
Applying Aspects to a Real-Time
Embedded Operating System

Francisco Afonso1 Carlos Silva1 Sergio Montenegro2 Adriano Tavares1

1 Department of Industrial Electronics
University of Minho
Campus de Azurém

4800-058 Guimarães - Portugal

{fafonso, csilva, atavares}@dei.uminho.pt

2 Fraunhofer - Institute for Computer Architecture and
Software Technology (FHG-FIRST)

Kekuléstraße 7
12489 Berlin - Germany

sergio.montenegro@first.fraunhofer.de

ABSTRACT
The application of aspect-oriented programming (AOP) to the
embedded operating system domain is still a very controversial
topic, as this area demands high performance and small memory
footprint. However, recent studies quantifying aspects overheads
in AspectC++ show that the resource cost is very low. Therefore,
operating system development may benefit with the
modularization of crosscutting concerns and system specialization
offered by AOP.

This paper addresses our experience in applying aspects to
synchronization (mutual exclusion) and logging in a real-time
embedded operating system (BOSS). Furthermore, we present our
ideas for future investigation in aspect-oriented implementations
for fault tolerance, middleware customization and platform
variability.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques;
D.4.7 [Operating Systems]: Organization and Design – real-time
systems and embedded systems.

General Terms
Design, Reliability, Languages

Keywords
Aspect oriented programming, modularization, customization.

1. INTRODUCTION
Aspect-Oriented Programming (AOP) has opened a new field of
research on the applicability of this software engineering
technique to several application domains. Aspect-oriented
language extensions, like AspectJ[5] and AspectC++[4] have been
making easier the application of this technology to improve the
modularization, separation of concerns, customizability and
reusability of new and existing projects.

In this paper we describe our experiments using AspectC++ to
implement concerns as mutual exclusion and logging in the BOSS
embedded operating system. Besides, we present our future
investigation goals in other areas, such as application level fault
tolerance, operating system fault tolerance, middleware
customization and platform variability.

This paper is organized as follows. Section 2 introduces the BOSS
operating system and presents its philosophy and basic building
blocks. Section 3 describes and discusses our experiments with
mutual exclusion. Section 4 presents and exemplifies the use
logging aspects. Section 5 describes our future investigation
plans for others domains in operating systems development, as
fault tolerance, middleware customization and portability. In
Section 6 we make reference to the related work and finally in
Section 7 we summarize this paper.

2. BOSS OPERATING SYSTEM
BOSS is a real-time operating system developed by FHG-FIRST,
and had as first application the BIRD (Bi-Spectral Infrared
Detection) satellite [18], launched in 2001. Since then, it has been
applied in several other projects. Future BOSS utilization include
CubeSat satellites [19] (TinyBOSS version) and robotics in space.

Simplicity is the main strategy for achieving dependability [6] in
BOSS, as complexity is the cause of most development faults.
The system was developed in C++ and has been ported to several
platforms as PowerPC, x86 and Atmel AVR. It also runs on top of
Linux, mainly for developing and testing purposes. Figure 1
exhibits a simplified class diagram of the core functionally in the
kernel.

Figure 1. Core BOSS class diagram.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Workshop ACP4IS’07, March 12–13, 2007, Vancouver, British
Columbia, Canada.
Copyright 2007 ACM 1-59593-657-8/07/03…$5.00.

BOSS was designed to support fault tolerance in applications with
hardware redundancy by including a middleware which carries
out transparent communications between nodes, using the
publisher-subscriber protocol.

3. ASPECTS FOR MUTUAL EXCLUSION
Operating systems use several mechanisms to achieve mutual
exclusion between processes/threads and interrupt handling
routines in executing critical sections of code, like disabling
interrupts, disabling dispatch, using spin locks and semaphores.
Generally the functions and methods that implement mutual
exclusion are spread throughout the operating system code.
In the BOSS operating system, the most used mechanisms for
mutual exclusion are disabling interrupts and disabling dispatch.
These concepts are applied in building most operating system
core functionality as signal boxes, mail boxes and even
semaphores.
Our approach was to treat mutual exclusion as a separate concern
and implement it using aspects. Figure 2 shows an example of the
original implementation of the MailBox send method, and Figure
3 presents the created aspect code for disabling dispatch.

#define THREAD_ATOMAR \
 scheduler.disableDispatch();
#define THREAD_ATOMAREND \
 scheduler.enableDispatch();

void MailBox::send(SortedChainable* message) {
 THREAD_ATOMAR {
 messages.append(message);
 if(suspendedReceiver != 0)
 suspendedReceiver->resume();
 suspendedReceiver = 0;
 } THREAD_ATOMAREND;
}

Figure 2. MaiBox send implementation.

aspect ThreadAtomar {

 pointcut critical () =
 execution("% MailBox::send(...)") ||
 execution("% MailBox::receive_in(...)") ||
 execution(
 "% SortedList::getRemoveFirst(...)") ||
 execution ("% SortedList::find(...)") ||
 execution ("% SortedList::remove(...)") ||
 execution ("% SortedList::insert(...)") ||
 execution ("% SortedList::append(...)") ||
 execution ("% Semaphore::enter_in(...)") ||
 execution ("% Semaphore::leave_in(...)") ||
 execution ("% SignalBox::get_in(...)") ;

 advice critical () : before() {
 scheduler.disableDispatch();
 }

 advice critical () : after() {
 scheduler.enableDispatch();
 }

 advice execution("% SignalBox::get_in(...)"):
 order ("ThreadAtomar","InterruptAtomar");
};

Figure 3. ThreadAtomar aspect.

The disable dispatch mechanism only prevents concurrent access
by threads. As shown in Figure 3, for the method get_in of the
SignalBox class, a second aspect is applied to avoid concurrent
access between threads and interrupt handling routines. The order
advice declaration defines that the ThreadAtomar aspect has
precedence over the InterruptAtomar aspect, not shown in this
figure.
Besides disabling interrupts and dispatches, BOSS uses
semaphores (mutexes) to protect critical code in other kernel
classes, as the NameServer and Message classes. In this case, the
separation of this semaphore code to an aspect is similar to the
presented so far, but it includes a data member introduction of a
private semaphore for each class it protects.
The application of the aspect-oriented version for mutual
exclusion gives as advantage the separation of this concern from
the basic system functionality. It makes easier for the programmer
to understand where each mechanism is applied and to modify its
application. The bigger the system is, the greater the benefits are.
A minor disadvantage is that sometimes a refactoring in the
operating system code is needed, usually by creating a new
method exposing the critical section.
The performance and memory footprint of the implementations
described in this section were evaluated using AspectC++ version
1.0pre3 and gcc version 3.4.2 in a Pentium computer. AOP and
non-AOP versions were compiled under various degrees of
optimization, and the final executable code was analyzed and
compared. For optimization levels –O2 and –O3, the performance
is supposed to be the same, as an identical code is generated.
Regarding memory consumption, for optimization levels –O2 and
–O3 the AOP version presented the same code size and an
increase of 4 bytes in the .bss section for each aspect. Based on
these results, we conclude that no significant cost is introduced
with the AOP implementation.

4. ASPECTS FOR LOGGING
Logging is an essential mechanism for code validation and
debugging, both at the operating system and at the application
level. In its simplest form, it may consist of applying printfs in
selected points of the code, guarded by ifdefs or if clauses for
selective activation. More elaborated logging mechanisms rely on
memory or file system storage.
The application of aspect-oriented programming to the logging
domain seems to be both intuitive and practical. Several logging
aspects can be created, covering distinct objectives, and they can
be composed at compile time accordingly. The clear advantage is
separating the logging code from the operating system code, and
so each developer may own a proper set of logging aspects that do
not interfere with other developer’s code and that can be easily
adapted to a new operating system release.
As an example, a logging aspect for tracing thread activities is
shown in Figures 4 and 5. The LogManager class defines
procedures for writing data to an internal memory buffer in ASCII
format, using similar input format as printf. The printIt method
sends the collected data to the display or to a serial interface.
The ThreadLogging aspect inherits from the LogManager class.
As each aspect in AspectC++ will be implemented by a singleton
object, only one instance of the memory buffer will be used by all
threads. This aspect uses function execution joinpoints and so it

will be weaved into the operating system code. Usually the OS
code is compiled into a library and this library is linked to the
application code. In this example, the only modification required
in the application code is to call the printIt method of the
ThreadLogging aspect at the end of the logging session, by
executing: ThreadLogging::aspect_of()->printIt(). As an option,
the application code can also use the logging functionality calling
the write or writeTimeEvent functions.

class LogManager {
 static const int BUFFERSIZE = 10000;
 char logBuffer[BUFFERSIZE];
 char * bufferPtr;
public:
 LogManager() { init(); }
 void init();
 void write(const char * fmt, ...);
 void writeTimeEvent(const char * fmt, ...);
 void printIt(void);
};

Figure 4. LogManager class.

aspect ThreadLogging: public LogManager {

 pointcut log1 () =
 execution ("% Thread::restart(...)") ||
 execution ("% Thread::exit(...)") ||
 execution ("% Thread::resume(...)");

 advice log1 () : before() {
 writeTimeEvent("before %s target=%s",
 JoinPoint::signature(),
 tjp->target()->myName);
 }

 pointcut log2 (Time tm) = args(tm) &&
 execution ("% Thread::suspendUntil(...)");

 advice log2 (tm) : before(Time tm) {
 writeTimeEvent("before %s until=%ld
 target=%s",
 JoinPoint::signature(), tm,
 tjp->target()->myName);
 }
};

Figure 5. ThreadLogging aspect.

The utilization of aspects for logging can take advantage of the
big variety of pointcut functions provided by AspectC++,
specially the cflow, within and target functions. By using aspects,
selective logging is easy to implement, allowing activation only in
specific contexts and scopes.
A limitation in aspect-oriented logging is the inability to place
logs in specific points inside a method, or to log internal
variables. To overcome these limitations some refactoring may be
needed, as the one discussed in Section 3.
The logging aspects were not submitted to performance
comparisons to non-AOP versions, because both types of logging
will influence the performance and memory footprint of the
operating system, and are not supposed to remain in the final
version.

5. FUTURE INVESTIGATION
Besides the application of aspects in the separation of concerns in
basic operating system functionality, as presented for mutual
exclusion and logging, we can envision its use for a broader

specialization, namely in the domain of fault tolerance,
middleware customization and platform variability.
The following sections discuss our proposal for future
investigation of aspect application in these domains, using the
BOSS operating system as test bed.

5.1 Application Fault Tolerance
The main objective of our research is providing support for
application level fault tolerance by the operating system and
middleware. Fault tolerance is usually achieved by redundancy
and diversity. Hardware redundancy and software diversity are
the most common techniques for increasing system reliability, but
several other techniques may be applied, as time redundancy (task
re-execution), information redundancy (correction codes) and data
diversity (data re-expression).

Several FT strategies have been proposed and applied in the last
30 years. Some are effective only against transient faults, like
hardware transient faults caused by electromagnetic radiation;
others can deal with permanent software faults like Recovery
Blocks (RB) [20], Distributed Recovery Blocks (DRB) [13] and
N-Version Programming (NVP) [7].

Our approach is to provide a framework at the operating
system/middleware level that makes possible the implementation
of a wide variety of fault tolerant strategies, at the application
level, with maximum transparency. For this purpose, a FT
framework was developed and integrated to the BOSS operating
system [1][2]. Figure 6 contains a simplified class diagram
showing its basic classes.

Figure 6. Fault tolerant framework class diagram.

A fault tolerant thread must inherit from FTThread and define an
FTStrategy object which will implement the fault tolerant
functionality. Some strategies, like DRB, involve message
exchanges and coordination between multiples nodes, for defining
roles, initializing global state and communicating results. All this
work is performed by the middleware, but some specific
procedures must be defined by the application, as for instance, the
acceptance test in RB and DRB. The degree of transparency
depends on the strategy selection and configuration. The
VoterThread class is used in NVP to select the correct response
among the NVP threads.

Our goal is to develop an aspect-oriented version of the
framework and compare it with the current implementation, with
regard to modularization, maintainability, performance and
memory footprint.

5.2 Operating System Fault Tolerance
Another objective of our research is to provide fault tolerance to
the operating system kernel itself. As already pointed out in the
previous section, fault tolerance always requires some form of
redundancy. This usually reflects in resource costs, as memory
size or run-time overhead. Therefore, the application of fault
tolerance to the operating system is normally avoided, as
performance and memory footprint are of vital importance to the
embedded system. However, for systems demanding high levels
of dependability, as space or safe-critical applications, the
implementation of mechanisms for fault tolerance in the operating
system can be of great importance.

Our approach to provide fault tolerance to the operating system is
the application of fault containment wrappers, as described in
[21], where reflection techniques were used. As this study
suggests, predicates, or invariants, can be established for each
functional class in the operating system.

As a simple example, Figure 7 shows an aspect for checking the
semaphore correct operation. For each execution of the
semaphore primitives enter or leave a separate counter is
incremented. With this additional information and the original
value of the counter attribute of the Semaphore class, which
represents the number of resources available, the advice code can
verify if there is a discrepancy in the actual value of the counter
variable.

aspect SemaphoreErrorDetection{

 advice "Semaphore": int initialCounter;
 advice "Semaphore": int enterCounter;
 advice "Semaphore": int leaveCounter;

 advice construction("Semaphore"): after(){
 tjp->target()->initialCounter =
 tjp->target()->counter;
 tjp->target()->enterCounter = 0;
 tjp->target()->leaveCounter = 0;
 }

 advice execution("% Semaphore::enter(...)") :
 before() {
 int calculatedCounter =
 tjp->target()->initialCounter
 - tjp->target()->enterCounter
 + tjp->target()->leaveCounter;
 if(tjp->target()->counter !=
 calculatedCounter){
 // doesErrorHandling();
 }
 tjp->target()->enterCounter += 1;
 }

 advice execution("% Semaphore::leave(...)") :
 before() {
 // same as above for the enter primitive
 // ...
 tjp->target()->leaveCounter += 1;
 }
};

Figure 7. Aspect for semaphore error detection.

5.3 Middleware Customization
The BOSS operating system includes a middleware layer to allow
local and external message communication transparently, using a
publish-subscriber protocol. The main classes involved with this
functionality are presented in Figure 8.

Figure 8. Middleware class diagram.

The Message class is the basic means of communication. It can be
used directly or through other support classes like the Incomming-
MessageAdministrator class. The MiddleWareReceiver class
implements the basic procedures for sending and receiving
messages based on its NameServer functionalities, registering
destination messages and its respective subjects. The real
communication is implemented by a support thread, represented
in Figure 8 by the UDPReceiver thread.

We intend to explore aspect-oriented solutions to the middleware
customization, such as network selection (e.g. Ethernet or, CAN),
model selection (e.g. point-to-point or broadcast), marshalling
configuration, and even some fault tolerance techniques at the
communication level (e.g. message duplication, fault detection
and retransmission).

The application of AOP to middleware customization seems to be
promising, because of the high degree of configurability involved.
In this domain, the aspect composition may be clearer and less
prone to errors than common solutions based on ifdefs or hooks.

5.4 Platform Variability
Extending the application of aspect-oriented development in
operating systems, we propose the study of AOP techniques for
facilitating the portability for different hardware environments.

As mentioned in Section 2, the BOSS operating system was
ported to several platforms and we plan to experiment if the use
of AOP for weaving hardware dependent functionality would

improve the system maintainability without compromising its
performance.

6. RELATED WORK
Aspect-oriented implementations in interrupt synchronization
concerns have been well described for PURE [16], CIAO[14] and
eCos[15] operating systems. The work on eCos[15] concluded
that the application of AspectC++ for interrupt synchronization
and kernel instrumentation did not incur in a significant increase
in code size (0.9%), and even improved the run-time performance
(1%).

The advantages of using AOP for program instrumentation,
including debugging, profiling and run-time monitoring, were
discussed in [17].

The work on [9] proposed the use of aspect-orientation to
distribution, timeliness and dependability domains, giving some
examples based on a CORBA application. Aspects were also
proposed for improving the performance of existing fault-
tolerance systems, like FT-CORBA [22], but very few works used
aspects to implement the FT functionality, as described in [3]. In
fact some researchers are skeptical about the use of AOP for
distributed computing, as concurrency control and failure
management [12]. Our future investigation in that domain aims to
give some contribution to that debate, but focusing in the field of
embedded systems.

Middleware specialization and customization with AOP is being
applied with good results in large scale middleware as CORBA
[10] [8] and ACE [11].

7. SUMMARY AND FUTURE WORK
This paper describes our work with the implementation of aspect-
oriented modules for supporting mutual exclusion and logging to
the BOSS operating system. The main advantages and
weaknesses of this approach were presented for each case, as for
example, the need of refactoring in the base code.

Our future work, already described with some detail in Section 5,
include the use of AOP for fault tolerance support at the
application level and for the operating system itself, and for
middleware and platform specialization.

8. ACKNOWLEDGMENTS
This work has been supported by the Portuguese Foundation for
Science and Technology.

9. REFERENCES
[1] Afonso, F., Silva C., Montenegro S. and Tavares A.

Middleware Fault Tolerance Support for the BOSS
Embedded Operating System. In Proceedings of the
International Workshop on Intelligent Solutions in
Embedded Systems- WISES, Vienna, Austria, 2006.

[2] Afonso, F., Silva C., Montenegro S. and Tavares A.
Implementation of Middleware Fault Tolerant Support for
Real-Time Embedded Applications, In Proceedings Work-in-
progress Session of the 18th Euromicro Conference on Real-
Time Systems- ECRTS, Dresden, Germany, 2006.

[3] Alexandersson, R., Ohman, P., and Ivarson, M. Aspect
Oriented Software Implemented Node Level Fault
Tolerance. In Proceedings of the 9th IASTED International
Conference on Software Engineering and Applications -SEA,
Phoenix, Arizona, USA, 2005.

[4] AspectC++ project homepage: http://www.aspectc.org
[5] AspectJ project homepage: http://eclipse.org/aspectj/
[6] Avizienis, A., Laprie, J.-C., and Randell, B. Fundamental

Concepts of Dependability. Technical Report 739,
Department of Computing Science, University of Newcastle
upon Tyne, 2001.

[7] Chen, L., and Avizienis, A. N-Version Programming: A
Fault-Tolerance Approach to Reliability of Software
Operation. In Proceedings of FTCS-8, pp. 3-9, Toulouse,
France, 1978.

[8] Colyer A., and Clement A. Large-scale AOSD for
Middleware. In Proceedings of the 3rd International
Conference on Aspect-oriented Software Development,
Lancaster, UK, pp. 56-65, 2004.

[9] Gal, A., Spinczyk, O., and. S-Preikschat, W. On Aspect-
Orientation in Distributed Real-time Dependable Systems. In
Proceedings of the Seventh International Workshop on
Object-Oriented Real-Time Dependable Systems - WORDS,
pp. 261-267, 2002.

[10] Hunleth, F., Cytron R., and Gril C. Building Customizable
Middleware Using Aspect Oriented Programming. In
Proceedings of Workshop on Advances in Separation of
Concerns on Object-Oriented Systems - OOPSLA, Tampa
Bay, Florida, USA, 2001.

[11] Kaul, D., and Gokhale, A. Middleware Specialization Using
Aspect Oriented Programming. In Proceedings of the 44th
Annual Southeast Regional Conference, Melbourne, Florida,
USA, pp. 319-324 2006.

[12] Kienzle J., and Guerraoui, R. AOP: Does it Make Sense?
The Case of Concurrency and Failures. In Proceedings of the
16th European Conference on Object Oriented
Programming, pp. 37-61, 2002.

[13] Kim, K., and Welch, O. Distributed Execution of Recovery
Blocks: An Approach for Uniform Treatment of Hardware
and Software Faults in Real-Time Applications. IEEE
Transactions on Computers, vol. 38, Nº 5, pp. 626-636,
1989.

[14] Lohmann, D., Spinczyk, O., and S-Preikschat, W. On the
Configuration of Non-functional Properties in Operating
System Product Lines. In Proceedings of 4th AOSD
Workshop on Aspects, Components and Patterns for
Infrastructure Software- ACP4IS, pp. 19-25, 2005.

[15] Lohmann D. et al. A Quantitative Analysis of Aspects in the
eCos Kernel. In Proceedings of EusoSys2006, Leuven,
Belgium, 2006.

[16] Mahrenholz, D., Spinczyk, O., Gal, A., and S-Preikschat, W.
An Aspect-Oriented Implementation of Interrupt
Synchronization in the PURE Operating System Family. In
Proceedings of 5th Workshop on Object Orientation and
Operating Systems - ECOOP, pp. 49-54, Malaga, Spain,
2002.

[17] Mahrenholz, D., Spinczyk, O., and S-Preikschat, W.
Program Instrumentation for Debugging and Monitoring
with AspectC++. In Proceedings of the Fifth IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing - ISORC, pp. 249-256, Washington,
DC, USA, 2002.

[18] Montenegro, S., and Zolzky, F. BOSS /EVERCONTROL
OS/Middleware Target Ultra High Dependability. In
Proceedings of Data Systems on Aerospace -DASIA,
Edinburgh, Scotland, 2005.

[19] Montenegro, S., Briess, K. and Kayal H. Dependable
Software (BOSS) for the BEESat Pico Satellite. In
Proceedings of Data Systems on Aerospace - DASIA, Berlin,
Germany, 2006.

[20] Randell B. System Structure for Software Fault Tolerance.
IEEE Trans. Software Engineering, vol. SE-1, pp. 220-232,
June 1995.

[21] Salles, F. et al. MetaKernels and Fault Containment
Wrappers. In Proceedings of the 29th Annual Symposium on
Fault-Tolerant Computing, pp. 22-29, Madison, WI, USA,
1999.

[22] Szentiványi, D., and Nadjm-Tehrani, S. Aspects for
Improvement of Performance in Fault-Tolerant Software. In
Proceedings of the 10th IEEE Pacific Rim International
Symposium on Dependable Computing, pp. 283-291, 2004.

