
Citation: Ospina, R.; Ferreira, A.G.O.;

de Oliveira, H.M.; Leiva, V.; Castro, C.

On the Use of Machine Learning

Techniques and Non-Invasive

Indicators for Classifying and

Predicting Cardiac Disorders.

Biomedicines 2023, 11, 2604.

https://doi.org/10.3390/

biomedicines11102604

Academic Editors: Dimitrios A.

Vrachatis, Spyridon G. Deftereos and

Theodore G. Papaioannou

Received: 28 August 2023

Revised: 14 September 2023

Accepted: 19 September 2023

Published: 22 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

On the Use of Machine Learning Techniques and Non-Invasive
Indicators for Classifying and Predicting Cardiac Disorders
Raydonal Ospina 1,2 , Adenice G. O. Ferreira 2 , Hélio M. de Oliveira 2 , Víctor Leiva 3,* and Cecilia Castro 4

1 Department of Statistics, Universidade Federal da Bahia, Salvador 40110-909, Brazil
2 CASTLab, Department of Statistics, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
3 School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile
4 Centre of Mathematics, Universidade do Minho, 4710-057 Braga, Portugal
* Correspondence: victor.leiva@pucv.cl or victorleivasanchez@gmail.com

Abstract: This research aims to enhance the classification and prediction of ischemic heart diseases
using machine learning techniques, with a focus on resource efficiency and clinical applicability.
Specifically, we introduce novel non-invasive indicators known as Campello de Souza features,
which require only a tensiometer and a clock for data collection. These features were evaluated
using a comprehensive dataset of heart disease cases from a machine learning data repository. Our
findings highlight the ability of machine learning algorithms to not only streamline diagnostic pro-
cedures but also reduce diagnostic errors and the dependency on extensive clinical testing. Three
key features—mean arterial pressure, pulsatile blood pressure index, and resistance-compliance
indicator—were found to significantly improve the accuracy of machine learning algorithms in binary
heart disease classification. Logistic regression achieved the highest average accuracy among the
examined classifiers when utilizing these features. While such novel indicators contribute substan-
tially to the classification process, they should be integrated into a broader diagnostic framework
that includes comprehensive patient evaluations and medical expertise. Therefore, the present study
offers valuable insights for leveraging data science techniques in the diagnosis and management of
cardiovascular diseases.

Keywords: biological indicators; cardiopathy; classification models; data science; machine learning;
resource efficiency

1. Introduction

Cardiovascular diseases are the leading global contributors to mortality, morbidity,
and hospitalizations [1]. Among them, ischemic heart diseases have emerged as a par-
ticularly severe and complex medical challenge, standing as the foremost cause of death
worldwide, according to the World Health Organization [2].

The diagnosis of ischemic heart diseases often relies on intricate and resource-intensive
procedures, including comprehensive anamneses and in-depth examination of patient
clinical history [3]. This complexity not only increases the cost but also poses additional
risks, such as sudden death or chronic health complications.

To confront these complexities, our study introduces resource-efficient machine learn-
ing (ML) models that integrate novel, non-invasive clinical indicators known as Campello
de Souza (CS) features [4]. Specifically, we require only a tensiometer and a clock for
data collection, a simplicity that stands as a strategic advantage, particularly in resource-
constrained environments.

The objectives of our study are: (i) to validate the potential of these non-invasive clini-
cal indicators (referred to as CS features) to improve the accuracy of ML-based diagnoses
of ischemic heart diseases and (ii) to identify the CS features that have the most significant
impact on diagnostic accuracy.
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To achieve these objectives, we aspire to make a twofold contribution. First, by proving
the effectiveness of CS features, we offer an efficient, patient-friendly, and less resource-
intensive method for diagnosing ischemic heart diseases. Second, our research can serve as
a practical guide for healthcare professionals aiming to leverage data science for cardiac
diagnostics [4].

The structure of the rest of the present article is as follows. Section 2 offers an overview
of the introduced CS features. In Section 3, we detail our research methodology, including
the ML algorithms employed. In Section 4, the datasets are discussed, and our principal
findings are summarized. Section 5 provides our conclusions, limitations, and ideas for
future research.

2. Biological Indicators

This section begins with a definition of heart disease followed by a description of the
biological indicators used for its diagnosis.

2.1. Definition of Heart Disease

In the realm of cardiology, heart disease is a broad term that encompasses various
conditions affecting the heart, such as coronary artery disease, heart failure, valvular
diseases, and arrhythmias. For the purpose of this study, we specifically focus on coronary
artery disease, a medical condition that is a subtype of ischemic heart disease. This condition
is primarily characterized by reduced blood flow to the myocardium, leading to insufficient
oxygen supply to the heart muscle.

Within the context of our study, subjects with coronary artery disease exhibit clin-
ical symptoms of ischemia, such as angina or chest pain, alongside electrocardiogram
changes or imaging evidence suggestive of ischemia. These subjects may also have known
risk factors such as hypertension, diabetes, or a history of smoking. Conversely, sub-
jects without coronary artery disease do not exhibit these symptoms and have a normal
clinical assessment.

It is crucial to clarify that our study involves data from four different subsets, each
representing a range of severities specific to coronary artery disease. These subsets con-
tribute to the potential heterogeneity (or variation) in the presentation and diagnosis of the
disease. Detailed descriptions of these subsets are provided in Section 4.

2.2. Description of Indicators

The indicators discussed here are extensively detailed in [4]. The intent behind their
usage is to provide stable, cost-effective, and non-invasive methods that can consistently
contribute to heart disease diagnosis.

Classified as indirect, these indicators result from calculations made between measure-
ments directly obtained from the patient. Hence, they represent relationships between the
heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and heartbeat
period (τ). These measurements can be taken using basic medical tools such as a sphygmo-
manometer and a stethoscope. The following subsections summarize these indicators.

2.3. Mean Arterial Pressure

The mean arterial pressure (MAP) represents the average pressure throughout the
cardiac cycle, which spans from [0, τ], with τ indicating a period and HR = 1/τ. The MAP
is derived from the model stated as

MAP(τ) =
1
τ

∫ τ

0
P(t)dt,

where P(t) corresponds to the blood pressure in the period t. In [4], it was explained that

P(t) = SBP× exp
(
− t

RC

)
,
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with the RC being equivalent to the product of the peripheral resistance (R) and the
compliance (C). Consequently, we have that

MAP(τ) =
1
τ

∫ τ

0
SBP× exp

(
− t

RC

)
dt =

SBP−DBP
log(SBP)− log(DBP)

.

Clinical relevance: The MAP is often used as a reliable indicator for perfusion adequacy in
various clinical settings. It is especially crucial in the management of patients with acute
coronary syndromes, where the fine balance between oxygen supply and demand is critical
for patient outcomes [5].

2.4. Product of Peripheral Resistance and Compliance

As mentioned, the measurement of the RC is derived from the product of R (the
peripheral resistance) and C (the compliance) and can be estimated from the first-order
approximation [6] given by

dP(t)
dt

+
P(t)
RC

=
1
C ∑

i
δ(t− τi), (1)

where τi = 1/HRi, for i ∈ {1, 2, . . . }, is a sequence of periods of the cardiac cycle. Note that
HRi represents the heart rate corresponding to the i-th systolic impulse, and δ is the Dirac
delta impulse function [7,8]. The solution to the differential equation formulated in (1) is
stated as

P(t) = P(0)× exp
(
− t

RC

)
,

with t ranging from zero to τi. Thus, we have that

DBP = SBP× exp
(
− τi

RC

)
= SBP× exp

(
− 1

RC
× 1

HRi

)
,

and then we obtain
RC =

1
HR× log(SBP/DBP)

.

In [9], it was noted that the RC varies throughout the circadian cycle. According to [10],
the circadian cycle refers to the 24-hour period in a day primarily due to physiological
adjustments in the HR. However, the RC is more stable than the SBP, DBP, and HR, implying
that it is less prone to abrupt changes resulting from physiological fluctuations due to daily
activities, such as changes in posture. This is attributed to the physiological relationship
between the R and C, where they have inversely proportional behaviors. This relationship
ensures greater stability in the RC index providing a significant advantage for this index.
A higher RC value suggests that if the R or C is high, this indicates an imbalance in the
physiological equilibrium between the peripheral resistance and compliance [9].

Clinical relevance: The RC product is instrumental in evaluating the cardiovascular sys-
tem’s resistance and elasticity. It is particularly relevant for patients with compromised
vascular health, such as those with hypertension or atherosclerosis. Maintaining balanced
RC values could be indicative of effective treatment strategies [11].

2.5. Pulsatile Blood Pressure Index

The pulsatile blood pressure index (PBPI) is a physiological indicator that exhibits
stability similar to that of the RC during physiological changes. According to [12], a high
PBPI value suggests a malfunction in the cardiovascular regulatory system, leading to
variations in the SBP and DBP.
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An increase in the PBPI commonly indicates the presence of arterial hypertension,
which is a known risk factor for heart disease [3]. The PBPI can be calculated using only
the SBP and DBP by means of the expression formulated as

PBPI =
SBP−DBP

DBP
.

Furthermore, the PBPI can be related to the RC, resulting in an indicator denoted as
PBPIRC and whose formula is given by

PBPIRC =
PBPI
RC

.

According to [12], both high the PBPI and MAP reflect changes in the SBP and DBP,
indicating a possible malfunction in the cardiovascular system and the presence of arte-
rial hypertension.

Clinical relevance: The PBPI is a vital risk indicator for cardiovascular diseases, specifically
for arterial hypertension. High PBPI levels can be a precursor to hypertension and other
cardiovascular conditions, thus making it a tool for early diagnosis and prevention [13].

2.6. Harmony Measure

The concept of harmony, introduced in [4] as a harmony measure (HM), draws inspi-
ration from the Kepler harmonic law, which describes the translation movement of planets
around the sun in elliptical paths [14]. This law establishes a relationship between the
squares of the orbital periods and the cubes of the major semi-axes of the orbits.

In a similar manner, in [4], the HM correlated the cardiac cycle to Earth’s translation
cycle. Here, the time τ corresponds to the translation period, the SBP-MAP represents the
major semi-axis of the ellipse, and the MAP-DBP denotes the minor semi-axis. In his book,
de Souza [4] presented detailed calculations and defined the HM as

HM =

(
1000

HR/60

)2
× 1

(SBP−MAP)3 .

Clinical relevance: The HM represents a novel approach to assessing cardiovascular health.
While still a subject of ongoing research, preliminary studies have suggested its potential
utility in detecting subtle imbalances in the cardiovascular system that may not be evident
through conventional indicators [4].

2.7. Modeling Ejection Time

In the triangular pressure wave model, a triangular wave is employed to approximate
the blood pressure curve, as illustrated in Figure 1 [15]. Within this model, the MAP is
defined as the arithmetic mean between the SBP and DBP.

As outlined in [15], the triangular pressure wave model assumes that the angles of
ascent and descent in the pressure curve are equal. This simplification aids in tractability
and is common in theoretical modeling. Nevertheless, such assumptions may not fully
encapsulate the complexity seen in real-world physiology. This leads to the equation
given as

ατ

SBP−DBP
=

SBP−DBP
(1− α)τ

, (2)

where the indicator α represents the proportion of ejection time to the overall cardiac cycle,
serving as a critical measure of cardiac performance, and τ represents the heartbeat period
as usual. Solving the equation stated in (2) for α, we attain at

α =
1
2
− 1

2τ

√
τ2 − 4(SBP−DBP)2.
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Figure 1. Blood pressure curve outline.

A transformation can further be applied to α to obtain α2, reaching

α2 = log
(

1
α

)
.

Clinical relevance: The indicators α and α2 offer valuable insights into myocardial contrac-
tility and efficiency of the cardiac pump. These indicators could be particularly relevant in
specific subsets of patients, such as those with heart failure or myocardial infarction [16].

3. ML Techniques

This section provides an explanation of the ML techniques used in this study. We begin
by defining the scenarios and then proceed to describe the adapted consistency measure,
stages of model selection, classification, and evaluation using performance measures,
and conclude by summarizing the methodology in an algorithm.

3.1. Datasets and Scenarios

In the analysis conducted using the R computational environment (www.r-project.org,
accessed on 13 September 2023), the CS features were included as explanatory variables
in the datasets for performing the classification of cardiac patients. Two scenarios were
defined for each dataset:

• Scenario 1: It includes the variables V3 (age), V4 (gender), and V11 (history of hy-
pertension); the indicators α, α2, HM, MAP, PBPI, PBPIRC, and RC; as well as the
response variable Y. The variables were selected to prioritize models that utilize low
complexity in terms of data collection.

• Scenario 2: It includes the 75 variables in the heart disease directory; the indicators α,
α2, HM, MAP, PBPI, PBPIRC, and RC; as well as the response variable Y.

3.2. Adapted Consistency Measure

In this study, we adopt a measure of consistency d that calculates the distance between
the means of each group considering their respective variances. This measure was proposed
in [17] and used in [18] to compare the values of the CS indicators in two groups (cardiac
and non-cardiac patients). We determine the relevance of this consistency measure in the
classification of individuals with heart disease. Such a measure is defined as

d(S) =
|µ̂0 − µ̂1|√

σ̂2
0 + σ̂2

1

,

https://www.r-project.org/
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where S represents the new attribute (CS indicators) inserted into the dataset; µ̂0 and σ̂2
0

are the estimated mean and variance, respectively, for the CS indicator (S) in the group of
non-cardiac patients; and µ̂1 and σ̂2

1 correspond to the estimated mean and variance for the
S indicator in the group of individuals with cardiac disease.

Each CS indicator is assigned to a calculated value of d(S). It is expected that the
indicator with the highest value of d(S) states has the greatest influence on the classification
of individuals with cardiac disease.

3.3. Features Selection

ML techniques were applied to select the relevant explanatory variables for predicting
heart disease, and specific sets of explanatory variables were defined for each model.
Within the scope of this study, the defined sets of explanatory variables were determined
after undergoing one or more of the selection methods. Then, the selected variables were
utilized in the application of different classifiers which are:

• Naive Bayes (NB): This classifier is based on the Bayes theorem, which estimates
the probability that an event will occur considering prior information associated
with this event [19,20]. The NB method is renowned for its remarkable simplicity
and competitive performance compared to other classifiers. However, this method
assumes independence between the explanatory variables [21].

• Random forests (RFs): This classifier is an extension of decision trees (DTs), formed
by a collection of non-correlated trees. The classification or estimation is determined
by a voting process among the trees. DTs are constructed through bootstrapping,
where each tree is trained on a different subset of the data [21–23]. RFs offer several
advantages, including robustness against outliers, low bias, and the ability to capture
complex data interactions [21,22].

• Logistic regression (LR): This classifier corresponds to a linear regression in which
the response variable is binary. A transformation is applied to ensure the response
variable is continuous. Common transformations in the literature include logit, probit,
and Cauchy [24–27]. In this study, the logit transformation was utilized.

• Adaboost: This is an ensemble learning method that combines the results of several
weak learning algorithms to generate a more consistent joint response [28]. It iter-
atively adjusts the weights of misclassified instances to improve the classification
performance, focusing especially on difficult instances. Initially, an adjustment takes
place, where individuals who did not perform well in the current iteration have greater
weight in the subsequent iteration. The classification error rate serves as a measure to
evaluate whether this adjustment in weighting improves or worsens the classification.
This method tries to enhance the classification performance, particularly for the most
challenging individuals to categorize them correctly [29].

• Support vector machines (SVM): This classifier is based on finding an optimal hyper-
plane that maximally separates the response variable into two classes [30]. The cate-
gorization process of the response variable in this classifier utilizes the information
from the matrix of explanatory variables to identify an optimal hyperplane. This
hyperplane aims to achieve a maximum margin that separates the response into two
classes, resulting in an improved classification performance [31]. It is also possible
to perform a transformation in the original input space (explanatory matrix). While
the maximum margin that distinguishes the classes may be linear in the transformed
plane, it can exhibit non-linearity in the original space [32].

3.4. Performance Measures

The five model-selection criteria utilized in this study are:

• Information gain (InfoGain): This criterion employs the gain of each explanatory
variable using the Shannon entropy [33,34] to select the most significant variables with
respect to the response variable [35].
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• Variance inflation factor (VIF): This criterion uses the LR model and selects variables
using the VIF [36]. The selection obtains a set of variables without collinearity (a strong
correlation between two explanatory variables). VIF values greater than 10 indicate
strong multicollinearity [37], which affects the estimates of the model [38]. Therefore,
variables with a VIF > 10 are sequentially removed from the LR with all variables.

• Analysis of variance (ANOVA): This criterion employs ANOVA [39]. Variables that
demonstrate statistical significance in ANOVA are chosen, indicating their influence
on the response variable.

• ANOVA + VIF: This criterion utilizes ANOVA, followed by an analysis of the VIF.
Variables with a VIF greater than 10 are removed from the model.

• Akaike information criterion (AIC): This criterion selects the best model that minimizes
its value [40]. The AIC utilizes the model’s likelihood function and the number of
explanatory variables in its calculation.

• AIC + VIF: This criterion selects the model by minimizing the AIC, followed by
selection based on the VIF (the removal of variables with a VIF greater than 10).

In total, 42 models were selected, encompassing the two scenarios (1 and 2) of datasets
and the employed classifiers. Furthermore, the percentages of the times that the CS
indicators were deemed relevant by the selection criteria were computed to gain insights
into their importance and influence.

To mitigate the risk of overfitting, which arises when a classification method fits well
with the training data but performs poorly on unseen data in the testing stage of the
classifier, the multiple holdout method [41] with 100 iterations was implemented. This
method aimed to obtain the mean and standard deviation (SD) measures of accuracy in the
classification of cardiac patients.

In each of the 100 iterations, confusion matrices were generated [42]. An example
is shown in Table 1, where true negatives (TNs) correspond to class 0 (non-cardiopaths)
correctly classified, false negatives (FNs) represent class 0 (non-cardiopaths) misclassified
as 1 (cardiopaths), false positives (FPs) indicate class 1 (cardiopaths) misclassified as 0
(non-cardiopaths), and true positives (TPs) denote class 1 (cardiopaths) correctly classified.

Table 1. Confusion matrix—example.

Observed Value: Y
Estimated Value: Ŷ

0 1

0 TN FP
1 FN TP

From the confusion matrix [43,44], it is possible to compute the classifier’s accuracy,
which is usually expressed as a percentage. The accuracy is calculated as

Accuracy =
number of individuals that were correctly classified

number of total individuals on the sample
× 100

=
TN+TP

TN+TP+FN+FP
× 100.

In the context of a multiple holdout, the estimated average accuracy is given by

µ̂Accuracy =
1

100

100

∑
j=1

TNj + TPj

TNj + TPj + FNj + FPj
,

where TNj, FPj, FNj, and TPj correspond to the TN, FP, FN, and TP values in the j-th
iteration of the multiple holdout, respectively.
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The estimated SD of the accuracy is stated as

σ̂Accuracy =
100

∑
j=1

(Accuracyj − µ̂Accuracy)
2

99
,

where Accuracyj represents the accuracy value calculated in the j-th iteration.
Therefore, models that passed the selection criteria involving the VIF and demon-

strated a higher average accuracy in the test group were selected for each dataset, consid-
ering the dependence between some explanatory variables. Using the selected models,
several measures for cardiac prediction performance were calculated as percentages [42,45].
These measures include:

• Average sensitivity (ASe): This is the average percentage of TPs, representing the
cardiac patients who were correctly classified within the group of people with heart
disease in each iteration of the multiple holdout. This measure is given by

ASe =
1

100

100

∑
j=1

TPj

TPj + FNj
.

• Average specificity (ASp): This is the average percentage of TNs, representing the
non-cardiac patients correctly classified within the group of people without heart
disease in each iteration of the multiple holdout. This measure is calculated as

ASp =
1

100

100

∑
j=1

TNj

TNj + FPj
.

• Average true positive predictive (ATPP): This is the average percentage of true pos-
itives in relation to all positive predictions, representing the cardiac patients who
were correctly classified within the group of people who were estimated to have heart
disease in each iteration of the multiple holdout. This measure is expressed as

ATPP =
1

100

100

∑
j=1

TPj

TPj + FPj
.

It is expected that the best models among those found in this research are the ones that
satisfy the criterion of independence of the explanatory variables and demonstrate higher
mean values of accuracy, sensitivity, specificity, and ATPP.

3.5. Computational Environment and Conditions

All programs for computational implementation were built and executed using the R
software, version 4.2.2, [46,47], on a computer with an Intel (R) Core (TM) i5-5200U CPU
2.20 GHz, 8.00 GB of RAM memory, and an operating system of Windows with 64 bits.

The computational codes for reproducibility of this research can be secured at GitHub
repository: https://github.com/Raydonal/Cardiac-Classification (accessed on 13 Septem-
ber 2023).

Table 2 reports the functions used to adjust the models, their respective configurations,
and the name of the R packages that contain them. These packages correspond to libraries
that present specific functions and data for each type of adjustment [48].

https://github.com/Raydonal/Cardiac-Classification
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Table 2. Packages, functions, and their indicators to implement the listed classifier in the R software.

Method Package Function Argument

NB e1071 naiveBayes laplace = 0, na.action = na.pass
RF randomForest randomForest ntree = 500, na.action = na.omit
SVM e1071 svm scale = F, kernel = “poly”, cost = 100, epsilon = 1.0 ×10−12 , na.action = na.omit
LR stats glm family = binomial (link = “logit”), na.action = na.omit
Adaboost fastAdaboost adaboost nIter = 10

3.6. Summary of the Methodology

Next, we present a summary of the methodology in Algorithm 1 as well as the
corresponding flowchart in Figure 2.

Algorithm 1 Summary of the methodology using ML techniques to predict cardiac patients.

1: Collect datasets with the response variable, the presence of heart disease Y, and explanatory variables Vj, with j ∈ {1, . . . , r}.
2: Choose indicators that may be relevant in the classification of people with heart disease, obtained from the variables in Step 1,

as CS indicators.
3: Perform a data analysis of the indicators defined in Step 2 and conduct tests of differences between medians.
4: Define a measure of consistency to differentiate false signatures of subjects in a dataset as the adapted consistency measure.
5: Use techniques to select the relevant explanatory variables in the prediction of heart disease, such as InfoGain, VIF, ANOVA, AIC,

ANOVA + VIF, or AIC + VIF.
6: Formulate ML classification models, such as Adaboost, LR, NB, RF, and SVR.
7: Apply the ML models from Step 6 to classify people with heart disease.
8: Select the best ML model using performance measures, considering higher mean values of accuracy, sensitivity, specificity,

and ATPP.

BEGIN Collect datasets Choose indicators

Analyze data Define a measure of
consistency

State variable
selection criteria

Formulate ML models Apply ML models Select best model

END

Figure 2. Detailed flowchart of the methodology.
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4. Results and Discussions

This section presents the datasets and results of the computational applications de-
scribed in Section 3, as well as the discussion and comparison with some findings found in
the literature. Initially, the characteristics of the CS indicators are presented for each dataset,
followed by the values of the adapted consistency measure. Posteriorly, we discuss which
one of the CS indicators was more frequent in the classification of cardiopathy, and the
performance of the valid models defined is presented. Given the complexity and urgency
of the cardiovascular phenomenon, considerable research continues to be dedicated to the
field of this type of diseases [49].

4.1. Datasets

The University of California Irvine (UCI) ML data repository (archive.ics.uci.edu,
accessed on 13 September 2023), specifically the heart disease dataset [50,51], was utilized
for this study. Table 3 provides details of the dataset that contains four subsets based on
records from individuals with and without heart disease. The response variable Y is the
presence of heart disease, with a value of 1 indicating that the individual has heart disease
and 0 indicating the absence of heart disease in the subject.

Table 3. Heart disease directory—sample size (n) and response variable Y.

Dataset n
Y

0 1

Cleveland 282 157 125
Hungarian 294 188 106
Long Beach 200 51 149
Switzerland 123 8 115

4.2. CS Indicators in the Datasets

The application of ML and statistical classification techniques spans various areas
of medicine and molecular sciences [52–62]. Numerous studies have been conducted
with the aim of identifying factors that can accurately and early on indicate signs of heart
disease [63,64]. Building on this extensive body of research, our study focuses on exploring
CS indicators using the four key datasets mentioned in Table 3.

Tables 4–7 present the descriptive statistics of the CS indicators computed using
the Cleveland, Hungarian, Long Beach, and Switzerland datasets, respectively. These
descriptive statistics include µ̂0, m̂0, and σ̂0, which represent the estimated values for the
mean, median, and SD, respectively, of the non-cardiac patient group. Similarly, µ̂1, m̂1,
and σ̂1 correspond to the estimated values for the mean, median, and SD, respectively,
of the cardiac patient group. These tables also provide the p-values of the Wilcoxon–Mann–
Whitney test of the difference between medians [65].

Note that the statistics reported in Tables 4–7 present similar values to those found
in [4] on support measures for medical diagnosis. It is also noteworthy that the HM exhibits
a high SD in all datasets, while the MAP is more precise. Regarding the applied median
difference tests, there was a statistically significant difference in the median MAP values
between cardiac and non-cardiac patients, with a p-value of 0.0793 in the Cleveland dataset
and a p-value of 0.0262 in the Hungarian dataset, both suggesting significance at levels of
10% and 5%, respectively. In the Switzerland dataset, none of the new indicators showed
statistical significance in the median difference tests, while, in the Long Beach dataset, there
was statistical significance at a level of 10% for the HM, with a p-value of 0.0886.

Table 8 presents the values of the adapted consistency measures d, where a greater
relevance is observed for the MAP in the Cleveland dataset (0.1797) and the Hungarian
dataset (0.1881), and for the HM in the Long Beach dataset (0.2393) and the Switzerland
dataset (0.2568). These results are consistent with the difference of means/medians tests
applied to the classes of interest in the research (cardiac and non-cardiac patients).

https://archive.ics.uci.edu/
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Table 4. Indicator, estimated mean (µ̂), median (m̂), SD (σ̂), and Wilcoxon–Mann–Whitney p-values
for the Cleveland dataset.

Indicator µ̂0 µ̂1 m̂0 m̂1 σ̂0 σ̂1 p-Value

α 0.0038 0.0040 0.0029 0.0033 0.0029 0.0033 0.4837
α2 5.8280 5.7834 5.8284 5.7121 0.7035 0.7473 0.4837
HM 88.2808 79.0296 51.6722 42.4812 118.2997 94.5672 0.3004
MAP 105.1306 108.0998 105.9115 107.8869 11.6754 11.6864 0.0793 ∗

PBPI 0.5439 0.5692 0.5294 0.5556 0.1824 0.1760 0.2434
PBPIRC 19.3680 19.8608 15.7457 17.3187 12.5346 11.7759 0.5273
RC 0.0339 0.0340 0.0329 0.0325 0.0115 0.0113 0.9683

with ∗ indicating statistical significance at 10%.

Table 5. Indicator, estimated mean (µ̂), median (m̂), SD (σ̂), and Wilcoxon–Mann–Whitney p-values
for the Hungarian dataset.

Indicator µ̂0 µ̂1 m̂0 m̂1 σ̂0 σ̂1 p-Value

α 0.0048 0.0047 0.0039 0.0038 0.0043 0.0035 0.7747
α2 5.5739 5.5588 5.5552 5.5628 0.6453 0.6335 0.7747
HM 53.8264 55.4877 38.9873 37.2640 51.6480 77.3438 0.2751
MAP 105.4446 108.6070 102.9850 108.0512 11.4091 12.3450 0.0262 ∗∗

PBPI 0.5639 0.5971 0.5500 0.5556 0.1502 0.2195 0.1196
PBPIRC 21.7992 22.9755 18.6552 19.2456 13.1868 18.9023 0.6145
RC 0.0295 0.0300 0.0280 0.0291 0.0081 0.0080 0.5268

with ∗∗ indicating statistical significance at 5%.

Table 6. Indicator, estimated mean (µ̂), median (m̂), SD (σ̂), and Wilcoxon–Mann–Whitney p-values
for the Long Beach dataset.

Indicator µ̂0 µ̂1 m̂0 m̂1 σ̂0 σ̂1 p-Value

α 0.0038 0.0044 0.0029 0.0039 0.0030 0.0028 0.1033
α2 5.8083 5.8785 5.8440 5.5574 0.6754 3.0681 0.1033
HM 67.7813 47.4181 44.0492 34.3783 69.1907 49.5149 0.0886 ∗

MAP 102.7137 106.1425 99.0182 104.4601 13.1111 11.7342 0.1067
PBPI 0.6404 0.6842 0.6085 0.6500 0.2085 0.2005 0.2863
PBPIRC 23.5717 25.9667 20.7905 21.8479 15.9530 13.7833 0.2079
RC 0.0327 0.0299 0.0307 0.0288 0.0106 0.0083 0.1720

with ∗ indicating statistical significance at 10%.

Table 7. Indicator, estimated mean (µ̂), median (m̂), SD (σ̂), and Wilcoxon–Mann–Whitney p-values
for the Switzerland dataset.

Indicator µ̂0 µ̂1 m̂0 m̂1 σ̂0 σ̂1 p-Value

α 0.0039 0.0038 0.0042 0.0026 0.0031 0.0036 0.9293
α2 5.9888 5.9288 5.4949 5.9362 1.1305 0.8388 0.9293
HM 197.6817 112.8445 33.3719 56.5868 285.4129 166.4005 0.9293
MAP 98.9302 104.4039 102.2406 102.0779 16.6840 14.5477 0.5347
PBPI 0.5972 0.5976 0.6587 0.5714 0.2409 0.2411 0.7942
PBPIRC 22.1667 21.8520 26.9187 15.5101 13.9135 19.4161 0.6276
RC 0.0355 0.0358 0.0247 0.0341 0.0161 0.0134 0.5839

Table 8. Adapted consistency measures d for the listed dataset and indicator.

Dataset α α2 HM MAP PBPI PBPIRC RC

Cleveland 0.0648 0.0435 0.0611 0.1797 0.0996 0.0286 0.0083
Hungarian 0.0091 0.0167 0.0179 0.1881 0.1249 0.0510 0.0473
Long Beach 0.1522 0.0223 0.2393 0.1949 0.1514 0.1136 0.2037
Switzerland 0.0204 0.0426 0.2568 0.2473 0.0011 0.0132 0.0163
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4.3. CS Indicators in the Context of Selected Models

ML applications, such as those discussed above, are particularly valuable in complex
diagnostic processes [3]. Moving toward the aim of improving diagnostic accuracy in heart
disease, it is crucial to incorporate new indicators, as proposed and analyzed in [4].

Table 9 presents the frequencies at which the selection criteria identified the CS in-
dicators as relevant for the classification of patients with and without cardiac disease.
Among the seven indicators described here, the MAP was selected by the criteria in 22 mod-
els (52.38%) out of a total of 42, highlighting its significance in the classification of patients
with cardiac disease. Additionally, the PBPI was chosen in 13 out of 42 models (30.95%),
indicating its importance in the classification process.

Table 9. Absolute and relative frequencies of indicators in both scenarios.

UMAP U UPBPIU URCU PBPIRC UHMU UαU Uα2U
Total

n % n % n % n % n % n % n %

22 52.38 13 30.95 11 26.19 9 21.43 9 21.43 9 21.43 8 19.05 42

To assess model performance, we evaluated the variation in average accuracy across
multiple test groups, each pertaining to a different dataset. For example, the Cleveland
dataset showed an average accuracy that ranged from 37.70% (±21.31) to 99.20% (±1.17).
While such high accuracy rates, such as 99.20%, appear promising, they necessitate cau-
tious interpretation. Specifically, high accuracy can sometimes indicate a risk of overfitting.
On the positive side, the relatively low SDs that we observed suggest stable model per-
formance across different data splits. For other datasets, the average accuracies were as
follows: from 53.93% (±13.79) to 84.86% (±4.03) for the Hungarian dataset, from 29.78%
(±6.59) to 94.28% (±3.47) for the Long Beach dataset, and from 27.41% (±10.49) to 96.01%
(±3.25) for the Switzerland dataset. Given these varying performances, it is evident that
while our models are promising—especially in terms of stability as indicated by the low
SDs—further validation is imperative.

Next, we focus on Scenario 2 to evaluate its models. Overall, as presented in Table 10,
the models in this scenario displayed higher average accuracy and lower SDs. For fur-
ther insights into the variables used, please refer to the following GitHub repository:
(https://github.com/Raydonal/Cardiac-Classification) (accessed on 13 September 2023).
We identified 12 valid models, based on their VIFs, that stood out for their high average ac-
curacies. Table 11 showcases these 12 models and their performance measures—sensitivity,
specificity, and ATPP—on each dataset. We delve into these results by dataset: [Cleveland]
Model F with the LR classifier had the highest average accuracy; [Hungarian] Model F with
the NB classifier topped the list; [Long Beach] Model E with the LR classifier performed
best; and [Switzerland] Model E with the RF classifier was the frontrunner. However,
in the case of the Switzerland dataset, there were limitations, where only Model C with the
Adaboost classifier showed a non-zero average specificity (5.96%, with an SD of 16.78%). It
is essential to clarify our selection criteria for these top-performing models. In this context,
the models with the highest average accuracies were chosen based on AIC + VIF criterion,
and all featured the variable MAP.

Taking a closer look at the standout models, we find that model F with the LR classifier
in the Cleveland dataset exhibited exceptional measures. This model presented an average
accuracy of 99.20%, an average sensitivity of 98.23%, an average specificity equal to 100.00%,
and an ATPP also equal to 100.00%. Compared to previous studies, these results are
highly competitive. For instance, in [66], an accuracy of 89.01%, sensitivity of 80.95%,
and specificity of 95.91% were reported. Similarly, in [44], an accuracy of 87.4%, sensitivity
of 93%, and specificity of 78.5% were achieved. In [67], an accuracy of 94%, sensitivity of
92%, and specificity of 92.5% were reported. In light of this information, it is evident that
our model not only fares well but also suggests advancements in specificity and ATPP.

https://github.com/Raydonal/Cardiac-Classification
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Considering the classifiers, LR and Adaboost were the methods with the highest
accuracy averages, each present in 33.33% of the 12 models selected by the VIF. This high
performance can, in part, be attributed to our choice of classification methods, which aligns
with the findings in similar studies. For instance, in [63], it was reported that the classifiers
Adaboost, DT, and NB obtained the highest accuracy for these datasets, with Adaboost and
DT particularly standing out with accuracies ranging from 75.00% to 97.65%.

To further understand the contributing factors to our model’s performance, we delved
into an analysis of CS indicators. The relevance of the MAP in the classification of cardiac
patients is particularly noteworthy, appearing in almost all the models shown in Table 11.
This aligns well with our previous discussions around Table 9 and adapted consistency
measures. The variables most frequently appearing in the 12 models (see Table 11) are V4
(gender), present in 11 of these models (91.67%); the MAP, which appears in 8 of the
12 models (66.67%); V61 (distance from the left anterior descending artery), and V40
(exercise-induced ST segment depression with respect to rest, where ST-segment depression
is a common electrocardiographic sign of myocardial ischemia during exercise testing),
both with relative frequencies of 58.33% each; and V6 (chest pain caused by physical effort),
present in half of the models (50.00%). These variables were crucial in the classification
of ischemic heart diseases across the diverse subsets discussed earlier in this section.
The classifiers we utilized further strengthened the predictive capability of our models.

Table 10. Model and variables in Scenario 2 for the listed dataset.

Model Variables
Cleveland

A V4, V9, V11, V16, V18, V23, V24, V25, V26, V27, V29, V30, V31, V32, V38, V39, V40, V41, V44, V51, V60, V61, V63, V65,
V67, V68, V72

B V3, V4, V9, V11, V12, V14, V15, V16, V18, V19, V23, V24, V25, V26, V27, V29, V31, V32, V33, V34, V35, V38, V40, V41,
V43, V44, V51, V59, V60, V61, V63, V65, V67, V68, V71, V72, V73, MAP, PBPI, HM, α

C V3, V4, V9, V10, V23, V24, V32, V34, V38, V40, V44, V51, V60, V61
D V4, V10, V34, V40, V44, V51
E V3, V4, V10, V15, V16, V18, V19, V23, V25, V27, V29, V31, V33, V37, V38, V40, V43, V44, V51, V59, V60, V61, V63, V65,

V67, V68, V71, V72, V73, MAP, PBPI, RC, α2

F V3, V4, V15, V16, V18, V19, V23, V25, V27, V29, V38, V40, V43, V44, V51, V60, V61, V63, V65, V67, V68, V71, V72, V73,
MAP, PBPI, RC

Hungarian

A V4, V5, V6, V7, V9, V11, V16, V24, V25, V26, V27, V32, V38, V39, V40, V41, V72, V73
B V3, V4, V5, V6, V11, V12, V16, V19, V24, V25, V27, V32, V35, V38, V40, V41, V43, V72 V73, MAP, PBPI, HM
C V4, V6, V11, V28, V29
D V4, V6, V11, V28
E V3, V4, V5, V6, V7, V9, V10, V11, V12, V16, V19, V24, V25, V26, V27, V28, V29, V34, V30, V31, V32, V33, V35, V37, V38,

V40, V41, V42, V43, V72, V73, MAP, PBPI, RC, PBPIRC, HM, α, α2

F V4, V5, V6, V12, V16, V19, V24, V27, V31, V32, V34, V35, V38, V40, V41, V42, V72, V73, MAP, RC
Long Beach

A V4, V5, V6, V7, V9, V11, V13, V16, V18, V23, V24, V25, V26, V27, V38, V39, V41, V60, V61, V63, V65, V67, V75
B V4, V5, V6, V7, V11, V12, V14, V15, V19, V28, V59, V60, V62, V63, V64, V65, V68, V70, V71, α

C V4, V6, V43, V60, V61
D V3, V4, V5, V6, V7, V10, V11, V12, V13, V14, V15, V16, V18, V19, V28, V29, V31, V32, V33, V37, V38, V39, V40, V42, V43,

V59, V60,V61, V62, V63, V65, V66, V67, V68, V70, V71, V72, V73, V74, MAP, PBPI, RC, PBPIRC, HM, α, α2

E V4, V5, V6, V7, V11, V14, V18, V28, V33, V42, V59, V61, V63, V65, V66, V67, V71, V73, MAP, PBPI
Switzerland

A V4, V5, V6, V7, V9, V11, V24, V25, V26, V27, V38, V39, V41
B V4, V7, V25, V27, V33, V38, V39, V40, V59, V61, V62, V65, V67, MAP
C V7, V61, V67, MAP
D V4, V6, V7, V19, V24, V25, V27, V32, V33, V36, V38, V39, V40, V60, V61, V62, V64, MAP, PBPI, RC, PBPIRC, HM
E V4, V7, V19, V27, V33, V38, V39, V40, V61, V64, MAP, HM
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Table 11. Valid models with higher accuracy averages in Scenario 2 test groups, along with their
respective prediction performance measures and CS indicators.

Dataset Model # Features Classifier Accuracy ASe ASp ATPP Indicator

Cleveland
B 41 Adaboost 98.58 (1.80) 96.82 (3.93) 99.98 (0.20) 99.97 (0.32) α, HM, MAP, PBPI
D 6 LR 81.32 (3.83) 75.76 (7.15) 85.94 (4.53) 81.00 (6.40) -
F 27 LR 99.20 (1.17) 98.23 (2.46) 100.00 (0.00) 100.00 (0.00) MAP, PBPI, RC

Hungarian
B 20 NB 83.10 (4.25) 64.71 (10.51) 93.17 (3.95) 84.39 (7.72) HM, MAP, PBPI
D 4 LR 80.84 (3.52) 74.60 (7.16) 84.31 (4.83) 72.15 (7.42) -
F 18 NB 83.56 (4.03) 64.16 (10.09) 94.17 (3.52) 86.20 (6.75) MAP, RC

Long Beach
B 19 Adaboost 79.52 (4.90) 88.00 (4.83) 55.05 (14.21) 85.33 (5.30) α

C 5 Adaboost 78.77 (4.54) 88.65 (5.60) 50.55 (16.23) 84.19 (5.76) -
E 19 LR 85.47 (6.14) 88.78 (6.16) 74.23 (16.85) 92.22 (5.13) MAP, PBPI

Switzerland
B 14 RF 93.12 (3.06) 99.33 (1.35) 0.00 (0.00) 93.38 (3.03) MAP
C 4 Adaboost 92.52 (3.25) 98.44 (2.18) 5.96 (16.78) 93.74 (3.32) MAP
E 12 RF 93.51 (3.25) 99.74 (0.86) 0.00 (0.00) 93.33 (3.08) HM, MAP

5. Conclusions, Limitations, and Future Research

This section begins with our conclusions about the present study, and then we list its
limitations and ideas for further work.

5.1. Concluding Remarks

In this study, we set out to improve the classification of patients with coronary artery
disease, a subset of ischemic heart diseases, using a diverse range of machine learning
algorithms. The use of multiple classifiers, such as Adaboost and logistic regression, not
only adds robustness to our study but also gives a comprehensive understanding of the
effectiveness of different classification models. What sets our study apart is its resource
efficiency. Operating with minimal requirements—just a tensiometer and a clock for data
collection—our research proved that significant advancements in ischemic heart disease
classification can be achieved with limited resources. This is not a limitation but a unique
strength, offering immediate and effective solutions that are particularly crucial in resource-
strapped settings. We found the mean arterial pressure to be a pivotal variable, particularly
within the Cleveland and Hungarian datasets. This variable was consistently selected
among the valid models, bolstering its diagnostic utility. Adaboost and logistic regression
emerged as the best classifiers, with this regression proving its high accuracy within the
Cleveland dataset.

The insights from this study serve as more than just a stepping stone for future work.
They provide immediate and valuable resources to healthcare professionals. Our approach
offers a potent blend of efficacy and resource efficiency that can be immediately applied to
the diagnosis of ischemic heart diseases, especially in settings where resources are limited.
Additionally, the variation in model effectiveness across different datasets hints at the
potential for more personalized medical approaches, tailored to the specific demographic,
genetic, or environmental characteristics of different population groups.

In summary, this study, built upon a clearly defined scope of ischemic heart dis-
eases, serves as a foundational step in the field of cardiac diagnosis. The classifiers we
deployed, including Adaboost and logistic regression, added robustness to our model and
were particularly effective across diverse datasets, though further validation is needed for
wider applicability. Our resource-efficient methodology offers a viable solution, especially
in resource-limited settings, without compromising on diagnostic accuracy. However,
we recognize that this simplicity has boundaries, especially when considering the het-
erogeneity in the presentation and diagnosis of ischemic heart diseases across different
population groups.
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Our study sets the stage for future research that could add complexity to our models
for a more nuanced understanding, while also preserving the essential benefit of minimal
resource demands.

5.2. Limitations and Future Work

• Simplicity as a strength: A unique selling point of our approach is its resource ef-
ficiency, requiring only a tensiometer and a clock for data collection. This is not a
limitation, but rather a strategic advantage, especially in resource-constrained en-
vironments where quick, yet effective, screenings are essential. In these contexts,
the accessibility and ease of use of our model may outweigh the benefits of more
complex and resource-intensive methods, offering a viable and immediate solution for
diagnosing ischemic heart diseases. That said, we do acknowledge that the model’s
simplicity may have boundaries when considering broader applicability. Nonetheless,
the focus of this research is on maximizing diagnostic efficacy with minimal resources.
Future work will aim to examine the impact of adding more variables and complexity,
but the core benefit of our approach lies in its minimal resource demands.

• Hemodynamic indicators: The current study primarily employs hemodynamic indica-
tors as described by Campello de Souza [4]. While effective in the context of ischemic
heart diseases, these indicators may also be relevant in diagnosing other cardiovascu-
lar conditions, such as heart failure or valvular diseases. Future studies could extend
the scope to evaluate such indicators in a wider range of cardiac conditions.

• Disease specificity: Our focus in this study has been primarily on coronary artery
disease, which falls under the broader umbrella of ischemic heart disease. While
our models have demonstrated effectiveness in this specific context, it is essential to
note that heart disease is a broad category that includes various conditions such as
heart failure, valvular diseases, and arrhythmias. Future research should explore the
applicability of our machine learning models to these other types of heart disease,
thereby enriching the diagnostic toolkit available to healthcare professionals.

• Model validation: Our approach already provides a robust baseline due to its simplic-
ity and the diverse set of classifiers that we tested. Nevertheless, future work should
engage in more rigorous validation techniques to confirm the generalizability of our
models and to mitigate risks such as overfitting.

• Model performance heterogeneity: The variation in model performance across datasets
underscores the model’s limitations but also suggests a path for future personalized
medicine approaches. We see this not as a limitation but as an opportunity for
tailored applications. In particular, the observed heterogeneity in model performance
across different datasets raises critical questions about the need for population-specific
models in the realm of personalized medicine. We recognize that different models
may be more suitable for different populations, and understanding this interaction
could lead to a more nuanced, individualized approach to diagnosing ischemic heart
diseases. Future research should delve deeper into how our model can be fine-tuned
to serve diverse populations effectively.

• Prospective and comparative studies: Our study sets a precedent for resource-efficient
diagnostics, but it would benefit from prospective studies comparing its efficacy to that
of more resource-intensive methods. This will help confirm its value as a standalone
diagnostic tool.

• Future methodologies: To advance in this area, further research employing diverse
and larger datasets is required. Studies involving more diverse sample sizes could
offer additional insights into the generalizability and reliability of our models.

Further investigations could also explore the integration of personalized medicine
approaches to improve the diagnostic accuracy of ischemic heart diseases. Specifically,
prospective studies involving larger and more diverse sample sizes could provide critical
validation for the models, confirming their efficacy and reliability in clinical settings.
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Subsequent research could look at algorithmic enhancements that can make even
better use of limited data. Semi-supervised or unsupervised learning techniques could be
particularly beneficial in this regard, and statistical improvement in classification methods
can be explored based on probability distributions [68–70].
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