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ABSTRACT 
The application of aspect-oriented programming (AOP) to the 
embedded operating system domain is still a very controversial 
topic, as this area demands high performance and small memory 
footprint. However, recent studies quantifying aspects overheads 
in AspectC++ show that the resource cost is very low. Therefore, 
operating system development may benefit with the 
modularization of crosscutting concerns and system specialization 
offered by AOP. 

This paper addresses our experience in applying aspects to 
synchronization (mutual exclusion) and logging in a real-time 
embedded operating system (BOSS). Furthermore, we present our 
ideas for future investigation in aspect-oriented implementations 
for fault tolerance, middleware customization and platform 
variability.  

Categories and Subject Descriptors 
D.2.3 [Software Engineering]: Coding Tools and Techniques; 
D.4.7 [Operating Systems]: Organization and Design – real-time 
systems and embedded systems. 

General Terms 
Design, Reliability, Languages 

Keywords 
Aspect oriented programming, modularization, customization. 

1. INTRODUCTION 
Aspect-Oriented Programming (AOP) has opened a new field of 
research on the applicability of this software engineering 
technique to several application domains. Aspect-oriented 
language extensions, like AspectJ[5] and AspectC++[4] have been 
making easier the application of this technology to improve the 
modularization, separation of concerns, customizability and 
reusability of new and existing projects. 

In this paper we describe our experiments using AspectC++ to 
implement concerns as mutual exclusion and logging in the BOSS 
embedded operating system. Besides, we present our future 
investigation goals in other areas, such as application level fault 
tolerance, operating system fault tolerance, middleware 
customization and platform variability. 

This paper is organized as follows. Section 2 introduces the BOSS 
operating system and presents its philosophy and basic building 
blocks. Section 3 describes and discusses our experiments with 
mutual exclusion. Section 4 presents and exemplifies the use 
logging aspects.  Section 5 describes our future investigation 
plans for others domains in operating systems development, as 
fault tolerance, middleware customization and portability. In 
Section 6 we make reference to the related work and finally in 
Section 7 we summarize this paper. 

2. BOSS OPERATING SYSTEM 
BOSS is a real-time operating system developed by FHG-FIRST, 
and had as first application the BIRD (Bi-Spectral Infrared 
Detection) satellite [18], launched in 2001. Since then, it has been 
applied in several other projects.  Future BOSS utilization include 
CubeSat satellites [19] (TinyBOSS version) and robotics in space. 

Simplicity is the main strategy for achieving dependability [6] in 
BOSS, as complexity is the cause of most development faults. 
The system was developed in C++ and has been ported to several 
platforms as PowerPC, x86 and Atmel AVR. It also runs on top of 
Linux, mainly for developing and testing purposes. Figure 1 
exhibits a simplified class diagram of the core functionally in the 
kernel. 

 
Figure 1. Core BOSS class diagram. 
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BOSS was designed to support fault tolerance in applications with 
hardware redundancy by including a middleware which carries 
out transparent communications between nodes, using the 
publisher-subscriber protocol. 

3. ASPECTS FOR MUTUAL EXCLUSION 
Operating systems use several mechanisms to achieve mutual 
exclusion between processes/threads and interrupt handling 
routines in executing critical sections of code, like disabling 
interrupts, disabling dispatch, using spin locks and semaphores. 
Generally the functions and methods that implement mutual 
exclusion are spread throughout the operating system code.  
In the BOSS operating system, the most used mechanisms for 
mutual exclusion are disabling interrupts and disabling dispatch. 
These concepts are applied in building most operating system 
core functionality as signal boxes, mail boxes and even 
semaphores. 
Our approach was to treat mutual exclusion as a separate concern 
and implement it using aspects. Figure 2 shows an example of the 
original implementation of the MailBox send method, and Figure 
3 presents the created aspect code for disabling dispatch. 
 
 
#define THREAD_ATOMAR \ 
                  scheduler.disableDispatch(); 
#define THREAD_ATOMAREND \ 
                  scheduler.enableDispatch(); 
 
void MailBox::send(SortedChainable* message) { 
    THREAD_ATOMAR { 
        messages.append(message); 
        if(suspendedReceiver != 0) 
           suspendedReceiver->resume();  
        suspendedReceiver = 0;  
    } THREAD_ATOMAREND; 
} 

Figure 2. MaiBox send implementation. 

 
aspect ThreadAtomar { 
 
  pointcut critical () = 
    execution("% MailBox::send(...)") || 
    execution("% MailBox::receive_in(...)") || 
    execution(  
        "% SortedList::getRemoveFirst(...)") || 
    execution ("% SortedList::find(...)") || 
    execution ("% SortedList::remove(...)") || 
    execution ("% SortedList::insert(...)") || 
    execution ("% SortedList::append(...)") || 
    execution ("% Semaphore::enter_in(...)") || 
    execution ("% Semaphore::leave_in(...)") || 
    execution ("% SignalBox::get_in(...)") ; 
 
  advice critical () : before() { 
     scheduler.disableDispatch(); 
  } 
 
  advice critical () : after() {  
     scheduler.enableDispatch();  
  } 
 
  advice execution("% SignalBox::get_in(...)"): 
      order ("ThreadAtomar","InterruptAtomar"); 
}; 

Figure 3. ThreadAtomar aspect. 

The disable dispatch mechanism only prevents concurrent access 
by threads. As shown in Figure 3, for the method get_in of the 
SignalBox class, a second aspect is applied to avoid concurrent 
access between threads and interrupt handling routines. The order 
advice declaration defines that the ThreadAtomar aspect has 
precedence over the InterruptAtomar aspect, not shown in this 
figure.  
Besides disabling interrupts and dispatches, BOSS uses 
semaphores (mutexes) to protect critical code in other kernel 
classes, as the NameServer and Message classes. In this case, the 
separation of this semaphore code to an aspect is similar to the 
presented so far, but it includes a data member introduction of a 
private semaphore for each class it protects.  
The application of the aspect-oriented version for mutual 
exclusion gives as advantage the separation of this concern from 
the basic system functionality. It makes easier for the programmer 
to understand where each mechanism is applied and to modify its 
application. The bigger the system is, the greater the benefits are. 
A minor disadvantage is that sometimes a refactoring in the 
operating system code is needed, usually by creating a new 
method exposing the critical section. 
The performance and memory footprint of the implementations 
described in this section were evaluated using AspectC++ version 
1.0pre3 and gcc version 3.4.2 in a Pentium computer. AOP and 
non-AOP versions were compiled under various degrees of 
optimization, and the final executable code was analyzed and 
compared. For optimization levels –O2 and –O3, the performance 
is supposed to be the same, as an identical code is generated. 
Regarding memory consumption, for optimization levels –O2 and 
–O3 the AOP version presented the same code size and an 
increase of 4 bytes in the .bss section for each aspect. Based on 
these results, we conclude that no significant cost is introduced 
with the AOP implementation. 

4. ASPECTS FOR LOGGING 
Logging is an essential mechanism for code validation and 
debugging, both at the operating system and at the application 
level. In its simplest form, it may consist of applying printfs in 
selected points of the code, guarded by ifdefs or if clauses for 
selective activation. More elaborated logging mechanisms rely on 
memory or file system storage.  
The application of aspect-oriented programming to the logging 
domain seems to be both intuitive and practical. Several logging 
aspects can be created, covering distinct objectives, and they can 
be composed at compile time accordingly. The clear advantage is 
separating the logging code from the operating system code, and 
so each developer may own a proper set of logging aspects that do 
not interfere with other developer’s code and that can be easily 
adapted to a new operating system release. 
As an example, a logging aspect for tracing thread activities is 
shown in Figures 4 and 5. The LogManager class defines 
procedures for writing data to an internal memory buffer in ASCII 
format, using similar input format as printf. The printIt method 
sends the collected data to the display or to a serial interface. 
The ThreadLogging aspect inherits from the LogManager class. 
As each aspect in AspectC++ will be implemented by a singleton 
object, only one instance of the memory buffer will be used by all 
threads. This aspect uses function execution joinpoints and so it 



will be weaved into the operating system code. Usually the OS 
code is compiled into a library and this library is linked to the 
application code. In this example, the only modification required 
in the application code is to call the printIt method of the 
ThreadLogging aspect at the end of the logging session, by 
executing: ThreadLogging::aspect_of()->printIt(). As an option, 
the application code can also use the logging functionality calling 
the write or writeTimeEvent functions. 
 
class LogManager { 
  static const int BUFFERSIZE = 10000; 
  char logBuffer[BUFFERSIZE]; 
  char * bufferPtr; 
public: 
  LogManager() { init(); } 
  void init(); 
  void write(const char * fmt, ...); 
  void writeTimeEvent(const char * fmt, ...);     
  void printIt(void); 
}; 

Figure 4. LogManager class. 

aspect ThreadLogging: public LogManager { 
 
  pointcut log1 () = 
   execution ("% Thread::restart(...)") || 
   execution ("% Thread::exit(...)") || 
   execution ("% Thread::resume(...)"); 
 
  advice log1 () : before()  { 
     writeTimeEvent("before %s target=%s",  
                      JoinPoint::signature(),  
                      tjp->target()->myName); 
  } 
 
  pointcut log2 (Time tm) = args(tm) && 
    execution ("% Thread::suspendUntil(...)"); 
 
  advice log2 (tm) : before(Time tm)  { 
    writeTimeEvent("before %s until=%ld 
                    target=%s", 
                    JoinPoint::signature(), tm, 
                    tjp->target()->myName); 
   } 
}; 

Figure 5. ThreadLogging aspect. 

The utilization of aspects for logging can take advantage of the 
big variety of pointcut functions provided by AspectC++, 
specially the cflow, within and target functions. By using aspects, 
selective logging is easy to implement, allowing activation only in 
specific contexts and scopes. 
A limitation in aspect-oriented logging is the inability to place 
logs in specific points inside a method, or to log internal 
variables. To overcome these limitations some refactoring may be 
needed, as the one discussed in Section 3. 
The logging aspects were not submitted to performance 
comparisons to non-AOP versions, because both types of logging 
will influence the performance and memory footprint of the 
operating system, and are not supposed to remain in the final 
version.  

5. FUTURE INVESTIGATION  
Besides the application of aspects in the separation of concerns in 
basic operating system functionality, as presented for mutual 
exclusion and logging, we can envision its use for a broader 

specialization, namely in the domain of fault tolerance, 
middleware customization and platform variability. 
The following sections discuss our proposal for future 
investigation of aspect application in these domains, using the 
BOSS operating system as test bed. 

5.1 Application Fault Tolerance 
The main objective of our research is providing support for 
application level fault tolerance by the operating system and 
middleware. Fault tolerance is usually achieved by redundancy 
and diversity. Hardware redundancy and software diversity are 
the most common techniques for increasing system reliability, but 
several other techniques may be applied, as time redundancy (task 
re-execution), information redundancy (correction codes) and data 
diversity (data re-expression). 

Several FT strategies have been proposed and applied in the last 
30 years. Some are effective only against transient faults, like 
hardware transient faults caused by electromagnetic radiation; 
others can deal with permanent software faults like Recovery 
Blocks (RB) [20], Distributed Recovery Blocks (DRB) [13] and 
N-Version Programming (NVP) [7]. 

Our approach is to provide a framework at the operating 
system/middleware level that makes possible the implementation 
of a wide variety of fault tolerant strategies, at the application 
level, with maximum transparency. For this purpose, a FT 
framework was developed and integrated to the BOSS operating 
system [1][2]. Figure 6 contains a simplified class diagram 
showing its basic classes. 

 

 
Figure 6. Fault tolerant framework class diagram. 

 

A fault tolerant thread must inherit from FTThread and define an 
FTStrategy object which will implement the fault tolerant 
functionality.  Some strategies, like DRB, involve message 
exchanges and coordination between multiples nodes, for defining 
roles, initializing global state and communicating results. All this 
work is performed by the middleware, but some specific 
procedures must be defined by the application, as for instance, the 
acceptance test in RB and DRB. The degree of transparency 
depends on the strategy selection and configuration. The 
VoterThread class is used in NVP to select the correct response 
among the NVP threads. 



Our goal is to develop an aspect-oriented version of the 
framework and compare it with the current implementation, with 
regard to modularization, maintainability, performance and 
memory footprint. 

5.2 Operating System Fault Tolerance 
Another objective of our research is to provide fault tolerance to 
the operating system kernel itself. As already pointed out in the 
previous section, fault tolerance always requires some form of 
redundancy. This usually reflects in resource costs, as memory 
size or run-time overhead. Therefore, the application of fault 
tolerance to the operating system is normally avoided, as 
performance and memory footprint are of vital importance to the 
embedded system. However, for systems demanding high levels 
of dependability, as space or safe-critical applications, the 
implementation of mechanisms for fault tolerance in the operating 
system can be of great importance.  

Our approach to provide fault tolerance to the operating system is 
the application of fault containment wrappers, as described in 
[21], where reflection techniques were used.   As this study 
suggests, predicates, or invariants, can be established for each 
functional class in the operating system.  

As a simple example, Figure 7 shows an aspect for checking the 
semaphore correct operation. For each execution of the 
semaphore primitives enter or leave a separate counter is 
incremented. With this additional information and the original 
value of the counter attribute of the Semaphore class, which 
represents the number of resources available, the advice code can 
verify if there is a discrepancy in the actual value of the counter 
variable.  

aspect SemaphoreErrorDetection{ 
 
  advice "Semaphore": int initialCounter;   
  advice "Semaphore": int enterCounter;   
  advice "Semaphore": int leaveCounter;   
 
  advice construction("Semaphore"): after(){ 
    tjp->target()->initialCounter =  
                       tjp->target()->counter; 
    tjp->target()->enterCounter = 0; 
    tjp->target()->leaveCounter = 0; 
  } 
 
  advice execution("% Semaphore::enter(...)") : 
            before()  { 
     int calculatedCounter =  
               tjp->target()->initialCounter 
             - tjp->target()->enterCounter  
             + tjp->target()->leaveCounter; 
     if(tjp->target()->counter != 
        calculatedCounter){ 
       // doesErrorHandling(); 
     }  
     tjp->target()->enterCounter += 1; 
  } 
 
  advice execution("% Semaphore::leave(...)") : 
            before()  { 
     // same as above for the enter primitive 
     // ... 
     tjp->target()->leaveCounter += 1; 
  } 
}; 

Figure 7. Aspect for semaphore error detection. 

5.3 Middleware Customization 
The BOSS operating system includes a middleware layer to allow 
local and external message communication transparently, using a 
publish-subscriber protocol. The main classes involved with this 
functionality are presented in Figure 8. 

 
Figure 8. Middleware class diagram. 

The Message class is the basic means of communication. It can be 
used directly or through other support classes like the Incomming-
MessageAdministrator class. The MiddleWareReceiver class 
implements the basic procedures for sending and receiving 
messages based on its NameServer functionalities, registering 
destination messages and its respective subjects. The real 
communication is implemented by a support thread, represented 
in Figure 8 by the UDPReceiver thread. 

We intend to explore aspect-oriented solutions to the middleware 
customization, such as network selection (e.g. Ethernet or, CAN), 
model selection (e.g. point-to-point or broadcast), marshalling 
configuration, and even some fault tolerance techniques at the 
communication level (e.g. message duplication, fault detection 
and retransmission). 

The application of AOP to middleware customization seems to be 
promising, because of the high degree of configurability involved. 
In this domain, the aspect composition may be clearer and less 
prone to errors than common solutions based on ifdefs or hooks. 

5.4 Platform Variability 
Extending the application of aspect-oriented development in 
operating systems, we propose the study of AOP techniques for 
facilitating the portability for different hardware environments. 

As mentioned in Section 2, the BOSS operating system was 
ported to several platforms and we plan to experiment if the use 
of AOP for weaving hardware dependent functionality would 



improve the system maintainability without compromising its 
performance.   

6. RELATED WORK 
Aspect-oriented implementations in interrupt synchronization 
concerns have been well described for PURE [16], CIAO[14] and 
eCos[15] operating systems.  The work on eCos[15] concluded 
that the application of AspectC++ for interrupt synchronization 
and kernel instrumentation did not incur in a significant increase 
in code size (0.9%), and even improved the run-time performance 
(1%).  

The advantages of using AOP for program instrumentation, 
including debugging, profiling and run-time monitoring, were 
discussed in [17]. 

The work on [9] proposed the use of aspect-orientation to 
distribution, timeliness and dependability domains, giving some 
examples based on a CORBA application. Aspects were also 
proposed for improving the performance of existing fault-
tolerance systems, like FT-CORBA [22], but very few works used 
aspects to implement the FT functionality, as described in [3]. In 
fact some researchers are skeptical about the use of AOP for 
distributed computing, as concurrency control and failure 
management [12]. Our future investigation in that domain aims to 
give some contribution to that debate, but focusing in the field of 
embedded systems. 

Middleware specialization and customization with AOP is being 
applied with good results in large scale middleware as CORBA 
[10] [8] and ACE [11]. 

7. SUMMARY AND FUTURE WORK 
This paper describes our work with the implementation of aspect-
oriented modules for supporting mutual exclusion and logging to 
the BOSS operating system. The main advantages and 
weaknesses of this approach were presented for each case, as for 
example, the need of refactoring in the base code. 

Our future work, already described with some detail in Section 5, 
include the use of AOP for fault tolerance support at the 
application level and for the operating system itself, and for 
middleware and platform specialization.  
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