. The indirect impacts of flooding address 

consequences of the service disruption for the users. Indirect impacts are therefore 
of wider scale and with longer incidence in time than direct impacts. 

The scope of the study is to analyse motorways affected by flooding in Portugal. 

Portugal has about 3,000 km of motorways. The simplified assessments in this 
section aims to support the assessment of the economic impact on the society 

induced by disruption in the transportation service, focusing on user costs. The 
indirect economic impacts depend on various components: the composition of the 
traffic, time values related to the users, the duration of the closure, the quality 

and capacity of the alternative routes and the traffic amount. In this subchapter, 
the focus is on the assessment of: 

• Probability of a service disruption 

• Duration of a service disruption 

 

Figure 55. Flood damage and service disruption of road the Algarve region in Portugal. 
Photo: Sky News (https://news.sky.com/story/one-dead-as-severe-flooding-hits-

portugal-10341035) 

 Probability and consequence classes 

In the same manner as for the material consequences (Section 5.2), the 

quantitative flood risk assessment for indirect consequences need to consider all 
plausible floods. Table 23 outlines the three different flood scenarios applied in the 
assessment, as well as the range of probabilities covered by each scenario. In the 

simplified assessment described in this subsection, the duration of the service 

https://news.sky.com/story/one-dead-as-severe-flooding-hits-portugal-10341035
https://news.sky.com/story/one-dead-as-severe-flooding-hits-portugal-10341035


 
 

 

D5.1 – Dynamic Risk-based Predictive Models 117 

 

disruption is the only consequence parameter considered. The criteria for 
subdivision into duration classes (Table 29) are chosen according to duration 

values used in the Swiss model for risk assessment of roads affected by natural 
hazards (Bundesamt für Strassen ASTRA, 2012). Ideally, the highest duration class 
should have been divided into two classes, e.g. by entering a distinction between 

closure lasting between one week and one month and longer than one month. 
Such a division would, however, require modification and expansion of the 

vulnerability relationships used, which is outside the scope of this study.  

Table 29. Duration classes used in the assessment 

Verbal description of 
service disruption 

Duration of service 
disruption 

Neglectable < 1/2 hour 

Short 1/2 hour – 12 hours 

Medium 12 hours – 1 week  

Long ≥ 1 week 

 

 Workflow for the assessment 

For assessment of disruptions in transportation networks due to flooding, a 

challenge is how to treat multiple service disruptions within one link. Here the term 
link expresses the connection between two locations that are part of a larger 
network and within which no diversion roads are available. 

The analysis is conducted at a regional scale and is performed within a GIS 
environment. The following procedure for assessment of the probability and 

duration of a service disruption is applied in the analysis: 

• Subdivide the road network into links. Within each link there are no 
opportunities for detours. Material damage within the link could lead to a 

service disruption in the transportation network. If there are more locations 
with potential material damage within one link, it should only be counted as 

one service disruption. 

• Perform analyses for flooding with different return periods, in this case 10-
year, 100-year and 500-year. For each return period: 

o Identify the exposed part of the transportation infrastructure  

o Categorise flood depth into flood intensities: low, medium and high, 

according to Table 24. 

o If the assessment indicates a material damage that could lead to 
service disruption at more than one location within the same link, the 
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maximum flood intensity per link will be applied in the further 
analysis.  

o To assess the duration of the service disruption within one link, a 
relation between intensity and duration of service is applied (Table 
30).  

 Methodology for the assessment of consequences and ranking of 
risk 

In the assessment of the consequences, a relation between flood intensities and 
duration of road closure from (Bundesamt für Strassen ASTRA, 2012) is applied 
(Table 30). Criteria for subdivision into low, medium and high intensity for flooding 

are shown in Table 23. The duration of the service disruption is, through the use 
of the same intensity classes as for material damage, related to the damage degree 

caused by the flooding and not to the duration of the flooding event. 

Table 30. Average downtime (duration of service disruption) for roads after natural, 
gravitational events (Bundesamt für Strassen ASTRA, 2012). 

Verbal description 

of intensity 

Average downtime/duration of service disruption 

after natural event for roads (ASTRA; 2012) 

Low 1 hour (1/24 day) 

Medium 1 day 

High 1 week (7 days) or more 

The flood risk for the exposed links was analyzed as a function of the return period 

of the flooding, the flood intensities and the expected duration of service 
disruption. The risk is categorised into 3 levels: Low (yellow), medium (orange) 
and high (violet) in accordance with Table 31. Since the duration of the downtime 

is the only consequence parameter, Table 31 expresses a simplified risk ranking 
and must be regarded as an intermediate result of the risk assessment. The 

ranking of the risk may change with other factors such as traffic amount, the 
composition of the traffic, the increase of travel distance and the quality and 
capacity of the alternative routes. For quantification of the consequences, also time 

costs and other costs stemming from the increased travel distance are considered. 
The reader is referred to Section 6.3 for assessment of the socioeconomic costs of 

interruptions of roadway transportation. 
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Table 31. Definition of risk levels. The colours were chosen to create a strong visual 
distinction between the risk levels in the resulting map. 
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Intensity of flooding/Duration of service 
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 The GIS analyses 

In the GIS analysis, the data sets used for the road network were downloaded 
from Open Street Map. Flooding data from the Joint Research centre data 

catalogue was applied.  

In order to count the number of road segments/links affected by flooding, a system 
for subdivision of the road network into links needed to be established. In general, 

each road segment should be continuous between intersections. On the other 
hand, it was not considered feasible to split a motorway link at intersections 

between a motorway and minor roads. The solution was to group the road 
segments into 3 classes: Motorway, trunk roads and other roads. Each class was 

handled separately, to define continuous road segments between intersections. 

For each return period (10, 100 and 500 years), the flooded areas were divided 
into 3 intensity classes based on water depth: 0-0.5m, 0.5-2m and above 2m (i.e. 

according to Table 23). Nine new attributes were added to the road dataset – one 
for each combination of return period and intensity class of the flooding (Table 

31). Finally, each attribute was set to 1 where the road segment intersected a 
corresponding flooded area. 

 Results of the assessment  

The procedure for subdivision into links resulted in a total of 7292 motorway 
segments in Portugal, when all motorway segments shorter than 100 m length 

were excluded3. Of these, 6220 were less than 1 km long.  

The analysis shows that 184 motorway segments potentially could be affected by 
flooding. Table 32 provide statistics on the resulting risk levels. Figure 56 presents 

the risk map for the whole of Portugal. A majority of the potentially affected 
motorway segments are in the highest risk class. 

 

 

 
3 The procedure for subdivision into links resulted in a large number of short road segments, especially around 
complex intersection and roundabouts. These were considered irrelevant for the analyses and therefore excluded, 
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Table 32. Distribution of risk levels for the exposed motorway segments 
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The analysis does not take into account the dimensioning of the road and assumes 

that all of the assessed flood scenarios will lead to a service disruption. This is a 
conservative assumption. A more realistic assumption is that the road is 
dimensioned at least for the 10-year flood and hence that the 10-year flood will 

not lead to a service disruption. Figure 57 shows the results of the analyses if the 
consequences of the 10-year flooding is excluded. However, even in this modified 

analysis, a majority of the potentially affected road segments are associated with 
the highest risk class.  

 

Figure 56. Simplified flood risk ranking (In accordance with Table 32) with regard to 
indirect impacts. 
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Figure 57. Simplified flood risk ranking (In accordance with Table 32) with regard to 
indirect impacts, excluding 10-yr flooding. 
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Figure 58. Zoom-in of Figure 57, at the Portuguese Demonstration sites. 

The results of this assessment could be applied for a more detailed ranking and 

quantification of the risk, by considering also traffic amount, the composition of 
the traffic, the increase of travel distance and the quality and capacity of the 

alternative routes. In addition, time costs and other costs stemming from the 
increased travel distance are to be considered in a quantification of the economic 
consequences (Section 6.3). 
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6.2 Assessment of service disruption through traffic models 

Traffic models allow the simulation of transportation systems to inform the design 

process, by representing the stretches of roads (links, and their nodes), users, and 
users' routing. In many researches the flood impacts on traffic have been 
approached using simple mathematical models (Penning-Rowsell et al., 2005), or 

macroscopic traffic models (Suarez et al., 2005; Chang et al., 2010). None of these 
methods consider the dynamics of the transportation system, rerouting whilst a 

street is closed, or the dynamics of the flooding event. These methods represent 
a static system, which uses homogeneous aggregated traffic flows. Currently, 
modelling and simulation tends to be focused on transport network scale analysis 

rather than small scale vehicle-water interactions. 

All traffic models consist of two main components, traffic supply and traffic 

demand. Traffic supply describes the capacity of the infrastructure. Traffic demand 
represents the behaviour of consumers of transport services and facilities. The 
transport modelling simulates how these two components interact over time and 

space. With a microscopic modelling technique, the trips could be computed for 
both rail and road modes in the transport network. There are several reasons to 

adopt a micro-simulation technique for assessment the indirect impacts of flood. 
First, a micro-simulation technique facilitates a more detailed representation of the 
traffic processes. Second, microscopic transport modelling simulates every single 

vehicle in the transport system. Third, it is capable of modelling different transport 
modes and driving behaviours. Fourth, microscopic traffic models can simulate the 

dynamics of the flood propagation both spatially and temporally. Finally, a 
comprehensive representation of congestions and the intermodal description of 
different vehicle types could be achieved by microscopic traffic models (Pyatkova 

et al., 2019).  

Once the traffic model runs with the flooding information, the differences between 

the traffic model results under normal conditions and flooded conditions yield the 
actual flood impacts induced to road and rail networks. The flood impacts on the 
transport system could be expressed in speed, travel delays, additional travelled 

distance, additional fuel consumption, and additional noise emissions. 

 Building the road network 

Every traffic simulation requires a road network. The application netconvert is used 
to create a network which can be used by the simulation software, SUMO 

(Krajzewicz et al., 2012). Currently, the model uses the traffic network of the 
whole region of Santarem, Portugal. This network has been achieved from traffic 
authority of Portugal (IP) and later on modified for the applications in SUMO.  

 Generate the traffic 

After having generated a network, it still needs some kind of description about the 
vehicles. This is called the traffic demand. Before starting to generate the traffic 

demand, one should take the following nomenclature in account: A “trip” is a 
vehicle movement from one place to another defined by the starting edge (street), 
the destination edge, and the departure time. A “route” is an expanded trip, which 

means that a route definition contains not only the first and the last edge, but all 
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edges the vehicle will pass. SUMO needs routes as input for vehicle movements. 
There are several ways to generate routes for SUMO. Since our available input 

data, from IP, is in the format of Origin-Destination-Matrices (or O/D matrices), 
they have to be converted to trips. Using a special command trip tables from O/D 
matrices could be computed. This command assumes the matrices to be coded as 

amounts of vehicles that drive from one district or traffic assignment zone (TAZ) 
to another within a certain time period. Since the generated trips must start and 

end at edges, a mapping of TAZ to edges would be required. After creating the 
TAZ files, it is time to assign the shortest or optimal path routing to establish a 
route between the origin and the destination of each trip.  

 Recognizing more critical scenarios 

Floodwater reduces speeds or stops entirely traffic flows according to the usability 
of assets. Disruption types (100% closed, 50% closed, reduced speed 50%, no 
freight, one lane closed, no disruption), relates usability of assets to safe driving 

speed. For the flooded scenarios, the network properties of a link are modified 
according to this relationship, and traffic parameters recalculated for this 

perturbed state. Subsequently, journey travel time will increase in comparison with 
the baseline scenario. The validation of the traffic model would be achieved by 
comparing the model results with IP’s traffic model results. Due to the large 

number of scenarios, just critical ones with the most additional travel time for 
traffic flows could be validated by IP. 

 Road traffic model 

First of all, it is necessary to mention a tip regarding the road network of the pilot 
zone and that is the large number of one-directional roads that limits the options 
of rerouting, just because drivers may not be allowed to make a U-turn before the 

flooded section of a road. It is worth noting that since the road network and the 
attributes of the roads are necessary inputs for doing the simulation, the effect of 

the roads direction has been seen in the modelling. 

After defining the road network, trip definition which is central to traffic demand 
modelling has been done. A trip is defined with beginning time, starting position 

(origin) and end position (destination). With a microscopic modelling technique, 
the trips must be computed for each vehicle in the network. 

After the trips were defined, a route assignment model computed the most likely 
routes to connect origins and destinations. This model was represented by a 

stochastic user equilibrium and was run 20 times iteratively to minimize the cost 
function of travel time for each trip and each vehicle. Thus, the travel times of 
vehicles were computed as interacting participants of the travel system, rather 

than assuming they were travelling in isolation. The main hypothesis in this 
approach was that drivers have a perfect knowledge of the traffic system, which 

can be expected for commuter traffic.  

 Scenarios 

Broadly speaking, the exposed infrastructure assets can be identified by 

geographical coincidence of the hazard maps with road and railway networks. This 
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is a prerequisite to define the possible simultaneous failures and other 
combinations of failures in the network. As previously mentioned, this task was 

performed in SAFEWAY (2019a). Then, the processed traffic model is used as a 
tool to compare the base scenario, when all the network links are active and there 
is no flood disruption, with different disruption scenarios, when some network links 

are closed due to the flooding. For illustration purposes, one disruption scenario 
for light vehicles was simulated. The definition of this scenario was based on 

damage surveys from flood events occurring on the Santarém region, which were 
provided by the National Authority of Civil Protection4 from Portugal. This 
disruption scenario is shown in Figure 59.  

 

 

Figure 59. Closed links at the proposed disruption scenario 

 
4 http://www.prociv.pt/ 
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 Results 

Figure 60 and Figure 61 show the results for light vehicles travel time for each 
edge during a day. These figures are showing a pair maps of the average travel 
time for the normal and the flooded conditions. By comparing the colour of edges 

in these both maps, the edges with different travel time in different conditions can 
be recognised. The location of roads that received a travel time addition by flooding 

and closure of some edges, can be seen in the zoomed circular part. For example, 
the street in the upper part of the zoomed picture has been changed from yellow 
in the base scenario to the green in the flooded scenario which is showing the 

increasing of travel time in that street. 
It should also be noted that these travel time values are equal to the time needed 

to pass the edge. Note that this is just an estimation based on the mean speed, 
not the exact time the vehicles needed. The mentioned mean speed is equal to the 
mean speed on the edge within the reported interval. Note that this is an average 

over time and space (space-mean-speed), rather than a local average over the 
vehicles (time-mean-speed). Since slow vehicles spend more time on the edge, 

they will have a proportionally bigger influence on average speed.
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Figure 60.  Model results for edges average travel time during a weekday for light vehicles in base scenario 
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Figure 61.  Model results for edges average travel time during a weekday for light vehicles in a flood disruption scenario 
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6.3 Socioeconomic costs of roadway infrastructure disruptions  

Rerouting will cause private and professional drivers to spend more time and travel 

longer to bypass the damaged area(s). This increases the time and operation costs 
of travel and external damage costs (noise, local air pollution, global emissions, 
road wear, queuing and accidents) associated with the increases in traffic flows. 

Goods will be delayed, causing problems to the supply chains up and down-stream. 

Socioeconomic costs of roadway infrastructure disruptions involve: 

1. Time costs (private and professional drivers, public transport users, costs 
of delays in delivery and/or reduced speed of delivery) 

2. Fuel costs 

3. Local air pollution: NOX, PM10 (combustion and road wear, brakes and 
tire) and SO2 

4. Global air pollution (costs per CO2 ton-equivalents) 
5. Noise  

6. Road wear 
7. Costs of accidents 

Unit costs (last stage of Figure 62) differ between different areas and for different 

types of population, and local estimates will be preferred. Where these are not 
available from Portuguese infrastructure managers, estimates from international 

studies will be considered. 

Building on recent work on marginal costs associated with surface transport,  
Rødseth et al. (2019) has recently undertaken a major project deriving the 

marginal external costs associated with road and rail traffic in Norway. This work 
implements the sequence of calculations according to stages in the effect chain 

(see Figure 62) (SFT, 2005). We provide a short description below for illustrative 
purposes. Note that this description is not complete since the calculations are built 
on many sub-studies. 
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Figure 62. Chain of effects used for calculating external costs in the Norwegian study 
(SFT, 2005) 

External costs of air pollution are based on the HRAPIE project - Health risks of air 
pollution in Europe (WHO, 2013), complemented with findings from previous 
Norwegian projects (Rosendahl, 2000). 

A matrix of road types, vehicle types, and speed distributions are used to calculate 
emissions from road traffic and marginal changes in emissions given an extra 

vehicle (Holmgren and Fedoryshyn, 2015). The Handbook Emission Factors for 
Road Transport (HBEFA) provides emission factors according to fuel type, vehicle 
class, speed, and other parameters (see www.hbefa.net). Particles are produced 

as part of the combustion processes, but are also the product of road-wear, tire 
particles, and debris from brakes. 

The relationships between the emissions on the road network in major cities have 
been linked to the measured concentrations of NO2, PM10 from combustion, and 
PM10 from road dust particles. It is thereby possible to link emission changes to 

changes in population exposure. 

The consequences of changes in the exposure to pollution in the form of particles 

PM10 are split into short-term (acute) and long-term consequences. Acute impacts 
encompass premature deaths, hospitalization, upper and lower respiratory tract 
diseases by children, days with activity limitations. Chronic impacts are in the form 

of premature deaths due to lung and hearth myocardial diseases, premature 
deaths due to lung cancer, children bronchitis, adult chronic obstructive pulmonary 

disease (COPD). The different endpoints are given as changes in hospital days, 
number of persons affected, increased exposure and the costs of these changes 
are applied given the number of people that are affected. 
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Nitrogen oxides are produced during the combustion processes. Depending on the 
ozone levels there are atmospheric-chemical processes depending on sunlight 

convert NO2 to NOx and vice versa. Chronic effects of NO2 are premature deaths 
due to myocardial infarction and lung-diseases, children developing bronchitis. 
Acute effects are the number of people dying one year too early, number of 

hospital days, and an increase in the number of people highly annoyed by air 
pollution emissions (Amundsen, Klæboe and Fyhri, 2008; Klæboe, Amundsen and 

Fyhri, 2008). 

CO2 costs are built upon IPCC calculations of future costs depending on the chosen 
ambition to limit the temperature increase, which at the moment is 1.5 degrees 

according to the Paris agreement (IPCC, 2013). 

Accident costs are based on a methodology by Lindberg (2005). Therein the 

number of accidents and the consequences are related to the traffic volumes. In 
situations with more than one transport mode, the costs are allocated according 
to responsibility for the accident. 

External noise costs are based on very recent estimates of the health 
consequences from WHO (Guski, Schreckenberg and Schuemer, 2017; Basner and 

McGuire, 2018; Van Kempen et al., 2018) with exposure effect calculations also 
from Miedema and Oudshoorn (2001). The costs are calculated based on the 
number of people who become highly annoyed, are highly sleep disturbed and are 

at increased risk for myocardial infarction. In addition, there is a cost associated 
with life quality impacts of those who are moderately annoyed and subject to noise 

disturbances and restrict behaviours due to noise, but do not fall under the 
category of being highly annoyed. The life-quality reduction costs are based on 
willingness to pay. These costs are calculated in DALY (disability adjusted life 

years) and converted to monetary values. The Norwegian estimates build on 
detailed information on vehicle composition, day, evening, and night-time traffic 

flows, and affected populations in each time period from Norwegian transport 
authorities as well as knowledge about the proportion of the Norwegian population 
in different age groups who are disabled or die from myocardial heart disorders.   

 

6.4 Socioeconomic costs of railway infrastructure disruptions  

With respect to external cost the effect chain method is applied (Figure 62). The 
mix of locomotives and number of daily wagon-km for different stretches was used 

as input in the Norwegian work (Rødseth et al., 2019). 

With respect to passenger services, time costs for public rail transport users can 
be used to assess the cost of delays. This is often split between commuting trips, 

and leisure trips. 

For goods, the cost of delays will depend on the type of goods (Ludvigsen et al., 

2012) and the consequences up and down-stream along the supply and demand 
chains.  

It should be also considered that rerouting possibilities for goods transported by 

rail may be limited, necessitating transfer of goods from rail to road. 
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 Goods characteristics 

Some goods deteriorate as regards the value at destination if their transit time 

exceeds certain time limits.  This pertains to perishable goods with shelf-time of 
only few days or hours whose utility may suffer from delivery tardiness.  Some 
other goods such as fresh food and drinks may deteriorate in terms of “looks” if 

they stay longer in transit. Finally, some solid, powder and fluid chemicals carried 
in tankers may “settle” and/or change consistency after prolonged transit. Still 

some other materials can become hazardous due to chemical reactions released 
by longer time lapses between departures and arrivals and/or motions under 
transit. Still some other types of liquids may solidify in tank containers making 

discharge more difficult and/or expensive. In addition, some other types of cargo 
such as newspapers lose their inherent value composed of time-constrained 

information newness. As reported later, cargo’s consistency can also change as a 
consequence of longer than allowed exposure to adverse atmospheric conditions 
such as very low or high temperatures. 

 Just-in-time delivery requirements 

Transport operators who deliver goods under just-in-time quality regime do 

typically carry components to manufacturing or assembly plants or materials 
needed for processing industries. In some cases, these operations may need time-
precise deliveries of several loads per day.  Since the continuity of these production 

processes can easily be jeopardised in the event of late arrivals, delivery times of 
just-in-time consignments are usually very precisely specified. Disruptions of flow 

movements with the consequent arrival delays impose thus legal and financial 
penalties on transport operators, consignors and manufacturers. Some high-value 
retailers which deal with medical and/or healthcare articles usually require just-in 

time delivery not only because of the risks of material decay or utility spoilage, but 
because of high costs of inventory and low stocks held at medical depots. 

 Quick response demands 

Transport operators who handle deliveries of food, drinks or other high-value 
manufactured goods into retail trade segments often operate on orders from:  

• Manufacturers or other suppliers delivering directly to individual retail 

outlets 

• Manufacturers or other suppliers delivering into regional delivery centres 

(RDCs). Some of these “Quick response” deliveries of goods with little or no 

inventory stock are also being held by secondary distribution outlets and 

retailers. 

• Logistics operators working under dedicated contracts for major retailers 

responsible for deliveries of consolidated loads from RDCs to individual 

retailer outlets 

• Logistics operators contractually hired by shipping lines to perform overland 

transfer of large volumes of overseas and/or international cargo between 

European gateway ports and national and/or regional distribution hubs. 
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Since all four types of delivery are very time sensitive, retail deliveries to RDCs 
are often “booked in” for unloading at an agreed time. Extreme time sensitivity 

allows only for small windows of variability to be built around the booked supply 
time with high statutory penalties for late arrivals. In this context, lengthy supply 
time disruptions caused by weather hazards disintegrate the entire pipeline 

inventory and may disturb stock availability at, at least, two upstream supply chain 
echelons: wholesalers and retailers.  

Another case where the supply network disruption may be quite critical arises from 
quite a common practice where consignor sends vary late notice of the precise 
content of orders. For example, a retailer may transmit the order electronically at 

midnight, for delivery at RDC by mid-morning. In such cases the time available to 
a supplier to undertake order processing, picking of goods, checking loading, 

documentation and dispatch may be very tight, placing considerable strain on 
warehousing and transport operations. Again, abrupt punctuation of material flow 
between manufacturing plant and/or warehouse and a RDC may result in stock out 

and/or production downtime. 

 Future Economic calculations 

Given a project horizon of 2020-2100, current unit values need to be adjusted 
according to future values of time, future energy costs and future energy efficiency 
of the vehicles and vehicle fleet mix. European Commission (EC) has a policy of 

phasing out fossil fuel vehicles from 2030. Given a higher percentage of Electric 
and Hybrid technologies, local air pollution from combustion will be reduced, while 

dust emissions from road wear, tires and brake pads, and noise (mainly from tires) 
is expected to be much the same. There may be regional differences in the speed 
with which new technologies are adopted and the phasing out older generation 

vehicles.  

There are currently no reliable predictions of how vehicle fleet composition will 

change over time, so simplifying assumptions need to be made. Given the project’s 
strategic focus and the uncertainty of exactly when one or more flooding events 
will occur in the future, it is the trend of how the disruption costs will change in 

the future that is important and the most likely future costs.  

6.5 Dynamic Economic Calculation Tool 

When deciding on resilience enhancement policies, the certain cost of the proposed 
investments, future upkeep and periodic maintenance must be balanced against 

the possible but uncertain benefits of avoiding or reducing the socio-economic 
impacts of one or more future natural or man-made hazard events. 

This balancing is difficult since there are many uncertainties with respect to the 

sizes of the future costs and benefits, the efficacy of the implemented measures, 
changes in future prices, the valuation of future benefits, contextual factors, and 

the size of the population and values of future affected assets at the time the 
hazard occurs. 

In the HOSANNA project (http://greener-cities.eu) a dynamic calculation tool for 

estimating the costs and benefits used Monte Carlo simulations to visualize the 
confidence bands of economic indicators given the many input and outcome 
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uncertainties. By applying uncertainty functions, an additional benefit is that when 
updated estimates of future costs and benefits do not deviate too much from the 

values used for the calculations, it is not necessary to rerun the analyses, since 
this type of deviations are already incorporated in the uncertainties. The 
calculations become more robust. 

However, the tool used in Hosanna only dealt with fixed alternatives and did not 
contain any method for dealing with uncertain future events. The tool was also 

built using software tools that were modern and innovative at that time but are 
abandoned and/or obsolete up to date. 

In SAFEWAY, the Hosanna tool for Monte Carlo simulations to undertake economic 

analyses taking into account the uncertainties of inputs and outputs has been 
simplified, modernized and augmented with a stochastic module. In the stochastic 

module the occurrence of future natural hazard and man-made hazard events are 
simulated, and the economic analyses performed depending on the simulated 
occurrences of the stochastic events. By repeating the analyses 1000 or more 

times, it is possible to visualize the expected mean economic results, and their 
confidence bands. 

6.6 Number of 100-year floods between 2021-2100 

Even in the simplest case where the chance of a 100-year flooding event is 
constant (1% per year), running 10000 simulations illustrates that the number of 

floods in the period from 2021 to 2100 varies as described by a Poisson process: 

 

 
𝑷(𝑿 = 𝒙) =

𝒆−𝝁𝝁𝒙

𝒙!
     𝒙 ≥ 𝟎  

(36) 

Since we have 79 years with probability 1/100 the parameter µ becomes 0.79 and 
the expected number of floods in the 79-year period also 0.79. 

The simulations show that in about 46 % of the runs there are no floods, and 
consequently no benefits of any investment. In 36 % of the cases there are a 

single 100-year flooding, in 14% there are two floods, while in 3.7 % we have 
three floods and in somewhat less than 1% of the cases do we have as many as 
four 100-year floods within the 69-year period. 
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Figure 63. Number of 100-year floods within the period [2021-2100]. Results from 
10000 simulations. 

Not only does the number of floods vary, but also exactly when in the 79-year 

period they occur. The timing of each event is important for the socio-economic 
analyses of costs and benefits.  Distant future costs and values are discounted 

more heavily than costs that are immediate or close in time. With a discount rate 
of 6% the present value of 1€ that occurs 40 years in the future (2060) is less 
than 0.10€, since 40 years of discounting results in a present value that is 9.7% 

of the future cost or benefit:   

 
𝑷𝑽 =

𝟏

(𝟏 + 𝟔%)𝟒𝟎
= 𝟗. 𝟕%  

(37) 

When the consequences are of the same size each year in the future, it is not too 

difficult to calculate the average present value. However, the size of the future 
damages is not constant but affected by the efficacy of resilience measures, and 

the accumulated benefits of resilience policies, or – if no policies are in place -, the 
accumulated adverse consequences of neglecting necessary upkeep and 
maintenance. The socio-economic consequences also depend on the location and 

size of the future population, land use, built up areas and asset values at the time 
of occurrence as well as contextual factors. Consequently, a more sophisticated 

approach is needed. 

 

6.7 SAFEWAY enhancement for analysing resilience policies 

By developing and implementing a SAFEWAY enhancement of the HOSANNA 
approach, future stochastic events are taken into account allowing us to perform 

economic analyses of the costs and benefits of measures that prevent, reduce or 
mitigate the impacts of future floods causing infrastructure damages, disruption 

or service degradations (slower speed, detours, bottlenecks, delays). 
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The tool achieves this by running the Monto Carlo simulations in two steps. In the 
first step the occurrences of single or multiple discrete events are triggered for 

each consecutive year according to one or more discrete probability distributions 
where the parameters may increase or decrease over time. 

These distributions may be derived from the previous modelling of infrastructure 

damages based on climate change, precipitation, hydrological modelling, and 
fragility curves of the assets that are affected and/or other approaches. 

Given the simulated occurrences of one or more future hazards, the second step 
simulates the compound impacts of the uncertainties of the different input and 
outcome factors on the resulting economic decision support indicators. 
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7. Projections of long-term consequences 

According to the reports of the Intergovernmental Panel on Climate Change, IPCC, 
the increasing sea surface temperature has a significant effect on the rainfall, 

which is expected to increase at global scale (IPCC, 2013). Nevertheless, 
decreasing trends in rainfall are also expected at regional and local scales, such as 
in the case of the Iberian Peninsula (Portela, Espinosa and Zelenakova, 2020). 

However, rainfall amounts are projected to become more clustered into extreme 
rainfall events, and therefore extreme runoff indicators such as the 100-year daily 

peak flow will probably increase in basins such as Tagus (Alfieri et al., 2015).  

In this chapter, the projection of future hazards for the pilot area, as well as the 

situation and conditions of the population affected by these future occurrences, 
are investigated in order to analyse the long-term impacts. 

7.1 Dispersion of future hazards  

There are two different main strategies for assessment of future hazard with 
respect to climate change:  

• Modification of the already produced hotspots maps in WP2 (reported in 
SAFEWAY (2019a) by making considerations about change in the return 
periods due to climate change. 

• Overlay of future hazard maps (including effect of climate change, projected 
at 30- and 50-years timespan), with the locations of the infrastructure. 

Within this alternative, it is common to also develop and present maps that 
express the change in the spatial distribution of the hazard as well as 
exposure to the hazard. 

 Change in return period of hazards due to climate change 

Predictions of the change in spatial and temporal characteristic of a hazard due to 

climate change involve significant uncertainties. The uncertainties in climate 
projections are related to 1) uncertainty in future anthropogenic emissions, 2) 
natural climate variations, and 3) climate models. The first type of uncertainty is 

usually taken into account by using 2 or 3 emission scenarios. An emission scenario 
is typically characterised by Representative Concentration Pathway (RCP), which 

is a greenhouse gas concentration (not emissions) trajectory adopted by the IPCC. 
The pathways describe different climate futures, all of which are considered 
possible depending on the volume of greenhouse gases (GHG) emitted in the years 

to come. Four pathways – labelled RCP2.6, RCP4.5, RCP6, and RCP8.5 – were used 
for climate modelling and research in the IPCC Fifth Assessment Report (AR5) in 

2013 (IPCC, 2013). The RCPs are labelled after a possible range of radiative forcing 
values in the year 2100 (e.g. RCP8.5 means a radiative forcing value of 8.5 W/m2). 
In most climate change impact studies since the publication of AR5, the RCP8.5 

scenario is considered as the base case. 

The second and third types of uncertainties are to some degree taken into account 

by giving prediction intervals for the metric of interest (e.g. average temperature 
in summer months, average annual precipitation, etc.) based on ensembles of 
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several model calculations. The climate change models are steadily being 
improved, but for some metrics, there is still a wide range of varying predictions 

from different models. One should also keep in mind that uncertainties mentioned 
above, span only a part of the total uncertainty when it comes to predicting the 
climate change impact. 

Because of all these uncertainties, it is challenging to develop reliable hazard maps 
that are valid in say 50 or 100 years from now. A simplified approach that is 

examined in this section attempts to use the hazard maps developed for different 
return periods for a give hazard based on today's conditions but revise the return 
period such that they reflect the impact of climate change.  

We start off with an example related to hazard maps for flooding. Climate change 
will affect high and low flows of large rivers around the globe. To what extent 

extreme flows will change differs from one region to another. The website 
(https://www.climatechangepost.com/) cites the paper by Blöschl et al. (2019), 
which concludes that the annual maximum river flow is changing across Europe, 

probably due to climate change. According to that study, increasing autumn and 
winter rainfall has resulted in increasing floods in north-western Europe; while 

decreasing precipitation and increasing evaporation have led to decreasing floods 
in southern Europe; and decreasing snow cover and snowmelt, resulting from 
warmer temperatures, have led to decreasing floods in eastern Europe.  

In small catchments in southern Europe, however, local short-duration convective 
storms with high intensities are more relevant for flood generation than the long-

duration storms that produce floods in medium and large catchments. These local 
convective storms are expected to increase in a warmer climate, which means that 
floods in small catchments may have actually increased in southern Europe despite 

the decreased annual precipitation. 

The flood changes that have been identified are broadly consistent with climate 

model projections for future decades, suggesting that climate-driven changes are 
already happening. The observed trends for mean annual flood discharge may 
reflect changes in more extreme floods as well, such as the 100-year flood 

discharge, which is often the key design criterion in flood risk management.  

In study of climate change impacts in Norway, Norwegian Centre for Climate 

Services (NCCS) assessed the future changes in flood magnitudes (the mean, 200- 
and 1000-year flood) for 115 catchments using RCM simulations, a catchment- 

based hydrological model and an extreme value analysis of the simulated 
discharge.  Changes in the 200-year flood between a reference period, 1971-2000 
and a future period, 2071-2100 are illustrated in Figure 64 (NCCS, 2017). There 

are large regional differences in the projected changes across Norway, with median 
ensemble projections ranging from -44% to +56% for the daily-averaged flood 

magnitude.  

 

https://www.climatechangepost.com/
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Figure 64. Relative changes (%) in seasonal and annual runoff for Norway from 1971-
2000 to a) 2031-2060 and b) 2071-2100 for emission scenarios RCP4.5 (blue) and 

RCP8.5 (red). Median projections are marked as a black solid line, while low and high 
projections are marked by the lower and upper ends of the boxes (NCCS, 2017). 

Using the observed and projected changes as related to flood generating processes 

in different regions and catchment types in Norway, (NCCS, 2017) recommended 
three “climate factor” categories for different catchments in Norway: 

• 0 % for large rivers where snowmelt is the dominating flood generating 
process in today’s climate. This implies that design flood estimates can be 
based on up-to-date river flow observations. 

• 20% or 40 % increase in the design flood estimates in all rivers dominated 
by rain floods and in small rivers responding quickly to heavy rain events. 

This implies adding 20% or 40% to the estimated design flood discharge 
(200- and 1000-year flood). 
 

The type of recommendations given about are typical for climate change impact 
reports. These reports make predictions of relative change in seasonal and annual 

runoff (e.g. Figure 64) or make statements such as "the 100-year flood today is 
expected to happen once every 20 years in 2070-2100". To translate such 
statements into return period for flood hazard maps, one can assume a Gumbel 

distribution for the maximum annual flood in a region. The Gumbel distribution 
(Generalized Extreme Value Distribution Type-I) is often used to model the 

distribution of the maximum (or the minimum) of a number of samples of various 
distributions, for example the distribution of the maximum level of a river in a 
particular year. It is useful in predicting the probability that an extreme 

earthquake, flood or other natural event will occur. The cumulative distribution 
function for the Gumbel distribution is defined by: 

 𝑭(𝒙) =  𝒆−𝒆(𝒙− 𝝁)/𝜷
  (38) 

where  is the location parameter and  is the scale parameter. The expected value 

of x is E(x) =  +  where  is the Euler-Mascheroni constant (  0.5772) and 

the standard deviation of x is x =   
𝜋

√6
    0.78x. 
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Assuming that the annual maximum flood has a Gumbel distribution, the return 
period of flood of intensity "x" corresponds to 1/[1 – F(x)], where F(x) is calculated 

from Equation (38). Assuming further that the coefficient of variation (COV, 
defined as standard deviation divided by mean value) of the Gumbel distribution 
does not change in the future climate regime, one could derive the conversion 

factors listed in Table 33 for typical return periods of flood hazard maps. One could 
also translate statements such as "the 100-year flood today is expected to happen 

once every 20 years in 2070-2100" into the relative increase in the annual 
maximum flood intensity, as shown in Table 34. 

 

Table 33. Changes in return period for hazard maps due to climate change impact. 

Increase/decrease in 

maximum annual flood 
due to climate change 

Return period for 

present day hazard 
map (years) 

Equivalent future return 

period for the same 
hazard map (years) 

10% 

100 55 

200 95 

1000 330 

30% 

100 25 

200 37 

1000 83 

50% 

100 16 

200 21 

1000 38 

-10% 

50 95 

100 235 

200 590 

-30% 
50 1120 

100 7050 
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Table 34. Changes in return period for hazard maps due to climate change impact. 

Return period for 
present day 

situation (years) 

Return period for the 
same flood in a future 

climate regime (years) 

Increase/decrease in 
maximum annual flood 

due to climate change 

100 

20 39% 

50 12% 

500 -16% 

 

Compared to floods, assessing the impact on climate change on forest fires is much 
more challenging and uncertain. Large wildfires, with burned areas > 500 hectares, 
can be characterized by the climate and weather conditions that cause them. 

Climatic conditions over a time scale of seasons to years determine the amount of 
fuel that feed these fires. Weather conditions in the days or weeks prior to the 

onset of a fire change the fuel moisture state of especially the fine fuel and litter, 
and hence their flammability. On a shorter time scale, hourly and daily 
meteorological variables control fire ignition and propagation. 

The number of wildfires in recent years has been particularly large in central and 
northern Portugal and in north-western Spain. However, in previous decades, 

burnt area has been decreasing in Spain and central Portugal 
(https://www.climatechangepost.com/). Only in northern Portugal burnt area has 
been increasing. What is different in northern Portugal?  According to references 

cited in climatechangepost.com, the answer is not related to climatic conditions. 
In the Mediterranean, the dynamics of fire regimes is driven mainly by human 

factors, such as changes in land cover, population, and fire management practices.  

With the present state of knowledge and considering all the uncertainties involved 
in predicting forest fires, it is not possible to isolate the impact of climate change 

on forest fire hazard from all other drivers of this hazard. 

 Identification and review of hazard maps including climate change 

projections 

A review of hazard maps including climate change was conducted. In particular, 
the search was directed towards downloadable data at European level that can be 

opened in a GIS environment. Data from the RAIN project and the INTACT project 
were found particularly relevant in this context. 

The RAIN project (Risk Analysis of Infrastructure Networks in response to 
extreme weather, http://rain-project.eu/) was funded in the EU programme FP7-

SECURITY - Specific Programme "Cooperation": Security. The topic was SEC-
2013.2.1-2 - Impact of extreme weather on critical infrastructure – Capability 
Project. The main aim of the project was to provide a framework for the 

identification of critical infrastructure assets impacted by extreme weather events 
and to propose a solution to minimise the impacts. The project also dealt with the 

influence of climate change in the frequency and intensity of different natural 

https://www.climatechangepost.com/
http://rain-project.eu/
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hazards: windstorms and heavy precipitation, winter weather and forest fires, and 
coastal and river floods. The RAIN project report D2.5-"Present and future 

probability of meteorological and hydrological hazards in Europe" (http://rain-
project.eu/wp-content/uploads/2016/09/D2.5_REPORT_final.pdf) presents 
analyses on the probability of hydro-meteorological hazard occurrence. Projections 

of changes have been carried out considering two climate scenarios (RCP 4.5 and 
RCP 8.5). These two scenarios correspond to those adopted by the 

Intergovernmental Panel on Climate Change in its 5th fifth Assessment Report 
(AR5). Two forecasted time 2021 - 2050 and 2071– 2100, were compared to 
simulations of the past period 1971-2000 for the two emission scenarios RCP 4.5 

and RCP 8.5. The analyses have been based on datasets of observations, 
atmospheric reanalyses and regional climate models, although several other 

datasets were used for analyses of floods. Pan-European gridded data sets of the 
probability of occurrence of river floods, coastal floods, heavy precipitation, 
windstorms, heavy snowfall, blizzards, crown snow load, freezing rain, forest fires, 

thunderstorms, hailstorms, tornadoes and convective wind gusts under present 
and future climate are available as gridded databases at this link: 

https://data.4tu.nl/repository/collection:ab70dbf9-ac4f-40a7-9859-
9552d38fdccd 

The INTACT project "On the Impact of Extreme Weather on Critical 

Infrastructures" has received funding from the European Union Seventh 
Framework Programme (FP7/2007-2013) under grant agreement n° FP7-SEC-

2013-1-606799. The topic was SEC-2013.2.1-2 - Impact of extreme weather on 
critical infrastructure – Capability Project. The project dealt with the resilience of 
critical infrastructures (CI) to Extreme Weather Events (EWE), such as heat waves, 

hurricanes, flooding and droughts. The main aim of INTACT was to reduce the risks 
caused by extreme weather by providing information, methods, tools and 

examples of good practices to support governments and managers of critical 
infrastructures. The project evaluated the hazard changes due to climate change 
in the following decades. Work Package 2 of INTACT aimed to identify and define 

appropriate Extreme Weather Indicators (EWIs) to characterise the relevant 
meteorological critical factors for analysing present and future climate projections. 

The INTACT project was focusing specifically on four types of extreme weather: 

• Temperature extreme 

• Precipitation extreme (also including snowfall) 

• Wind extreme 

• Complex extreme (including 2 different parameters among temperature, 

precipitation and wind) 

o Combined temperature and precipitation extreme 

o Combined temperature and humidity extreme 

Most of the Extreme Weather Indicators considered in INTACT were defined 
following the recommendations of the CCl/CLIVAR/JCOMM Expert Team on Climate 

Change Detection and Indices (ETCCDI). 

http://rain-project.eu/wp-content/uploads/2016/09/D2.5_REPORT_final.pdf
http://rain-project.eu/wp-content/uploads/2016/09/D2.5_REPORT_final.pdf
https://data.4tu.nl/repository/collection:ab70dbf9-ac4f-40a7-9859-9552d38fdccd
https://data.4tu.nl/repository/collection:ab70dbf9-ac4f-40a7-9859-9552d38fdccd
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 Future exposure of transportation system 

Hotspot-maps for future hazards in Portugal considering wildfires and floods have 

been produced considering the gridded database, for future climate, developed in 
the RAIN project (see section 7.1.2). For the area of analysis, the location of 
different road and railway assets has been provided by IP. This information has 

been overlapped with road and railway shapefiles (from OSM database) and 
gridded data sets of the probability of occurrence of river floods in future climate 

(from RAIN database). This database contains the information on the water depth 
in metres for a flood event with a return period of 10-, 30-, 100-, 300-, and 1000-
years, for 100 m resolution. The simulations obtained for two future time periods 

(2021 - 2050 and 2071– 2100) have been compared to the ones obtained for the 
past period 1971-2000. The IPCC emission scenario RCP 8.5 was considered. The 

increment of the flood water depth compared to the past, has been calculated for 
three return periods: 10-, 100-, and 1000-years. Figure 65 and Figure 66 show 
the water depth increment for the long-term period (2071-2100) in the scenario 

RCP 8.5, respectively for road and railway assets. The map shows the influence of 
climate change in the intensity of river floods and highlights the different assets 

that may be potentially exposed in the future. A complete catalogue is presented 
in SAFEWAY (2019a).  

 

 

Figure 65. Changes in flood pattern due to climate change. Hot-spot map for road assets 
considering the water depth increment in a long-term period (2071-2100) in a scenario 

RCP 8.5 for a flood return period of 1000 year. 
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Figure 66. Changes in flood pattern due to climate change. Hot-spot map for railway 

assets considering the water depth increment in a long-term period (2071-2100) in a 
scenario RCP 8.5 for a flood return period of 1000 year. 

The D2.5 report form the RAIN project highlights the influence of climate change 
in the frequency of future forest fires as well. A general increase of forest fires will 

be observed due to the raise of summertime temperatures, especially in 
Mediterranean areas (Mouillot, Rambal and Joffre, 2002; Bedia et al., 2014), with 

the RCP 8.5 scenario. The Canadian Fire Weather Index, FWI (Van Wagner, Forest 
and others, 1987) has been considered to assess the future probability of forest 
fire. This index is composed by six components describing moisture of organic 

layers at different depths and predicting the rate of fire spread and the frontal fire 
intensity. Two thresholds, FWI>20 and FWI>45, have been considered, 

respectively, for cool climate regionals and Mediterranean regions (Moriondo et al., 
2006). The difference between the daily probability of FWI exceedance in future 
climate 2071-2100 and past refence period 1971-2000, have been calculated with 

the purpose of providing the exceedance variation probability. This obtained 
database has been overlapped with road and railway tracks (from OSM) in 

Portugal. The threshold FWI>45 has been considered in this case. Figure 67 
provides an example of the exceedance probability variation of the FWI>45 in the 

future climate period 2071-2100 in Portugal (between Coimbra and Leiria 
provinces) in the RCP 8.5 scenario.  
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Figure 67. The exceedance probability variation of the FWI>45 in the future climate 
period 2071-2100 in Portugal, between Coimbra and Leiría provinces, compared to the 

past period 1971-2000. 

 

 Modelling of direct flood damage in future climate 

The assessment of direct losses has been evaluated also considering a future 
scenario (in addition to the assessment presented in Section 5.2). Floods maps for 

10, 100, 500-year return periods for the RCP 8.5 scenario, assuming no counter 
measures against climate change, have been considered for the analyses. The 

maps were derived from the database of the RAIN project (see section 7.1.2). The 
methodology to perform the analyses is described in Section 5.  

Figure 68 show the results of the annual total loss for railways. The results have 

been presented in box-and-whiskers plots, representing the median, the quartiles 
(25 and 75), the caps and the whiskers. The highest value for the median annual 

loss for railway in a future scenario is reached in Germany with ca 330 M€, then 
France (FR) with ca 250 M€ and Italy (IT) and Hungary (HU), respectively with 
150M€ and 110M€. 
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Figure 69 shows the same results but for roads. In this case, for the sake of 
simplicity, we have merged all the 4 types of roads together. Figure 71 depicts the 

annual loss for roads in a future scenario. One more time Germany (DE), France 
(FR) and Italy (IT) show the largest range of the expected annual loss with a 
median value around 420 M€. 

Figure 70 shows the estimated total cost in M€ for railway summed over all 
countries for future and past scenarios. It is important to mention that the scenario 

in this setting represents a flooding event striking with equal intensity in all 
countries. A more likely event that can be assessed through these numbers might 
be a flooding event striking, say half of the considered countries. The numbers are 

computed by the Monte Carlo simulations described in Section 5.2.1.5. Note that 
price levels for each country have not been adjusted to account for differences in 

GDP per capita. The relative uncertainty of these numbers appears smaller, which 
is a natural consequence of summing multiple independent random variables. 
Same type of plot for roads are displayed in Figure 71. 

 

 

Figure 68. Expected annual loss for railways in M€ considering flood maps in a future 
scenario with RCP 8.5. 
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Figure 69. Expected annual loss for roads in M€ considering flood maps in a future 

scenario with RCP 8.5. 

 

Figure 70. Estimated total cost for railway by scenario, summed over all countries in M€. 
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Figure 71. Estimated total cost for roads by scenario, summed over all countries in M€. 

7.2 Population models 

Climate change often implies increasing, more frequent, intense, and persistent 
hazard events affecting populations in growth and with increasing activity. Since 

the probabilities of adverse events and their potential impacts both increase over 
time, future economic consequences are multiplicatively enhanced. 

However, there are also situations where hazards are less frequent and less severe 
at the same time as economic activities are diminishing due to population decline. 
In such cases, the future economic consequences diminish. 

The economic performance of resilience measures and policies depend on the 
situation/conditions at the time of occurrence of the climate related extreme 

events.  The situation/condition refer to the size of the affected populations, 
resulting activity patterns and values of the assets. It is therefore important to 
take into account population growth or decline for a proper assessment of the 

economics of these resilience measures and policies. 

 Future impacts are more heavily discounted 

Even with constant population and activity patterns, the timing of future hazards 
play a role for the economic performance of resilience measures and the benefits 

of avoiding or reducing damages.  Costs and benefits that accrue early in the 
project period are not discounted as heavily as those that occur later on (note that 
discounting is always with respect to resulting net present values and has nothing 

to do with inflation). 
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Hazards that become less frequent will also tend to occur later in the project period 
and consequently be more heavily discounted. 

 Monte Carlo modelling of economic indicators 

Since it is unknown exactly when hazards will occur, we model the occurrence of 
hazard events with different severities as stochastic discrete variables, where the 

probability of occurrence is specified from previous occurrence statistics. The 
recurrence rates and distribution can be derived from historic data corrected for 

predicted expected increases or decreases in probability due to climate changes, 
and possibly also taking into account changes in the expected probability over 
time. To derive the expected impacts of hazard events, it is possible to run Monte 

Carlo simulations where the occurrences of the events are visualized, and the 
impacts on population, activities, and assets. The sizes of the impacts depend on 

the set of resilience measures brought into/still in place at the time of simulated 
occurrence. Given a large number of simulations the discounted value of future 
expected impacts be calculated at each future time point. 

 Diminishing returns of investments 

Central to the economic analyses of resilience policies is how they depend on 

context and are instrumental in avoiding or reducing future damages. Due to 
scarce financial resources, resilience policies require a sequence of investments 
over time. In such cases the accumulated protective capabilities are also 

increasing. However, while initial efforts may address stretches where 
improvements of securing localized gaps or inferior segments produce large 

benefits with relatively little effort, a diminishing return on investments over time 
is usual. It becomes subsequently more difficult and costly to gain further 
advantages. There is consequently a need for modelling the accumulated 

protective effects of resilience policies at the time of a hazard occurrence and the 
economic value of the protective capacity gained from the accumulated efforts at 

that time.  

Protective measures that are effective against natural hazards with moderate 
intensity, may fail completely when water level rises above protective element 

height. Monte Carlo simulations may provide insights into the net gains of 
protective measures that have good performance for small and medium sized 

events but may fail to provide protection for more seldom extreme events. 

 Demographic change in Europe 

Europe’s working-age population is shrinking. Total changes in populations are a 
product of the age distribution, fertility, immigration and emigration. Within each 
country, rise and decline of industries and services, globalisation, and urbanisation 

play a role. To provide an overview before looking specifically into the situation in 
Portugal and the study area, Figure 72 shows the project changes in population at 

the European member state level until 2100. Portugal is among the countries 
where the EEA expects one of the steepest drops in population. Only Bulgaria has 
a larger predicted reduction in population size. 
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Figure 72. Estimated changes in European countries 2015-2100 (source: 
https://www.eea.europa.eu/data-and-maps/figures/projected-population-change-in-

european) 

The factors driving the changes in overall population size over time, is the age 

distribution, emigration/immigration, fertility, and mortality. The European 
population is aging with an expected 30% proportion of citizens being 65+ years 
old in 2070 vs currently 20%. This is an increase of 33%. The demographic 

changes are not uniform and vary between countries as well as between more or 
less developed regions and areas. 

The size of the working population relative to the size of the non-working 
population is an important socio-economic factor. It determines the economic load 
that each member of the working population needs to carry in addition to 

him/herself and is an indicator of the growth/decline in the accumulation of 
wealth/depletion of resources and future prospects. 

To view the relative size of the working population relative to the EC average and 
the composition of non-working segments, it is possible to use a ternary scheme 
where the proportion of elderly in each country/region are positioned according to 

the scale on the left edge of a triangle, and the proportion young according to the 
bottom edge of the triangle (see Figure 73). The size of the working population 

increases from bottom right to top as the proportion of elderly and young are 
reduced. 

Whereas the proportion of the most elderly is associated with immediate future 

decline in the population, a smaller young population signals potential future 
challenges in keeping up the size of the working population. 

Portuguese NUTS regions studied in the SAFEWAY project lie in the lower left of 
the triangle, signifying a higher load on each member of the work force than the 

EC average, and a lower percentage of youths. 

https://www.eea.europa.eu/data-and-maps/figures/projected-population-change-in-european
https://www.eea.europa.eu/data-and-maps/figures/projected-population-change-in-european
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Figure 73. Visualization of demographic factors characterizing European countries. Upper 
figure: Zoom-in to show the colour coding scheme of working population in European 

regions (source: (Kashnitsky and Schöley, 2018)) 
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 Predicted population change in demonstration area 

Based on an extraction of latest five years crude rates of population change at the 

NUTS 3 level showing a declining population (see Appendix 4 for full table), the 
high percentage of elderly and a declining working population, it is seen little 
reason to not use the current crude rates of change to predict future changes in 

population. We consequently estimate that the population in the demonstration 
area will decline between 5 to 10 inhabitants per 1000 per year. 

 

Figure 74. Portugal NUTS 3 with population change rates 

Current crude rates of change are determined as the average of the yearly figures 

for the last 5 years. Changes of this size will over the project horizon result in 
significant population reductions between 20% and 40% in 2070 (see Figure 75). 
Lisbon is an exception with a projected population growth of about 17%. Transport 

between two regions each experiencing 30% reduction in population is expected 
to diminish by ca. 50% other factors constant. There might be technological and 

other changes that contribute to fewer trips being necessary in the future. A recent 
reminder is the changes in workplace locations, increased use of video 

Column1Column12Column2 Column3

PT111 Alto Minho -7,8

PT112 Cávado -2,5

PT119 Ave -4,5

PT11A Área Metropolitana do Porto -2,1

PT11B Alto Tâmega -10,8

PT11C Tâmega e Sousa -5,1

PT11D Douro -8,5

PT11E Terras de Trás-os-Montes -10,3

PT15 Algarve -1,6

PT150 Algarve -1,6

PT16 Centro (PT) -5,7

PT16B Oeste -1,9

PT16D Região de Aveiro -2,2

PT16E Região de Coimbra -6,3

PT16F Região de Leiria -4,6

PT16G Viseu Dão Lafões -7,7

PT16H Beira Baixa -11,7

PT16I Médio Tejo -7,2

PT16J Beiras e Serra da Estrela -12,2

PT17 Área Metropolitana de Lisboa 2,8

PT170 Área Metropolitana de Lisboa 2,8

PT18 Alentejo -10,4

PT181 Alentejo Litoral -7,9

PT184 Baixo Alentejo -11,7

PT185 Lezíria do Tejo -7,4

PT186 Alto Alentejo -15,8

PT187 Alentejo Central -12,0
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conferencing etc. during the COVID crisis. These changes would make parts of 
society somewhat more robust against transport net disruptions. Future reduction 

in fuel prices and other travel costs, may contribute to maintain some of the trips. 

 

 

Figure 75. Expected population sizes for some of the NUTS3 areas affected by a potential 

100-year flooding. 

7.3 Time-variant consequence models 

Information on population changes over time is one input factor to transport and 
traffic modelling. Typically, the amount of traffic between an origin and destination 
point is seen to be proportional to each of their respective population sizes, and 

inversely related to the “friction” or generalized travel cost between the start and 
end points.  

Based on the NUTS3 rates of change, to obtain the change in transport activities 
between an origin and destination with declining growth would be to multiply their 
growth rates.  In the case of one NUTS3 area having a crude rate of change of -

10 per 1000 and another with -5 per 1000, the resulting change should be 1-(1-
0.01) * (1-0.005) that results in a crude change in rate of -15 per 1000 or -1.5 

percent. To illustrate possible impact of uncertainty in growth rates we suggest 
adding/subtracting 5 per 1000 to and from the NUTS3 crude rates of population 
change. 

The traffic modelling needs to consider potential future changes in the friction or 
generalized travel cost in the period. Given improved or less costly transport the 

number of trips and transport movements will increase. On the other hand, 
population reductions may lead to a reduction in service provisions with longer 
waiting times and consequently also an increase in generalized travel costs. 
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8. Conclusions  

A dynamic risk-based framework has been proposed in this deliverable, which 
improves the understanding and the proper modelling of transportation networks. 

The core of the framework is the three main components of a risk-based 
methodology, namely the hazard assessment, the infrastructure performance, and 
the quantification of possible consequences. In addition, real-time data has been 

introduced into the framework as a means to reducing the uncertainties in the 
hazard estimation and in the infrastructure asset condition, and to potentially 

providing support for early warning systems and traffic re-routing for reducing the 
impacts of extreme event occurrences. Moreover, the importance of accounting for 

time-variant factors has been stressed in the framework. For instance, 
socioeconomic factors such as population growth and traffic demands vary over 
time, and consequently the impacts should be projected at long-term. Finally, 

hazard projections have been also addressed in the framework to account for 
future extreme events. 

Throughout the deliverable, different methodologies have been reviewed and 
applied to depict the assessment of each component from the framework, with 
focus on roadway and railway infrastructures exposed to flooding hazard. First, 

performance predictive models have been implemented to different infrastructure 
assets in order to forecast their deterioration. Then, Bayesian inference procedures 

have been introduced to facilitate the updating of the adopted predictive models 
based on new collected information. This updated condition is used afterwards to 
assess the probability of failure of the infrastructures when exposed to extreme 

hazard events. 

Subsequently, methodologies for flood hazard assessment have been reviewed 

and recommendations have been made depending on the data availability and the 
scope of the analysis. Flood fragility functions for different infrastructure assets 
have been also examined, and a framework has been proposed for construction of 

fragility curves for a portfolio of bridges, which are among the most complex assets 
given their multiple components and therefore the possible related failure modes. 

Then, an illustrative example has been presented to demonstrate the methodology 
and thus facilitate the performance assessment at network level. 

Furthermore, the framework has been applied to evaluate the risk of linear 

transportation infrastructures at European level, by considering direct impacts and 
vulnerability relations expressing the degree of material damage. The 

implementation of the approach through a GIS environment has enabled the 
identification of the exposure of the infrastructures by geographical coincidence. 
Also, the uncertainties associated to both costs and vulnerability values have been 

considered through MC sampling, which allows fully risk-informed decisions. On 
the other hand, methodologies for the quantification of indirect impacts due to the 

disruption of the transportation service have been also addressed, and a simplified 
assessment has been carried out with focus on indirect user costs given the 
probability and duration of a service disruption. This approach offers a preliminary 

estimation of indirect impacts, yet all the socioeconomic costs which have been 
broadly reviewed, namely operation costs of travel and external damage costs due 
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to increase traffic flows, remain to be incorporated on more detail qualifications 
supported by traffic models.  

Finally, for the projection of long-term impacts, both the dispersion of future 
hazards given the modification in the return periods due to climate change, and 
the situation and conditions of the population affected by these future occurrences 

have been analysed. A stochastic approach has been proposed to analyse 
resilience policies against future uncertain hazard impacts.  In these analyses, 

benefits that are dependent on the size and timing of uncertain future events can 
be calculated through Monte Carlo simulation, and the uncertainties associated 
with the calculations and their impact on the resulting economic indicators can be 

visualised. 
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Appendix 1. Deterministic Models 

A.1.1. Correlation analysis for Pavements 

The variables considerer in the database are summarized in Table 1- 1 with their 
respective characteristics. 

Table 1- 1. Independent variables 

Variable Type Measure 

Inspection Year Numerical Scale 

Average Daily Truck Traffic 
(ADTT) 

Numerical Scale 

Average Daily Traffic (ADT) Numerical Scale 

Year built Numerical Scale 

Age at inspection Numerical Scale 

Type of road Categorical Nominal 

Type of Region Categorical Nominal 

In order to establish a correlation among different variables with Quality index is 
necessary to test the variables normality. The normality was verified with 
Kolmogorov-Smirnov test how is shown in Table 1- 2, with p-values less than the 
level of significance 5%. Therefore the null hypothesis of normality is rejected, it 
means, none of the variables follows a normal distribution.  

Table 1- 2. Normality test 

Variable  Statistic df Sig. 
Inspection Year 0.156 20061 0.000 
Quality Index  0.083 20061 0.000 
tmda2012 0.129 20061 0.000 
tmda pes12 0.140 20061 0.000 
Year built 0.209 20061 0.000 
Age at inspection 0.131 20061 0.000 

Consequently, Spearman's rho correlation is selected to establish the degree of 
relationship between the variables. Statistical results are summarized in Table 1-
3. 

Table 1- 3. Spearman correlations between Quality Index and other variables 

  Correlation coefficient Sig. (2-tailed) N 

Inspection Year -0.004 0.601 20270 

ADTT 0.085** 0.000 20270 

ADT 0.101** 0.000 20270 
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Year built -0.143** 0.000 20061 

Age at inspection 0.117** 0.000 20061 

** Correlation is significant at the level 0.01 (2-tailed). 

The table above shows a minimum level of correlation between QI and the other 
variables, due to values present for these correlations are less than 0.3. Therefore, 
it means that there is a minimum dependence for these variables with QI. 
However, the significances of the established correlations with a p-value lower 
than 0,01 indicate that the correlations are statistically significant, except for the 
Inspection Year (p-value> 0.05). 

A.1.2. Regression analysis for Pavements 

Since the main objective is to formulate a pavement degradation model over time, 
the QI and Age at inspection variables will be considered. Simple linear regression 
analysis was conducted with Quality index as a dependent variable or response (Y) 
and Age at inspection as an independent or regressor variable. The results obtain 
for simple linear regression are shown in Table 1- 4. 

Table 1- 4. Regression model for complete database 

Equation 
Model Summary Parameter Estimates 

R Square F df1 Sig. Constant b1 b2 b3 

Lineal 0.064 81.385 1 0.000 3.164 0.007   

Quadratic 0.086 74.336 2 0.000 3.121 0.022 -0.001  

Cubic 0.097 63.645 3 0.000 3.160 0.000 0.001 -5.21E-05 

Power 0.048 46.934 1 0.000 3.103 1.002   

Growth 0.048 46.934 1 0.000 1.132 0.002   

Exponential 0.048 46.934 1 0.000 3.103 0.002   

Logistic 0.048 46.934 1 0.000 0.322 0.998     
Independent variable: Age at Inspection  
Dependent variable: Quality Index 

However, the R2 values showed for the different type of equation are low, even 
when all are statistically significant. It means that the model does not fit well 
with the data as is shown in Figure 1- 1. 
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Figure 1- 1. Regression 

Therefore, in order to obtain predictive models with enough accuracy, several 
clusters were applied. These filters have the objective of eliminate missing, 
duplicate or active data with important maintenance actions and obtain a reliable 
data set for deterioration models. The database was cluster by region, type of road 
and AADT. Is important to mention that into the AADT classification there are three 
different ranges AADT>2500, 2500<AADT<7500 and AADT>7500. For a total of 
45 combinations, as is shown in Figure 1- 2.  

 
Figure 1- 2. Different clusters for regression models 

Posterior, model regressions were applied and compared regarding R2 value, in 
order to select the model that best fits with the data. Each of the mentioned cases 
is shown below, summarized in table 1 - 5 to 1 - 22, considering the different types 
of models, the respective coefficients, R2 value and F-test value. 
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Table 1- 5. Regression models for National road, Coimbra and AADT<2500 

Equation 
Model Summary Parameter Estimates 

R 
Square 

F df1 Sig. Constant b1 b2 

Lineal 0.962 62.580 1 0.001 5.84 -0.236  

Quadratic 0.982 53.707 2 0.001 9.693 -0.825 0.220 
Cubic 0.982 55.554 2 0.001 8.467 -0.539 0.001 
Compound 0.974 93.396 1 0.000 8.448 0.916  

Power 0.981 125.305 1 0.000 51.859 -1.156  

Exponential 0.974 93.396 1 0.000 8.448 -0.087  

Logistic 0.974 93.396 1 0.000 0.118 1.091  

Logarithmic 0.974 94.035 1 0.000 10.798 -3.146  

Reverse 0.979 116.534 1 0.000 -0.439 40.594  

Growth 0.974 93.396 1 0.000 2.134 -0.087  

S 0.980 119.008 1 0.000 -0.173 14.827   

 

 

Table 1- 6. Regression models for National roads, Leiria and AADT<2500 

Equation 
Model Summary Parameter Estimates 

R Square F df1 Sig. Constant b1 b2 b3 
Lineal 0.975 38.108 1 0.025 3.457 -0.046   

Quadratic 0.996 59.664 2 0.091 3.468 -0.079 0.011  

Cubic 1.000  3  3.470 -0.113 0.043 -0.007 
Compound 0.976 40.316 1 0.024 3.457 0.986   

Exponential 0.976 40.316 1 0.024 3.457 -0.014   

logarithmic 0.976 40.316 1 0.024 0.289 1.014   

Growth 0.976 40.316 1 0.024 1.240 -0.014   
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Table 1- 7. Regression models for National roads, Santarem and AADT<2500 

Equation 
Model Summary Parameter Estimates 

R 
Square 

F df1 Sig. Constant b1 b2 b3 

Lineal 0.987 195.337 1 0.000 3.366 -0.186   

Quadratic 0.989 92.962 2 0.000 3.400 -0.227 0.007  

Cubic 0.990 48.62 3 0.005 3.387 -0.186 -0.012 0.002 
Compound 0.988 208.478 1 0.000 3.396 0.936   

Exponential 0.988 208.478 1 0.000 3.396 -0.066   

logarithmic 0.988 208.478 1 0.000 0.294 1.069   

Growth 0.988 208.478 1 0.000 1.223 -0.066     
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Table 1- 8. Regression models for National roads, Leiria and 2500< AADT<7500 

Equation 
Model Summary Parameter Estimates 

R Square F df1 Sig. Constant b1 b2 
Lineal 0.991 111.061 1 0.009 5.000 -0.085  

Quadratic 0.992 31.511 2 0.125 6.492 -0.247 0.004 
Cubic 0.992 31.799 2 0.124 6.029 -0.169 8.14E-05 
Compound 0.991 114.28 1 0.009 5.423 0.975  

Exponential 0.991 114.28 1 0.009 5.423 -0.025  

logarithmic 0.992 121.25 1 0.008 8.015 -1.575  

Growth 0.991 114.28 1 0.009 1.691 -0.025  

Reverse 0.992 122.503 1 0.008 1.850 28.992  

Power 0.992 121.785 1 0.008 13.073 -0.460  

S 0.992 119.849 1 0.008 0.771 8.461  

Logistic 0.991 114.28 1 0.009 0.184 1.025   
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Table 1- 9. Regression models for National roads, Santarem and 2500< AADT<7500 

Equation 
Model Summary Parameter Estimates 

R Square F df1 Sig. Constant b1 b2 b3 
Lineal 0.998 1616,481 1 0.000 3.397 -0.087   

Quadratic 0.998 696.731 2 0.000 3.401 -0.089 0.000  

Cubic 0.998 388.242 3 0.000 3.397 -0.085 -0.001 4.75E-05 
Compound 0.997 1280.328 1 0.000 3.427 0.971   

Exponential 0.997 1280.328 1 0.000 3.427 -0.030   

logarithmic 0.947 60.887 1 0.000 3.426 -0.330   

Growth 0.997 1280.328 1 0.000 1.232 -0.030   

Reverse 0.804 12.778 1 0.009 2.727 0.719   

Power 0.935 48.534 1 0.000 3.454 -0.112   

S 0.784 11.157 1 0.012 1.004 0.241   

Logistic 0.997 1280.328 1 0.000 0.292 1.030     
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Table 1- 10. Regression models for National roads, Santarem and AADT>7500 

Equation 
Model Summary Parameter Estimates 

R 
Square 

F df1 Sig. Constant b1 b2 b3 

Lineal 0.956 31.902 1 0.011 3.585 -0.057   

Quadratic 0.996 116.324 2 0.009 3.486 0.027 -0.014  

Cubic 1.000 3719.259 3 0.012 3.563 -0.081 0.027 -0.005 
Compound 0.953 29.690 1 0.012 3.589 0.983   

Exponential 0.953 29.690 1 0.012 3.589 -0.017   

logarithmic 0.874 9.670 1 0.053 3.538 -0.130   

Growth 0.953 29.690 1 0.012 1.278 -0.017   

Reverse 0.763 4.177 1 0.134 3.311 0.223   

Power 0.869 9.257 1 0.056 3.539 -0.038   

Logistic 0.953 29.690 1 0.012 0.279 1.017     
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Table 1- 11. Regression models for disqualified national roads, Santarem and 
AADT<2500  

Equation 
Model Summary Parameter Estimates 

R Square F df1 Sig. Constant b1 b2 b3 
Lineal 0.986 69.808 1 0.014 3.200 -0.053   

Quadratic 0.996 64.047 2 0.088 3.249 -0.093 0.006  

Cubic 1.000  3  3.175 0.003 -0.027 0.003 
Compound 0.987 75.891 1 0.013 3.204 0.982   

Exponential 0.987 75.891 1 0.013 3.204 -0.018   

logarithmic 0.984 61.321 1 0.016 3.172 -0.150   

Growth 0.987 75.891 1 0.013 1.164 -0.018   

Reverse 0.922 11.271 1 0.078 2.885 0.296   

Power 0.983 57.368 1 0.017 3.174 -0.050   

Logistic 0.987 75.891 1 0.013 0.312 1.018   

S 0.919 10.800 1 0.081 1.060 0.097   
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Table 1- 12. Regression models for disqualified national roads, Santarem and 
2500<AADT<7500 

Equation 
Model Summary Parameter Estimates 

R Square F df1 Sig. Constant b1 b2 b3 
Lineal 0.998 1085.799 1 0.000 3.301 -0.138   

Quadratic 0.998 485.218 2 0.000 3.312 -0.149 0.001  

Cubic 1.000 3565.285 3 0.000 3.287 -0.081 -0.018 0.001 
Compound 0.998 927.709 1 0.000 3.333 0.950   

Exponentia
l 0.998 927.709 1 0.000 3.333 -0.051   

Growth 0.998 927.709 1 0.000 1.204 -0.051   

Logistic 0.998 927.709 1 0.000 0.300 1.053     
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Table 1- 13. Regression models for disqualified national roads, Santarem and 
AADT>7500 

Equation 
Model Summary Parameter Estimates 

R 
Square 

F df1 Sig. Constant b1 b2 b3 

Lineal 0.996 238.809 1 0.004 3.779 -0.058   

Quadratic 0.997 88.245 2 0.075 3.784 -0.069 0.003  

Cubic 1.000  3  3.787 -0.109 0.035 -0.006 
Compound 0.996 277.761 1 0.004 3.779 0.984   

Exponential 0.996 277.761 1 0.004 3.779 -0.016   

Growth 0.996 277.761 1 0.004 1.330 -0.016   

Logistic 0.996 277.761 1 0.004 0.265 1.016     
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Table 1- 14. Regression models for Regional roads, Coimbra and AADT<2500 

Equation 
Model Summary Parameter Estimates 

R Square F df1 Sig. Constant b1 b2 
Lineal 0.995 284.675 1 0.000 2.848 -0.031  

Quadratic 0.998 215.381 2 0.005 2.950 -0.055 0.001 
Cubic 0.998 234.715 2 0.004 2.922 -0.045 0.000 
Compound 0.996 333.495 1 0.000 2.863 0.988  

Exponential 0.996 333.495 1 0.000 2.863 -0.012  

logarithmic 0.996 424.735 1 0.000 3.163 -0.276  

Growth 0.996 333.495 1 0.000 1.052 -0.012  

Reverse 0.985 97.940 1 0.002 2.298 2.274  

Power 0.996 378.098 1 0.000 3.237 -0.107  

Logistic 0.996 333.495 1 0.000 0.349 1.012  

S 0.983 88.082 1 0.003 0.838 0.885   
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Table 1- 15. Regression models for Regional roads, Leiria and AADT<2500 

Equation 
Model Summary Parameter Estimates 

R Square F df1 Sig. Constant b1 b2 
Lineal 0.997 486.961 1 0.000 4.449 -0.079  

Quadratic 0.997 163.101 2 0.006 4.410 -0.073 0.000 
Cubic 0.997 163.101 2 0.006 4.410 -0.073 0.000 
Compound 0.997 489.383 1 0.000 4.619 0.977  

Exponential 0.997 489.383 1 0.000 4.619 -0.023  

logarithmic 0.994 229.759 1 0.001 6.005 -1.012  

Growth 0.997 489.383 1 0.000 1.530 -0.023  

Reverse 0.984 92.204 1 0.002 2.427 12.612  

Power 0.992 188.079 1 0.001 7.282 -0.296  

Logistic 0.997 489.383 1 0.000 0.216 1.023  

S 0.981 77.827 1 0.003 0.938 3.688   
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Table 1- 16. Regression models for Regional roads, Santarem and 2500<AADT<7500 

Equation 
Model Summary Parameter Estimates 

R Square F df1 Sig. Constant b1 b2 
Lineal 0.957 29.109 1 0.033 3.399 -0.067  

Quadratic 0.979 11.286 2 0.206 3.903 -0.219 0.011 
Cubic 0.979 11.286 2 0.206 3.903 -0.219 0.011 
Compound 0.970 31.752 1 0.030 3.435 0.977  

Exponential 0.970 31.752 1 0.030 3.435 -0.023  

logarithmic 0.977 41.935 1 0.023 3.817 -0.463  

Growth 0.970 31.752 1 0.030 1.234 -0.023  

Reverse 0.983 58.517 1 0.017 2.465 3.081  

Power 0.979 45.027 1 0.021 3.958 -0.157  

Logistic 0.970 31.752 1 0.030 0.291 1.023  

S 0.984 60.141 1 0.016 0.916 1.046   
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Table 1- 17. Regression models for complementary routes, Leiria and AADT>7500 

Equation 
Model Summary Parameter Estimates 

R Square F df1 Sig. Constant b1 b2 
Lineal 0.994 306.311 1 0.000 4.369 -0.055  

Quadratic 0.994 118.978 2 0.001 4.451 -0.070 0.001 
Cubic 0.994 118.978 2 0.001 4.451 -0.070 0.001 
Compound 0.993 303.103 1 0.000 4.418 0.986  

Exponential 0.993 303.103 1 0.000 4.418 -0.015  

logarithmic 0.993 268.284 1 0.000 5.172 -0.591  

Growth 0.993 303.103 1 0.000 1.486 -0.015  

Reverse 0.986 137.476 1 0.000 3.185 6.165  

Power 0.991 232.137 1 0.000 5.467 -0.157  

Logistic 0.993 303.103 1 0.000 0.226 1.015  

S 0.984 118.658 1 0.000 1.171 1.635   
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Table 1- 18. Regression models for complementary routes, Santarem and AADT>7500 

Equation 
Model Summary Parameter Estimates 

R Square F df1 Sig. Constant b1 b2 
Lineal 0.987 181.749 1 0.000 4.445 -0.111  

Quadratic 0.995 187.206 2 0.000 3.807 0.038 -0.008 
Cubic 0.995 187.206 2 0.000 3.807 0.038 -0.008 
Compound 0.983 140.682 1 0.000 4.609 0.968  

Exponential 0.983 140.682 1 0.000 4.609 -0.033  

logarithmic 0.969 76.558 1 0.000 5.505 -0.949  

Growth 0.983 140.682 1 0.000 1.528 -0.033  

Reverse 0.942 39.15 1 0.002 2.543 7.690  

Power 0.963 63.196 1 0.001 6.279 -0.278  

Logistic 0.983 140.682 1 0.000 0.217 1.033  

S 0.933 33.731 1 0.002 0.972 2.243   
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Table 1- 19. Regression models for complementary routes, Santarem and 
7500<AADT<12500 

Equation 
Model Summary Parameter Estimates 

R Square F df1 Sig. Constant b1 b2 
Lineal 0.962 12.557 1 0.175 2.985 -0.080  

Quadratic 1.000  2  2.998 -0.157 0.039 
Cubic 1.000    2.998 -0.132 0.013 
Compound 0.964 13.113 1 0.172 2.985 0.973  

Exponential 0.964 13.113 1 0.172 2.985 -0.027  

Growth 0.964 13.113 1 0.172 1.094 -0.027  

Logistic 0.964 13.113 1 0.172 0.335 1.028   
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Table 1- 20. Regression models for complementary routes, Santarem and AADT>12500 

Equation 
Model Summary Parameter Estimates 

R Square F df1 Sig. Constant b1 b2 b3 
Lineal 0.984 210.759 1 0.000 3.397 -0.103   

Quadratic 0.984 90.735 2 0.000 3.402 -0.108 0.001  

Cubic 0.995 152.097 3 0.000 3.349 0.006 -0.037 0.003 
Compound 0.984 220.500 1 0.000 3.414 0.966   

Exponential 0.984 220.500 1 0.000 3.414 -0.035   

Growth 0.984 220.500 1 0.000 1.228 -0.035   

Logistic 0.984 220.500 1 0.000 0.293 1.035     
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Table 1- 21. Regression models for Principal routes, Santarem and 7500<AADT<12500 

Equation 
Model Summary Parameter Estimates 

R Square F df1 Sig. Constant b1 b2 b3 
Lineal 0.995 400.244 1 0.000 3.728 -0.080   

Quadratic 0.997 261.591 2 0.000 3.761 -0.105 0.004  

Cubic 0.998 153.842 3 0.006 3.722 -0.055 -0.013 0.002 
Compound 0.996 477.248 1 0.000 3.737 0.977   

Exponential 0.996 477.248 1 0.000 3.737 -0.023   

logarithmic 0.977 83.536 1 0.001 3.691 -0.221   

Growth 0.996 477.248 1 0.000 1.318 -0.023   

Reverse 0.899 16.872 1 0.015 3.273 0.430   

Power 0.974 73.091 1 0.001 3.696 -0.064   

Logistic 0.996 477.248 1 0.000 0.268 1.023   

S 0.893 15.662 1 0.017 1.187 0.124     
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Table 1- 22. Regression models for Principal routes, Santarem and AADT>12500 

Equation 
Model Summary Parameter Estimates 

R 
Square 

F df1 Sig. Constant b1 b2 b3 

Lineal 0.983 86.130 1 0.003 3.703 -0.067   

Quadratic 0.997 190.848 2 0.005 3.771 -0.118 0.007  

Cubic 0.999 158.294 3 0.058 3.717 -0.047 -0.017 0.002 
Compound 0.985 97.485 1 0.002 3.708 0.981   

Exponential 0.985 97.485 1 0.002 3.708 -0.019   

logarithmic 0.987 112.863 1 0.002 3.676 -0.187   

Growth 0.985 97.485 1 0.002 1.310 -0.019   

Reverse 0.919 16.384 1 0.027 3.327 0.361   

Power 0.985 98.312 1 0.002 3.679 -0.054   

Logistic 0.985 97.485 1 0.002 0.270 1.019   

S 0.914 15.260 1 0.030 1.203 0.103     
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After verifying the assumptions for each model. The models suggested for 
pavement degradation model over time are summarized in table 1- 23. 

Table 1- 23. Regression models for Quality Index degradation 

ID 
Model Summary Parameter Estimates 

Equation R Square Constant b1 b2 b3 
NR-C<2.5 Cubic 0.982 8.467 -0.539 0.001  
NR-L<2.5 Cubic 1.000 3.470 -0.113 0.043 -0.007 
NR-S<2.5 Exponential 0.988 3.396 -0.066   
NR-L-2.5-7.5 Lineal 0.991 0.991 5.000 -0.085  
NR-S-2.5-7.5 Exponential 0.997 3.427 -0.030   
NR-S>7.5 Cubic 1.000 3.563 -0.081 0.027 -0.005 
DnR-S<2.5 Lineal 0.986 3.200 -0.053   
DnR-S-2.5-7.5 Lineal 0.998 3.301 -0.138   
DnR-S>7.5 Exponential 0.996 3.779 -0.016   
RR-C-<2.5 Exponential 0.996 2.863 -0.012   
RR-L<2.5 Quadratic 0.997 4.410 -0.073 0.000  
RR-S-2.5-7.5 Cubic 7.708 -1.931 0.261 -0.012  
CR-L>7.5 Exponential 0.993 4.418 -0.015   
CR-S>7.5 Quadratic 0.995 3.807 0.038 -0.008  
CR-S-7.5-12.5 Cubic 1.000 3.357 -0.316 0.136 0.0183 
CR-S>12.5 Exponential 0.984 3.414 -0.035   
PR-S-7.5-12.5 Exponential 0.996 3.737 -0.023   
PR-S>12.5 Exponential 0.985 3.708 -0.019   
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Appendix 2. Stochastic Models 

The complementary results obtained from the application of the Markov Chains 
predictive model to the roadway and railway databases described in Chapter 2.1.1 
are herein presented for each bridge component.  

 
Figure 2- 1 Performance Prediction of railway bridge decks through MC models 

 
Figure 2- 2 Performance Prediction of roadway bridge decks through MC models 
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Figure 2- 3 Performance Prediction of bridge abutments through MC models 

 

 
Figure 2- 4 Performance Prediction of bridge bearing devices through MC models 
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Figure 2- 5 Performance Prediction of bridge expansion joints through MC models 

 

 
Figure 2- 6 Performance Prediction of bridge piers through MC models 
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Figure 2- 7 Performance Prediction of bridge slopes through MC models 

 

 
Figure 2- 8 Performance Prediction of bridge wing walls through MC models 
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Appendix 3. Fragility functions 

Table 3- 1. Probabilistic parameters of RVs for the capacity (Moreira et al., 2016) 

Material Parameter Mean value CoV (%) Distribution 

Masonry 
units 

Unit weight (  25 [kN/m3] 10 Normal 

Compressive strength 
( ) 

20 [MPa] 20 Normal 

Masonry 
joints 

Internal friction angle ( ) 32.6 [°] 20 Normal 

Soil backfill 

Unit weight (  20 [kN/m3] 10 Normal 

Internal friction angle ( ) 30 [°] 20 Normal 

Foundation 
soil 

Unit weight (  

Saturated unit weight (  

14 [kN/m3] 

19 [kN/m3] 
10 Normal 

Internal friction angle ( ) 28 [°] 20 Normal 

 

Table 3- 2. Probabilistic parameters of RVs for the determination of the flood demand 
(Lagasse et al., 2013) 

Category Parameter Mean value CoV (%) Distribution 

Hydraulic 
parameters 

Manning roughness 
coefficient ( ) 

0.020 [s/m1/3] 1.5 Lognormal 

Channel bed slope ( ) 0.01 [m/m] 10 Normal 

Local scour 

Mean size diameter ( ) 64 [mm] 10 Lognormal 

Peak flood duration ( ) 8 [hours] 10 Normal 

Model uncertainty ( ) 0.78 20 Normal 
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Appendix 4. Population Changes 

 

Figure 4- 1. Extraction of data from Eurostat 
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Table 4- 1. Calculation of the relevant NUTS3-level 5-year averages 

GEO/TIME 2014 2015 2016 2017 2018 5 Year Average 
Portugal -5.0 -3.2 -3.1 -1.8 -1.4 -14.5 -2.9 

Continente -4.9 -3.1 -3.0 -1.7 -1.3 -14.0 -2.8 
Norte -6.2 -5.0 -5.3 -2.3 -1.0 -19.8 -3.96 

Alto Minho -8.9 -7.3 -10.5 -7.0 -5.3 -39.0 -7.8 
Cávado -3.5 -2.2 -4.6 -1.8 -0.2 -12.3 -2.46 

Ave -5.0 -3.4 -6.6 -4.4 -2.9 -22.3 -4.46 
Área 

Metropolitana do 
Porto -5.5 -4.5 -2.7 0.4 1.6 -10.7 -2.14 

Alto Tâmega -11.6 -10.6 -14.9 -9.0 -8.0 -54.1 -10.82 

Tâmega e Sousa -5.8 -4.5 -6.7 -5.0 -3.6 -25.6 -5.12 
Douro -11.0 -10.0 -10.5 -6.0 -4.9 -42.4 -8.48 

Terras de Trás-
os-Montes -12.4 -12.7 -12.3 -7.9 -6.3 -51.6 -10.32 
Algarve -2.0 1.0 -1.0 -4.2 -1.7 -7.9 -1.58 
Algarve -2.0 1.0 -1.0 -4.2 -1.7 -7.9 -1.58 

Centro (PT) -7.6 -3.4 -5.5 -5.6 -6.6 -28.7 -5.74 
Oeste -4.6 0.4 -1.6 -0.9 -2.6 -9.3 -1.86 

Região de Aveiro -4.5 -0.4 -1.5 -1.8 -2.7 -10.9 -2.18 
Região de 
Coimbra -8.8 -4.8 -5.4 -5.8 -6.7 -31.5 -6.3 

Região de Leiria -5.7 -0.8 -5.0 -5.1 -6.4 -23.0 -4.6 

Viseu Dão Lafões -7.9 -3.4 -8.7 -9.0 -9.5 -38.5 -7.7 
Beira Baixa -14.0 -9.9 -10.8 -11.1 -12.7 -58.5 -11.7 
Médio Tejo -9.3 -5.8 -6.6 -6.8 -7.7 -36.2 -7.24 

Beiras e Serra da 
Estrela -12.6 -9.6 -12.7 -12.7 -13.3 -60.9 -12.18 
Área 

Metropolitana de 
Lisboa 0.6 1.2 3.1 4.4 4.5 13.8 2.76 
Área 

Metropolitana de 
Lisboa 0.6 1.2 3.1 4.4 4.5 13.8 2.76 

Alentejo -13.5 -12.3 -8.7 -8.6 -9.1 -52.2 -10.44 

Alentejo Litoral -11.2 -11.2 -6.2 -5.5 -5.5 -39.6 -7.92 

Baixo Alentejo -14.2 -14.3 -9.2 -9.8 -11.2 -58.7 -11.74 

Lezíria do Tejo -10.6 -9.1 -5.9 -5.3 -5.9 -36.8 -7.36 
Alto Alentejo -18.2 -16.6 -15.1 -14.2 -14.8 -78.9 -15.78 

Alentejo Central -15.3 -13.3 -9.8 -10.8 -10.9 -60.1 -12.02 
Região 

Autónoma dos 
Açores (PT) -4.4 -2.4 -2.0 -5.8 -4.2 -18.8 -3.76 
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GEO/TIME 2014 2015 2016 2017 2018 5 Year Average 
Região 

Autónoma dos 
Açores (PT) -4.4 -2.4 -2.0 -5.8 -4.2 -18.8 -3.76 

Região 
Autónoma dos 
Açores (PT) -4.4 -2.4 -2.0 -5.8 -4.2 -18.8 -3.76 

Região 
Autónoma da 
Madeira (PT) -10.1 -8.8 -6.1 -2.0 -1.7 -28.7 -5.74 

Região 
Autónoma da 
Madeira (PT) -10.1 -8.8 -6.1 -2.0 -1.7 -28.7 -5.74 

Região 
Autónoma da 
Madeira (PT) -10.1 -8.8 -6.1 -2.0 -1.7 -28.7 -5.74 


