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Abstract 13 

Vibration-based monitoring strategies have been demonstrated to be effective tools 14 

in providing – in nearly real-time – reliable information regarding the integrity of structures 15 

and infrastructure systems. However, commonly used methods for vibration analysis and 16 

modal identification are not able to capture the time variation of the modal properties during 17 

single acquisitions, hence they cannot perform dynamic identification in the presence of 18 

nonlinearities or non-stationary input excitations. To overcome this limitation, a novel non-19 

parametric algorithm for automatic time-dependent modal analysis is hereby presented and 20 

discussed. This Enhanced Modal Identification for Long-term Integrity Assessment 21 

(EMILIA) algorithm can compute time-dependent estimations of the natural frequencies 22 

and mode shapes that can be critical to the early identification of hidden damage. The 23 

dynamic characterization of a beam-like structure in sound and damaged conditions is 24 

carried out for numerical validation purposes, allowing to evaluate the reliability of the 25 

proposed method over different scenarios and comparing its efficiency against traditional 26 

algorithms. Finally, further tests are conducted to analyse the sensitivity of the EMILIA 27 

algorithm to its main parameters and components. 28 

 29 

Keywords: Time-Dependent Operational Modal Analysis, Structural Health Monitoring, 30 

Seismic Engineering, Non-Linear Structural Dynamics. 31 

1. Introduction 32 

Civil engineering structures and infrastructures require large investments and demand prolonged 33 

periods for their construction and commissioning [1]. Some of them are essential for modern countries 34 

and societies to support life quality, public health, security, economic growth, etc. The appropriate 35 

maintenance of such assets is therefore crucial and can significantly benefit from preventive strategies 36 

of periodic assessment [2,3] aimed at ensuring not only a satisfactory performance during the 37 

structure’s lifespan but also at optimising the activities needed for diagnosis and repair after natural or 38 

man-made disasters. Structural Health Monitoring (SHM) is a field of research concerned with the 39 

development and implementation of global non-invasive techniques devoted to the condition 40 

assessment of structures. Based on different types of data collected from several kinds of sensors 41 

attached to or embedded into the structure, SHM systems offer nearly real-time information regarding 42 

structural integrity [4–6]. Though, the extraction of reliable metrics requires a preliminary application 43 

of appropriate signal processing, statistical classification and/or probability analyses to transform 44 

large, unstructured, and multi-type measured data into meaningful and accurate descriptions of the 45 

structure’s health status. The SHM of civil engineering systems typically relies on ambient vibration 46 

testing methodologies, where only the structural response to unknown ambient excitations and/or 47 

random events is measured [7–9]. As widely known, this approach is suitable for any building and 48 

structure that needs to be tested continuously under operational conditions, i.e. without service 49 

interruptions. The so-called Operational Modal Analysis (OMA) strategy allows to accurately 50 

estimate parameters like modal frequencies, damping ratios and mode shapes from the sole 51 

knowledge of output acceleration measurements [10–12]. Based on the domain featured for the signal 52 
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analysis, the common identification methods for OMA can be classified as frequency-domain or time-53 

domain. Frequency-domain methods rely on Fourier’s theory and the Fast Fourier Transform (FFT) 54 

[13]. Due to their ease of implementation and medium/low computational burden, they have been 55 

largely applied to the dynamic characterization of civil engineering structures [14–16]. Frequency 56 

Domain Decomposition (FDD) is currently one of the most vastly used methods [17–19]. FDD 57 

algorithm makes use of the Singular Value Decomposition (SVD) applied to the Cross Power 58 

Spectrum (CPSD) matrix of the output signals and identifies the modal parameters by selecting the 59 

frequency peaks of the power spectral densities. Further development of the method is the Enhanced 60 

Frequency Domain Decomposition (EFDD), which uses Impulse Response Functions (IRF) to enable 61 

also the estimation of the damping factor from the exponential decay of the motion amplitude [20–62 

24]. Conversely, time-domain methods employ raw time series and do not require a space 63 

transformation to extract the modal parameters. Moreover, they demand little user interaction and 64 

present many advantages, including the possibility to estimate closely spaced modes, which are hardly 65 

distinguished by frequency domain methods. However, they are often intensive from a computational 66 

standpoint. Among them is the Stochastic Subspace Identification (SSI) method that exploits powerful 67 

time-domain Multiple Input Multiple Output (MIMO) algorithms with high immunity to signal noise. 68 

Several types of SSI methods have been proposed in the literature over the past decades, such as 69 

covariance-driven (SSI-COV), covariance-variate (SSI-CV), and data-driven (SSI-DATA). Despite 70 

the inherent differences, all these SSI methods can be generalized into a unified theory dependent on 71 

the weighting matrix selection before the parametrical decomposition [25–29].  72 

Aiming at identifying the modal parameters of structures from output-only acceleration data, 73 

statistical methods can be employed as well. Statistic and probability-based algorithms model the 74 

structural dynamic behaviour as a time-invariant linear system resorting to polynomial data fitting, 75 

complex pole relations, and/or linear regressions. The Complex Exponential method (CE), the Least 76 

Square Complex Exponential method (LSCE), and the PolyReference Complex Exponential method 77 

(PRCE), among others, explore the relationship between the IRF and its complex poles and residues 78 

through a complex exponential and an Auto-Regressive (AR) model [30,31]. Auto-Regressive 79 

Moving-Average (ARMA) models combine two complementary polynomial regressions, an AR and a 80 

Moving Average (MA) [32]. Statistical methods have been developed for time-varying dynamic 81 

identification as well [33–35]. In [36], a time-varying autoregressive moving average model in vector 82 

form (TV-ARMAV) method for assessing linear time-varying systems is addressed. For further 83 

information on statistical methods, including applications to civil engineering systems, the reader is 84 

referred to [37–39]. Conventional modal identification procedures often fail to correctly identify 85 

structural modes when working with highly noise-contaminated measurements, nonlinear structural 86 

responses, or in the presence of vibration modes with frequencies close to a common mean, as 87 

previously mentioned [40–42]. Recent developments in the field of dynamic identification have led to 88 

the implementation of high-resolution methods, capable of detecting modal frequencies, especially 89 

closely-spaced ones, even with a low signal-to-noise ratio (high-level noise). Many of these methods 90 

as the Blind Source Separation (BSS) [43–46] or the Multiple Signal Classification (MUSIC) [47] 91 

were not originally designed for civil or seismic engineering applications, but they have been already 92 

successfully tested in many structures [48–50]. 93 

Some of the approaches previously mentioned can work with linear time-varying systems with a 94 

rate of variation lower than the period of vibration which would be enough to capture the evolution of 95 

the modal properties under environmental and operational conditions, but none of the methods 96 

discussed so far can perform modal identification with data obtained during seismic events nor 97 

represent non-linear structural behaviour. Indeed, the former can yield changes to loading scenarios 98 

and structural properties, including boundary conditions, thus affecting the intrinsic modal parameters 99 

of the system [51,52]. As previously mentioned, output-only modal identification methods, relying on 100 

a parametric decomposition applied to a weighted matrix, use the Fourier’s series as solutions to the 101 

motion differential equation, thereby restricting any eigenvalue decomposition-based algorithm, like 102 

the SVD, to work with periodic and linear data. It follows that such methods are limited to the linear-103 

elastic range of structural measurements (no-damage, no-yielding), and are not capable of performing 104 

dynamic identification in the presence of non-periodic and non-linear structural responses, failing in 105 

providing a time-dependent result. As a consequence, they cannot assess and track the evolution of the 106 
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structural response while stiffness conditions are changing (e.g. during and after a strong seismic 107 

event), if not by conducting recursive or sequential analyses over time-windowed streams of data. 108 

Several non-parametric time-frequency methods have been developed to investigate the time-109 

dependency of modal properties. Most of the existing non-parametric algorithms were designed to 110 

assess output-only structural vibrations using exclusively an empirical approach, thereby being not 111 

suitable for Experimental Modal Analysis (EMA). Though, they have been proven successful in the 112 

context of OMA. Algorithms that sift the data by extracting time series related to the original signal 113 

waveform commonly constitute the core of such methods. For instance, the Hilbert-Huang Transform 114 

(HHT), which makes use of the Empirical Mode Decomposition (EMD) to compute pseudo-Single 115 

Degree of Freedom (SDOF) subsequences, known as Intrinsic Mode Functions (IMF) [53], has been 116 

successfully used for modal identification [54] and structural damage detection [56,57]. However, 117 

HHT cannot work with noise-contaminated data, and it hardly identifies closely located modes. 118 

Furthermore, EMD is not an orthonormal decomposition, thus, the computed IMFs may not be 119 

linearly independent functions [54,58–60]. More robust Time-Frequency Analysis (TFA) and data 120 

decomposition algorithms rely on the rock-solid Wavelet theory [61]. Wavelet Transform (WT) 121 

allows performing multi-resolution time-frequency data analysis, being capable of detecting time-122 

dependent features even in the presence of high levels of noise. WT has become by far the most 123 

widely used time-frequency algorithm for signal processing, data denoising, and multiresolution TFA. 124 

Moreover, wavelet analysis is not only limited to assessing acceleration or displacement data for civil 125 

engineering applications, as recent researches have explored the potential of wavelets to asses time-126 

varying entropy measurements for SHM purposes as well [62].  Further information and applications 127 

of interest can be found in  [63–65]. An additional development of data-driven wavelet analysis that 128 

aims to extract IMF-like components is the Wavelet Synchro Squeezed Transform (WSST) [66]. 129 

WSST can operate both in the Fourier’s and in wavelet domains and it works by first sharpening the 130 

spectrogram or wavelet scalogram through a frequency reassignment operator, then, ridge extraction 131 

techniques are employed to estimate ridges related to the instantaneous frequency behaviour. Finally, 132 

signal components are recovered by integrating the reassigned STFT or the reassigned wavelet 133 

coefficients in the vicinity of the corresponding ridges. There are also further methods that use the 134 

capability of ridge extractions applied to modal analysis. For instance, some authors have proposed 135 

instantaneous frequency identification algorithms for time-varying structures based on the ridge 136 

extraction of continuous wavelet analysis [67–69]. Nevertheless, ridge extraction methods only 137 

employ single-channel spectrogram or scalogram data, usually with high-quality signal requirements 138 

resulting in low levels of noise robustness.  139 

Other decomposition algorithms aiming to extract IMF like components that also work in the 140 

frequency domain are the Empirical Wavelet Transform (EWT) [70] which relies on robust peak 141 

detection mechanism and spectrum segmentation techniques to develop a wavelet filter bank for 142 

effective data decomposition, the Variational Mode Decomposition (VMD) [71], and the multichannel 143 

version the Multivariate Variational Mode Decomposition (MVMD) [72] algorithm, where the 144 

MVDM is used on some of the latest developments in the frequency domain to successfully being 145 

applied to time-dependent modal analysis by short-time like approaches [73]. Both VMD and MVMD 146 

make use of adaptive Weiner filters to compute a set of modes that can properly reconstruct the 147 

system FRF. 148 

What is stated above highlights the cogent need to move a step forward by developing new 149 

dynamic identification methods and algorithms for enhanced data analysis as well as signal processing 150 

techniques able to work in the presence of nonlinearities and noisy data, and to track the time 151 

dependency of vibration modes with reduced computational effort for real-time applications [74–77]. 152 

In this regard, the present work presents a novel non-parametric modal identification method for 153 

output-only data processing, called Enhanced Modal Identification for Long-term Integrity 154 

Assessment (EMILIA) algorithm, thoroughly described in Section 2. The proposal makes use of a 155 

discrete wavelet packet decomposition in combination with Hilbert Transform (HT) TFA. Bayesian 156 

inference is adopted to process the time-dependent information produced by more transducers 157 

simultaneously, thus providing a more reliable estimation of natural frequencies. The validation of the 158 

EMILIA algorithm is presented in Section 3 as applied research to reproduce results previously 159 

computed by traditional modal estimators using numerically simulated data. The suitability of the 160 

proposed algorithm for time-dependent modal analysis is discussed in Section 4, whereas further tests 161 
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to analyse the robustness and sensitivity of the method are reported in Section 5. Finally, in Section 6, 162 

the main conclusions are drawn, and relevant future scopes are outlined. 163 

2. Workflow description of the EMILIA algorithm 164 

The EMILIA algorithm is composed of three main stages: (1) time-domain data decomposition; 165 

(2) time-frequency analyses; (3) statistical and probability estimations of the previously computed 166 

outputs. Each stage is conveniently detailed in the following sections. The algorithm processes raw 167 

acceleration measurements and performs dynamic identification analyses ranging from simple 168 

pointwise to full-scale MIMO. Figure 1 shows a schematic workflow of the EMILIA algorithm and its 169 

computed outcomes at each stage, using a theoretical SDOF undamped resonator with a natural 170 

frequency of 4 Hz as an example.  171 

 172 
Figure 1: EMILIA algorithm workflow applied to a theoretical SDOF undamped resonator. The 1st (left side), the 7th 173 

(middle), and the 16th (right side) subsequences are presented as instances of the produced outputs. The central dashed-174 
green-box highlights the subsequence that holds the modal Information and the outputs computed after each stage. 175 
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2.1 Stage 01: Data decomposition 176 

The data decomposition stage relies on the Maximum Overlap Discrete Wavelet Packet Transform 177 

(MODWPT) algorithm to compute 2𝑚  subsequences for each channel of the input data. 178 

Mathematically, any WT is an integral transform that represents any signal, or data stream, in terms of 179 

a set of coefficients computed through the convolution of the signal itself with dilated and translated 180 

versions of a defined mother wavelet function [61].  181 

The Continuous Wavelet Transform (CWT) is among the most widespread methods for time-182 

frequency data analysis, and it has been extensively applied to signal processing, data denoising, 183 

seismic and geological data analysis, image processing, etc. [78–81]. The CWT is defined as: 184 

where 𝑎 indicates the dilatation factor, 𝑏 the translation factor, and 𝜓(𝑠) is the wavelet function. 185 

Despite the success of the CWT, the Discrete Wavelet Transform (DWT) represents the most used 186 

and powerful tool for studying real time-series ranging over a finite time interval through Wavelets 187 

analysis, likewise the FFT – the equivalent of the continuous Fourier Transform – in Fourier spectral 188 

analysis. In the DWT, the mother wavelet, the scaling function, and the dilatation function are 189 

discretized into a set of compactly supported functions. Thus, the DWT represents the discrete signal 190 

𝑥[𝑛] as a time-series of coefficients computed by convolving 𝑥[𝑛] with a pair of linear filters: a low 191 

pass filter 𝑔[𝑛] as the scale function, and a high pass filter ℎ[𝑛] as the wavelet function, where 𝑛 are 192 

the discrete time-steps or samples of the digitalized data. The previous process generates two time-193 

series of wavelet coefficients: the approximation coefficients, here denoted by 𝐴𝑚[𝑛] and related to 194 

the low pass filter 𝑔𝑚[𝑛], and the details coefficients, denoted henceforth by 𝐷𝑚[𝑛] and related to the 195 

high pass filter ℎ𝑚[𝑛]. The DWT is an orthonormal transform, thus, if an orthogonal discrete mother 196 

wavelet function is employed, the computed subsequences 𝐴𝑚[𝑛] and 𝐷𝑚[𝑛] will also be orthogonal 197 

functions.  198 

In DWT-based decomposition algorithms, the convolution of the computed approximation 199 

coefficients with a new pair of rescaled linear low-pass and high-pass filters is repeated iteratively 200 

until reaching a certain level 𝑚, namely decomposing the signal into a set of 𝑚 𝐷𝑚[𝑛] and one single 201 

𝐴𝑚[𝑛], through the following relations: 202 

According to Nyquist-Shannon criteria, the original number of samples becomes redundant, thus a 203 

decimation process of 𝐴𝑚[𝑛] and 𝐷𝑚[𝑛] is performed after every level of decomposition and the high 204 

half of the frequency spectrum is discarded so that each new 𝐴𝑚+1[𝑛] and 𝐷𝑚+1[𝑛] has half the 205 

samples of its immediate preceding sequences. The decimation process restricts the maximum 206 

achievable level of decompositions 𝑀, given the number of samples 𝑁 in 𝑥[𝑡], according to the 207 

expression 𝑀 =  log2(𝑁). It is worth noting that the sample size 𝑁 must be an integer multiple of 2𝑚. 208 

Moreover, the decimation causes a loss of resolution in the low-frequency spectrum and, additionally, 209 

the discrete wavelet and scaling coefficients are not circularly shift equivariant, namely circularly 210 

shifting the time series by some amount will not circularly shift the DWT wavelet and scaling 211 

coefficients by the same amount. Lastly, the iterative halving of the number of wavelet and scaling 212 

coefficients reduces the ability to carry out statistical analyses along the coefficients. 213 

The Discrete Wavelet Packet Transform (DWPT) is a generalization of the DWT in which, at a 214 

certain level 𝑚 of the transform, the frequency spectrum is divided into 2𝑚  equal-width segments. The 215 

m-level detail coefficients are obtained by filtering the prior-level approximation coefficients with the 216 

corresponding discrete high-pass and low-pass filters. Similar to the DWT, there is a decimation 217 

𝐶𝑊𝑇{𝑥(𝑡)}   =   |𝑎|
−1

2⁄ ∫ 𝑥(𝑡) 𝜓∗ (
𝑡 − 𝑏

𝑎
) 𝑑𝑡

∞

−∞

 (1) 

𝐴𝑚[𝑛] =  (𝑥 ∗ 𝑔)𝑚[𝑡, 𝑛]  =  ∑ 𝐴𝑚−1[𝑛] 𝑔𝑚[𝑡 − 𝑛]

𝑁

𝑛=1

 (2) 

𝐷𝑚[𝑛] =  (𝑥 ∗ ℎ)𝑚[𝑡, 𝑛]  =  ∑ 𝐷𝑚−1[𝑛] ℎ𝑚[𝑡 − 𝑛]

𝑁

𝑛=1

 (3) 
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process after each level of decomposition. Increasing the decomposition level does increase the 218 

frequency resolution but, once starting with a time-series of length N, at level m there will be only 219 

N/2𝑚  DWPT coefficients for each spectrum segment. As for the Maximum Overlap Discrete Wavelet 220 

Transform (MODWT) algorithm, an undecimated decomposition iterative process is performed. In 221 

this case, the filters ℎ𝑚[𝑛] and 𝑔𝑚[𝑛] need to be re-scaled to conserve energy. The new high-pass 222 

filter is defined as ℎ̃𝑚[𝑛] = ℎ𝑚[𝑛] √2⁄ , and the new low-pass filter is defined as 𝑔̃𝑚[𝑛] = 𝑔𝑚[𝑛] √2⁄ . 223 

The MODWT algorithm generates the MODWT wavelet coefficients and the MODWT scaling 224 

coefficients using these new filters with non-zero coefficients divided by √2. The MODWT 225 

coefficients computed at any level m are associated with the same nominal frequency band as for the 226 

DWT decomposition of the same level, though N coefficients are guaranteed at any level of the 227 

decomposition. Thus, all the computed coefficients series will have the same number of samples as 228 

the original data and further statistical analysis can be performed on the new N-length coefficients. 229 

The MODWPT [82] adopted by EMILIA is an orthonormal transform where there is no decimation 230 

process applied to the original data input, nor for any of the 𝑊𝑚[𝑛] subsequences computed after each 231 

level of decomposition. The most significant effect of the non-decimated decomposition process is 232 

that there is no loss of resolution on the lower part of the frequency spectrum, and similarly to the 233 

MODWT, all the computed 𝑊𝑚[𝑛] subsequences will keep the same number of samples as the 234 

original stream of data. Moreover, at the end of the decomposition process, the corresponding 235 

frequency spectrum will be separated in 2𝑚 equal-width frequency bands; and, as in any orthonormal 236 

discrete Wavelet decomposition, if an orthogonal mother wavelet is used, then all the generated 237 

𝑊𝑚[𝑛] subsequences will also be orthogonal functions. This first stage of the EMILIA algorithm has 238 

a 𝑂(2𝑚) time complexity according to the selected level of decomposition and the computed 239 

outcomes are two matrixes, one allocating the acceleration data and the other one allocating the 240 

displacement data. Both matrixes have a space complexity equal to [𝐶ℎ, 𝑁, 2𝑚], where 𝐶ℎ is the 241 

number of channels, 𝑁 is the number of samples per channel in the original acceleration data, and 𝑚 242 

is the selected level of decomposition. 243 

For any analysis, the initial level of decomposition can be set according to the Nyquist frequency. 244 

For instance, if the data from the SDOF are sampled at 𝑓𝑠 = 20 Hz, the Nyquist frequency gives a 245 

total span of 10 Hz. By selecting a four-level decomposition, 24 subsequences will be computed out 246 

from the wavelet decomposition, enough to fully cover the frequency range with at least one 247 

subsequence per each (𝑓𝑠 2⁄ ) 2𝑚⁄  spectrum segment. An unavoidable outcome of splitting the 248 

frequency spectrum in equally spaced ranges, each one of (𝑓𝑠 2⁄ ) 2𝑚⁄  Hz is that some closely spaced 249 

modes may fall into a single range of the decomposition, thus, the computed component will hold 250 

more than one frequency content. As higher-order modes are commonly closer than lower ones, the 251 

identification of the fundamental modes of the system will not be compromised by this shortcoming. 252 

Still, the accurate separation of all vibration modes is always desirable and the current version of the 253 

algorithm lacks in this aspect which needs further investigations to optimise the trade-off between a 254 

sufficiently reduced span required to successfully isolate single modes and a larger span to prevent 255 

chopping the lower modes between different components or spectrum sections, without increasing 256 

excessively the computational burden that is significantly affected by the decomposition level. 257 

Regarding the discrete wavelet function, an orthogonal mother wavelet with the highest possible 258 

amount of vanishing moments is recommended to improve the modal identification. A mother 259 

wavelet function has 𝑝 vanishing moments if, and only if, the wavelet scaling function can generate 260 

polynomials up to degree 𝑝 − 1, meaning that the scaling function alone can be used to represent such 261 

functions. Increasing the vanishing moments allows the scaling function to represent more complex 262 

functions, while reducing them limits the wavelet capability to extract periodicities, or polynomial 263 

behaviour, in a signal. A Daubechies 2 wavelet, with one vanishing moment, can easily encode 264 

polynomials of one coefficient, or constant signal components. Thus, the Daubechies 45 mother 265 

wavelet function used in the present paper can be exploited to search for polynomial functions with up 266 

to 44 coefficients, ensuring a robust modal identification, by focusing the search on strongly periodic 267 

and continuous information and overlooking random transients and stochastic components of the 268 

signal. The flowchart of Figure 1 presents the outcomes computed by a four-level MODWPT 269 

decomposition, resulting into a set of 16 acceleration subsequences. For the sake of brevity, only the 270 

first, the seventh, and the last subsequences are presented. By comparing the waveforms, it can be 271 
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seen that each subsequent subsequence presents shorter periods than the previous one, containing 272 

information related to higher frequency content. The first and last subsequences are examples of lower 273 

and higher frequency spurious modes, whilst the 7th subsequence contains the actual modal 274 

information.  275 

2.2 Stage 02: Time and frequency domain analysis 276 

In the second stage, the HT is exploited to compute an analytical signal from each one of the 277 

subsequences produced by the MODWPT wavelet decomposition and obtain therefrom the 278 

corresponding instantaneous amplitude and instantaneous frequency data [83,84]. The HT of a 279 

discrete Gaussian white noise can produce as many different instantaneous frequency values as the 280 

number of samples of the signal. Due to the previous, broadband signals are not good candidates for 281 

Hilbert spectrum analysis and it is recommended to process, or band filter, the raw data before any 282 

further analysis in order to apply HT to mono-frequential component or pseudo-mono-frequential 283 

component signals. Hence, the application of MODWPT to decompose the acceleration data is crucial 284 

for the computation of well-behaved instantaneous frequency functions.  285 

The HT constructs an analytical signal through the convolution of a function 𝑥(𝑡) with the 286 

function 𝑔(𝑡) = 1 𝜋𝑡⁄ , according to the following formula: 287 

𝐻𝑇{𝑊𝑚(𝑡)} =  𝑊𝑚(𝑡) ∗ 𝑔(𝑡) =
1

𝜋
∫

𝑊𝑚(𝜏)

𝑡 − 𝜏
 𝑑𝜏

∞

−∞

 
(4) 

The analytical signal 𝐴𝑆𝑛,𝑚 is a representation of a signal or data stream as a complex pair where 288 

the imaginary part is the HT of the real part 𝑊𝑚(𝑡), namely: 289 

𝐴𝑆𝑚(𝑡)  =  𝑊𝑚(𝑡)  +  𝑖𝐻𝑇{𝑊𝑚(𝑡)} 
 (5) 

By the modulus operation, the Instantaneous Amplitude 𝐴𝑖𝑛𝑠𝑡  is calculated as follows: 290 

𝐴𝑖𝑛𝑠𝑡(𝑡) = |𝐴𝑆𝑚(𝑡)| =  √𝑊𝑚(𝑡)2 + (𝐻𝑇{𝑊𝑚(𝑡)})2 
 (6) 

Then, by the time derivative of the analytical signal´s complex angle 𝜃𝑖𝑛𝑠𝑡𝑚
, the Instantaneous 291 

Frequency 𝑖𝑛𝑠𝑡 is obtained: 292 

𝜃𝑖𝑛𝑠𝑡𝑚
=  𝑎𝑟𝑐𝑡𝑔 (

𝐻𝑇{𝑊𝑚(𝑡)}

𝑊𝑚(𝑡)
)  (7) 

𝑖𝑛𝑠𝑡𝑚
(𝑡) =

𝜕𝜃𝑖𝑛𝑠𝑡𝑚

𝜕𝑡
  (8) 

Being computed through the time derivative of the oscillatory phase, the instantaneous frequency 293 

is a time-dependent parameter.  294 

At the output of this stage, the computed instantaneous amplitude data has a space allocation equal 295 

to [𝐶ℎ, 𝑁, 2𝑚], whilst the instantaneous frequency data has a space complexity of [𝐶ℎ, 𝑁 − 1, 2𝑚] (the 296 

𝑁 − 1 number of samples of the obtained instantaneous frequency data is due to the derivation of the 297 

phase angle).  298 

In addition to the need for well-behaved pseudo-mono-component narrow-band signals, the HT 299 

has some well-known limitations that can affect its performance as well as the computed outputs. 300 

Mainly, it is restricted by the Bedrosian and the Natter theorems [85] and can lead to outliers in the 301 

results and even negative samples of instantaneous frequencies in case of sudden changes in the input 302 

data amplitude and discontinuities. The Hilbert transform is not the only approach to compute 303 

instantaneous components from time series; several approaches have been developed especially for 304 

machinery and electrical power conditioning and maintenance, and for the signal processing fields. 305 

For instance, Direct-Quadrature (DQ) algorithms such as the Clarke-Park Transform [86] are 306 

intensively used to assess the instantaneous frequency on three-phase power systems, whereas 307 
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Discrete Energy Separation Algorithms (DESA), like the Teager-Kaiser operator [87,88] are 308 

extensively applied in speech recognition and audio analysis. Direct approaches have also been 309 

developed, like the Zero-Crossing (ZC) points-based algorithms, that analyse the number of zero-310 

crossing points in the data in order to estimate a frequency value, but due to the nature of the 311 

calculation, the resulting value is extended to the full period of observation, producing an 312 

approximation to the instantaneous values [89,90]. Other authors have developed alternative 313 

proposals, like applying a direct ninety-degrees-shift to the data stream to extract a pseudo-analytical 314 

instantaneous phase or performing recursive normalizations of the data in order to remove the 315 

influence of the modulated amplitude on the computation of the instantaneous frequency [91]. 316 

Nevertheless, many of these algorithms remain sensitive to noise, particularly the algorithms based on 317 

cubic-splines envelopes like the Normalized Hilbert Transform (NHT) method [91], or the Teager-318 

Kaiser operator that is particularly sensitive to wideband noise with energy levels close to or above 319 

the zero decibels [88]. Furthermore, all these methods require pseudo-mono-component-narrow-band 320 

signals as well, thus, the decomposition of the data before the calculation of the instantaneous 321 

frequency remains mandatory and of high importance. As for the proposed EMILIA algorithm, the 322 

aim is to perform modal analyses with strong motion data from seismic events, which are likely to 323 

induce non-linearities and sudden changes in the signal amplitudes and frequency content, so that it is 324 

not the burden of this stage of the algorithm to smooth the computed instantaneous frequency data, 325 

neither to remove outlier samples. According to the previous, and in order to improve the 326 

instantaneous frequency out-puts computed by the Hilbert transform adopted by the EMILIA 327 

algorithm, in the third and final stage of the proposal, Probability Density Functions (PDF) of the 328 

instantaneous frequency data are computed and Bayesian inference is applied to estimate the final 329 

outputs using for this purpose the total amount of samples available from all the channels of interest. 330 

2.3 Stage 03: Probability analysis 331 

In the third and final stage of the algorithm, Probability Density Functions (PDFs) of the 332 

instantaneous frequency data are computed and Bayes inference is applied to estimate the final 333 

outputs. Table 1 presents the computed variance (𝜎2) and the maximum probability density of the 334 

instantaneous frequency values for the subsequences presented in Figure 1. The seventh subsequence 335 

presents a lower variance and a higher probably density peak than the other two, indicating a likely 336 

periodicity of the analysed data. 337 

Table 1: Maximum probability density and variance from the first, seventh, and last 338 
subsequences instantaneous frequency values. 339 

Subsequence Maximum Probability 𝜎2 

1 2.435   0.127 

7 7.160   0.004 

16 2.659 24.697 

 340 

In order to obtain singleton natural frequency values, the Bayesian inference is adopted by 341 

EMILIA as a method of statistical inference in which the computed probability distributions for any 342 

hypothesis (channels) are updated upon the availability of more observations (other channels) [92]. 343 

Bayes theorem is defined as: 344 

𝑃(𝐻|𝑂)   =   
𝑃(𝑂|𝐻) ∗ 𝑃(𝐻)

𝑃(𝑂)
 (9) 

where 𝑂 is the new set of observations, 𝐻 is the hypothesis whose probability may be affected by the 345 

new observations 𝑂, 𝑃(𝐻) is the estimate of the probability of the hypothesis previous to the new 346 

observations 𝑂, 𝑃(𝐻|𝑂) is the updated probability of H given 𝑂, 𝑃(𝑂|𝐻), also called likelihood is the 347 

probability of observing 𝑂 given 𝐻, and 𝑃(𝑂) is the marginal likelihood. Computing any PDF 348 

requires the definition of an expected probability distribution to perform a parametric data fit. Normal 349 

parametric distributions are commonly chosen, nonetheless, they are not always a good fit for the 350 

probability distributions that can be found in instantaneous frequency information of structural modes. 351 

https://en.wikipedia.org/wiki/Marginal_likelihood
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Indeed, the latter often present resonant peaks with high amplitude and narrow bandwidth, hardly 352 

fitted by a Gaussian distribution. More details about such problems are provided in sub-section 5.2.1. 353 

To overcome this issue, non-parametrical Kernel distributions are here preferred. A Kernel 354 

distribution is a nonparametric representation of the probability distribution of a random variable, and 355 

it is defined by a smoothing function and a bandwidth value that control the smoothness of the 356 

resulting density curve. For any real values of x, the kernel density estimator is defined as: 357 

𝑓ℎ(𝑥) =  
1

𝑁ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑛

ℎ
)

𝑁

𝑛=1

 (10) 

where h is the bandwidth, whereas 𝑁 is the number of samples, 𝑥1, 𝑥2, … , 𝑥𝑁 are random samples 358 

from an unknown distribution and K(·) is the kernel smoothing function that defines the shape of the 359 

curve used to generate the computed probability distribution. Further information about Kernel 360 

distribution can be found in [93]. 361 

At the beginning of the third stage, Kernel distribution Probability Density Functions (KPDF) are 362 

computed for each one of the instantaneous frequency functions. Afterwards, the Bayes theorem is 363 

applied to calculate Bayes likelihoods (BPDF) and the singleton frequency outputs 𝑓𝑀𝐸𝑉 through 364 

Bayes Most Expected Value (MEV). 365 

An example of a probability spectrum computed from an SDOF undamped resonator can be seen 366 

in Figure 1. The BPDF obtained from the seventh subsequence (green continuous line) presents a 367 

peak at 4 Hz, showing a considerably higher probability than the other subsequences whose BDPFs 368 

are coloured in red. The EMILIA algorithm correctly identifies the modal information and rejects the 369 

subsequences with low probability distributions, which are likely produced by stochastic data. 370 

As per the authors’ experience, for the automatic identification of the modes, a default probability 371 

threshold equal to ten times the decomposition level is recommended. 372 

2.4 Algorithm outputs space complexity  373 

The final algorithm outputs are time-dependent functions carrying information about the 374 

instantaneous frequency, the instantaneous amplitude and the instantaneous displacement shapes 375 

associated with the monitored structure. The displacement mode shapes are determined through 376 

trapezoidal integration of the acceleration subsequences computed in the first stage. For the sake of 377 

clarity, it is noted that the space complexity for the 𝑖𝑛𝑠𝑡 data is [𝐶ℎ, 𝑁 − 1, 2𝑚], the space 378 

complexity for the 𝐴𝑖𝑛𝑠𝑡 data is [𝐶ℎ, 𝑁, 2𝑚], and the space complexity for the Instantaneous 379 

Displacement (𝜱𝑖nst) data is [𝐶ℎ, 𝑁, 2𝑚]. At the bottom of Figure 1, an example of the final visual 380 

output that merges the frequency and amplitude information together with their evolution over time is 381 

reported. The computed 𝑖𝑛𝑠𝑡 data are plotted against their related 𝐴𝑖𝑛𝑠𝑡. Each sample is coloured 382 

according to a scale that allows identifying the time instant within the total duration of the acquisition. 383 

In the same graph, Bayes likelihoods are shown distinguishing with a continuous green line the 384 

identified modal information (7th subsequence with 𝑓𝑀𝐸𝑉 = 4 Hz) that present a clearly higher 385 

probability density peak as compared to the other BPDFs computed from stochastic data, hereby 386 

presented with red continuous lines. For pointwise analyses, as in the example, the computed KPDFs 387 

and BPDFs coincide. However, in the case of a multichannel analysis, the differences between the 388 

computed KPDFs and the final BPDFs are relevant, as further detailed in sub-section 5.2.2. 389 

2.5 Decomposition algorithms benchmarking test 390 

A brief comparison of time-domain and frequency-domain decomposition algorithms is conducted 391 

to prove the selection of the MODWPT wavelet decomposition for the EMILIA algorithm. The SDOF 392 

example displayed in Figure 1 is employed for this purpose. Figure 2 shows the Hilbert spectrograms 393 

computed from three frequency-domain decompositions (HVD, EWT and VMD, on the left), and 394 

three time-domain decompositions (EMD, MODWT and MODWPT, on the right). The plots highlight 395 

the better performance of the VMD and MODWPT decomposition algorithms, as both allow a clear 396 

identification of the required information even through simple visual inspection (high-intensity data 397 
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around 4 Hz). On the other hand, HVD and EMD present the worst performance by generating almost 398 

flat Hilbert spectrograms. 399 

 400 
Figure 2: Comparison of Hilbert spectrograms computed with different frequency-domain decompositions (HVD, EWT, 401 

VMD) and time-domain decompositions (EMD, MODWT, MODWPT). 402 

Table 2 summarizes some statistics from the instantaneous frequency data computed by the six 403 

decomposition algorithms. In the same table, the variance and the mean value of the instantaneous 404 

frequency computed from the component holding the modal information are also presented, 405 

corroborating the result that VMD and MODWPT decompositions lead to the best performance. For a 406 

detailed comparison between decomposition algorithms for SHM intents, the reader is referred to 407 

[94]. 408 

Table 2: Statistics computed from the instantaneous frequency data generated by the different decomposition 409 
algorithms. Data samples come from the time series containing the modal information. 410 

 411 

 412 

 413 

 414 

 415 

 416 

It is worth noting that, being VMD a frequency-domain decomposition, the possibility of 417 

computing time-varying mode shapes and their higher derivatives is restricted by the same limitations 418 

as any Fourier analysis-based decomposition and, especially, by Heisenberg’s uncertainty principle. 419 

  Frequency Domain Time Domain 

Algorithm HVD EWT VMD EMD MODWT MODWPT 

Components 7 16 16 10 5 16 

𝒇𝒊𝒏𝒔𝒕 variance 0.5415 0.1293 0.0015 19.8271 0.4517 0.0039 

𝒇𝒊𝒏𝒔𝒕 mean 3.4966 4.0050 4.0000 4.1714 3.9600 4.0000 



11 

 

On the other hand, the MODWPT decomposition is a time-domain algorithm, hence the only 420 

requirement for the signal is to be causal. Accordingly, the MODWPT is the algorithm selected to 421 

conduct the EMILIA decomposition stage. 422 

The application of non-parametric non-stationary signal processing methods to vibration data for 423 

modal parameter extraction in the structural field has to properly deal with features like (1) Modes 424 

located in the extreme lower part of the frequency spectrum; (2) Highly noise-contaminated signals; 425 

(3) Multiple unexpected high-transient events; (4) Structural response to ambient vibrations with very 426 

low amplitude; (5) Structural response to earthquake excitations with extreme high amplitude; (6) 427 

Measurements conducted through multi-channel setups. The EMILIA core decomposition algorithm 428 

(MODWPT) is selected because of its remarkable capabilities of performing full-resolution analysis 429 

on any part of the frequency spectrum, which means that this decomposition can work very well also 430 

in the presence of low-frequency contents as expected in the case of large structures responses. 431 

Additionally, the MODWPT algorithm performs the data decomposition in the time domain through 432 

the convolution of the scaled mother wavelet function with the signal to assess, thus ensuring great 433 

time resolution and a robust modal identification against noise-contaminated signals. Finally, as there 434 

is no decimation of the data, all the outputs have the same amount of samples, which allows 435 

performing further statistical analyses to compute the final outputs using information from all the 436 

channels. 437 

3. Application and validation through numerical data  438 

3.1 Case study description and preliminary analyses 439 

The testing and validation of the algorithm presented in Section 2 are carried out through the 440 

modelling of an idealized three-span 2D bridge conducted on proprietary Finite Element (FE) analysis 441 

software [95]. The bridge features a 0.5 m thick deck supported by two square piers of 1.0 m edge and 442 

4.5 m height, with a main span of 30 m length and two lateral spans of 14 m each (58 m long in total). 443 

For simulating the soil beneath piers and abutments, simple 1D springs are used as boundary 444 

connections in both horizontal and vertical directions. Such a structure is conceived with the intent of 445 

guaranteeing a simple yet refined baseline model to address the instantaneous dynamic identification 446 

problem without incurring into cumbersome behaviours. A schematic representation of the model is 447 

presented in Figure 3.   448 

 449 
Figure 3: 2D bridge model schematic view. The damage location is highlighted in yellow. 450 

In this “undamaged” scenario (ST00), a linear-elastic isotropic homogeneous material, with 451 

Young’s modulus 𝐸d = 34000 N/mm2, Poisson’s ratio 𝜈d = 0.2 and mass density 𝜌d = 2950 kg/m3 is 452 

adopted for the deck (d), whereas a linear-elastic isotropic homogeneous material with 𝐸p = 22000 453 

N/mm2, 𝜈p = 0.2 and 𝜌p = 2800 kg/m3 is considered for the piers (p). Boundary spring elements 454 

located under the abutments have a stiffness equal to Kav = 1.8𝑒 + 08 N/m (vertical) and 𝐾ah = 1.8𝑒 + 455 

08 N/m (horizontal), while the boundary springs used under the piers feature a stiffness of 𝐾pv = 1.8𝑒 456 

+ 08 N/m (vertical) and 𝐾ph = 2.1𝑒 + 08 N/m (horizontal). The Rayleigh damping mass factor is equal 457 

to 1.07520 1/s and the stiffness factor is equal to 0.000734350 s. As for the mesh discretization, three-458 

node two-dimensional beam elements of 0.25 m length - with three degrees of freedom per node, two 459 

translational and one rotational, and a quadratic order displacement interpolation - are adopted, 460 

resulting in a final model with 278 elements and 541 nodes. With the aim of investigating the 461 

EMILIA effectiveness and accuracy, two configurations with asymmetric progressive “damage” 462 

scenarios in a single location are generated by applying to a selected zone of the deck (red-coloured 463 
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section of the main span in Figure 3) a stiffness reduction factor equal to 50% (ST01) and 75% 464 

(ST02) of the initial value, respectively.  465 

A preliminary eigenvalue analysis is carried out for the bridge under the three scenarios (ST00, 466 

ST01, ST02) to obtain all the modal information necessary to drive the selection of measurement 467 

points, sampling frequency and total duration of the acquisition window for the subsequent analyses. 468 

The first ten eigenvectors and the corresponding eigenvalues are presented in Figure 4. It is observed 469 

that the first, fourth, fifth, eight and tenth eigenvectors are symmetrical vertical bending modes; the 470 

second, third, seventh, and ninth are asymmetrical vertical bending modes; whilst the sixth is a 471 

longitudinal bending mode. As expected, the number of inflexion points of the deflected bridge 472 

shapes progressively increases for higher-order frequencies with the exception of mode 4, which is a 473 

local mode involving exclusively the lateral spans.  474 

 475 
Figure 4: First ten vibration modes of the bridge computed for the ST00 stiffness configuration. 476 

The directional effective modal masses for the same ten modes are reported in Table 3. It is noted 477 

that the modes that significantly contribute to the vibration response of the structure fall in the range 478 

1-10 Hz. 479 

Table 3: Eigenvalues and directional effective modal masses of the first ten numerical modes of the bridge  480 

Mode fn [Hz] 
Horizontal Vertical 

Eff. Mass [%] Ʃ. Eff. Mass [%] Eff. Mass [%] Ʃ. Eff. Mass [%] 

1 1.87 0.00 0.00 27.73 27.73 

2 5.00 0.91 0.91 0.00 27.73 

3 5.71 0.56 1.47 0.00 27.73 

4 5.74 0.00 1.47 34.67 62.40 

5 9.63 0.00 1.47 13.33 75.73 

6 9.67 91.24 92.71 0.00 75.73 

7 13.54 0.14 92.85 0.00 75.73 

8 14.72 0.00 92.85 13.69 89.41 

9 16.94 2.14 94.99 0.00 89.41 

10 19.80 0.00 94.99 7.13 96.54 
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Regarding the different stiffness (or damage) scenarios, the variations of the numerical frequencies 481 

for each mode and for each stiffness configuration are reported in Table 4. In global terms, the 482 

simulated structural damage mostly affects the first, second, fifth, and ninth modes of the bridge, 483 

which feature indeed the highest frequency differences over the three stiffness configurations.  484 

Table 4: Eigenvalues of the bridge for the three stiffness configurations (relative variation is also provided). 485 

Mode fST00 [Hz] fST01 [Hz] Δ00-01 [%] fST02 [Hz] Δ00-02 [%]   

1 1.87 1.81 -3.17 1.73 -7.68 

2 5.00 4.57 -8.54 4.23 -15.35 

3 5.71 5.70 -0.22 5.69 -0.34 

4 5.74 5.74 0.01 5.74 -0.06 

5 9.63 9.16 -4.85 8.48 -11.90 

6 9.67 9.65 -0.23 9.62 -0.55 

7 13.54 13.20 -2.53 12.66 -6.47 

8 14.72 14.56 -1.09 14.39 -2.21 

9 16.94 16.32 -3.69 15.64 -7.68 

10 19.80 19.50 -1.52 19.17 -3.19 

Linear transient analyses are also performed for each scenario by applying ten-minute random 486 

vibrations in the form of bi-directional Gaussian white-noise excitations at twenty-nine selected 487 

nodes, nineteen distributed along the main deck and five over each pier. Different random input 488 

signals sampled at 0.01 seconds (100 Hz), with peak accelerations of 0.0001 g, are considered for 489 

each node and direction. Figure 5 shows the excitation points where the input loading histories are 490 

applied (red-colour dots). The transient analyses are performed resorting to the Hilbert-Hughes-Taylor 491 

method with 𝛼 =  −0.1, 𝛾 = 1 2⁄ (1 − 2𝛼), 𝛽 = 1 4⁄ (1 − 𝛼)2, resulting in a second-order accurate 492 

and unconditionally stable integration scheme. Both the time variation of the excitation (Δ = 0.01 s) 493 

and the shortest natural period of interest of the bridge (T6 = 0.103 s) are taken into account to choose 494 

the best time step Δt for the analysis, thus resulting in a Δt = 0.01 s. The convergence criterion is 495 

based on the energy norm with a tolerance of 0.001. Upon analysis, the nodal accelerations along X 496 

and Y are recorded at thirteen different locations (Figure 5), selected according to the significance of 497 

the modal information carried by each node in the deformed shapes of interest for the structure (e.g. 498 

higher displacements in the eigenvectors).  Data are sampled at 100 Hz, thus resulting in 60.000 499 

datapoints per channel. 500 

 501 
Figure 5: Distribution of the points selected for the application of random excitations (top, yellow dots). 502 

Deployment of the nodes selected for measuring the acceleration response (bottom, green dots).  503 

3.2 EMILIA-based dynamic identification for single scenarios 504 

Based on the simulated acceleration outputs, the dynamic characterization of the bridge in the three 505 

stiffness configurations is carried out by making use of two modal estimators implemented in 506 

proprietary modal analysis software [96]. i.e. the Enhanced Frequency Domain Decomposition (EFDD) 507 

and the Stochastic Subspace Identification (SSI), as well as applying the EMILIA algorithm coded in a 508 

proprietary mathematical suite [97,98]. All the input datasets use the same sampling frequency of the 509 
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transient analyses and no further signal processing techniques are applied. The EMILIA algorithm 510 

produces a six-level decomposition in order to generate a total of 64 subsequences, enough to cover the 511 

complete frequency span from 0 until the Nyquist frequency (50 Hz). A Daubechies mother wavelet 512 

with 45 vanishing moments is employed, and the probability density functions are computed using the 513 

non-parametric Kernel distribution with a normal smoothing function and with a resolution of 1024 lines 514 

covering the whole frequency spectrum of interest from 0 to 𝑓𝑠/2 Hz. According to the criteria 515 

mentioned in sub-section 2.3, the probability threshold for automatic modal identification is set to ten 516 

times the decomposition level, namely to 60%. Regarding the traditional modal identification methods, 517 

the EFDD estimator presents a resolution of 1024 FFT lines with a 66% of overlap for the spectral 518 

densities estimations, whereas the SSI with the Extended Unweighted Principal Component algorithm 519 

(UPCX) adopts 100 state-space dimensions. The natural frequency results computed by EFDD, SSI-520 

UPCX and EMILIA algorithms for the three stiffness scenarios are presented in Table 5, Table 6, and 521 

Table 7 along with the eigenvalue results of the FE model, here provided as comparative metrics to 522 

assess the EMILIA algorithm’s accuracy against established estimators. The percentage errors 523 

between numerical and (simulated) experimental frequencies highlight an excellent performance of 524 

the EMILIA algorithm in terms of frequency estimations, being these in very good agreement both 525 

against the numerical counterparts and the results from the conventional output-only modal 526 

identification algorithms. It is stressed that, in order to perform an unbiased comparison and 527 

validation of the results, only the four modes successfully identified by all the modal estimators are 528 

further considered in this work. They are the first, second, third and sixth modes, hereafter referred as 529 

Mode 01, Mode 02, Mode 03 and Mode 04, respectively.  530 

Table 5: Natural frequencies computed for the ST00 scenario with EFDD, SSI, and EMILIA algorithms. 531 

Mode fFEM [Hz] fEFDD [Hz] Δ [%] fSSI [Hz] Δ [%] fEMILIA [Hz] Δ [%] 

1 1.87 1.86 -0.53 1.87 0.00 1.86 -0.53 

2 5.00 4.93 -1.40 4.93 -1.40 4.93 -1.40 

3 5.71 5.62 -1.58 5.62 -1.58 5.63 -1.40 

4 9.67 9.13 -5.58 9.14 -5.48 9.10 -5.89 

Table 6: Natural frequency values computed for the ST01 scenario with EFDD, SSI, and EMILIA algorithms. 532 

Mode fFEM [Hz] fEFDD [Hz] Δ [%] fSSI [Hz] Δ [%] fEMILIA [Hz] Δ [%] 

1 1.81 1.81 0.00 1.81 0.00 1.81 0.00 

2 4.57 4.52 -1.09 4.52 -1.09 4.49 -1.75 

3 5.70 5.61 -1.58 5.62 -1.40 5.67 -0.53 

4 9.65 9.39 -2.69 9.40 -2.59 9.38 -2.80 

Table 7: Natural frequency values computed for the ST02 scenario with EFDD, SSI, and EMILIA algorithms. 533 

Mode fFEM [Hz] fEFDD [Hz] Δ [%] fSSI [Hz] Δ [%] fEMILIA [Hz] Δ [%] 

1 1.73 1.72 -0.58 1.72 -0.58 1.71 -1.16 

2 4.23 4.19 -0.95 4.19 -0.95 4.2 -0.71 

3 5.69 5.6 -1.58 5.6 -1.58 5.63 -1.05 

4 9.62 9.35 -2.81 9.16 -4.78 9.47 -1.56 

 534 

Figure 6 shows the EMILIA time-dependent probability spectrum computed for the ST00. Here, 535 

the instantaneous samples are reported as dots coloured according to a scale that is a function of the 536 

time instant. These instantaneous frequency samples are computed as a time derivative of the 537 

instantaneous complex phase, and as with any complex plot, they tend to show chaotic behaviour, 538 

especially in the presence of stochastic data or sudden changes in the analysed information. In the 539 

same plot, the KPDFs of the instantaneous frequency samples are reported as red dashed lines 540 

whereas the BPDFs are either red or green continuous lines.  The green continuous lines highlight the 541 

upper threshold BPDFs automatically computed for the four selected modes and whose corresponding 542 

𝑓𝑀𝐸𝑉 are reported in the legend; by contrast, the red continuous lines show the likelihood of rejected 543 

modes. The differences in the probability peaks between the identified modes and the rejected ones, as 544 
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well as between BPDFs and KPDFs (red dashed lines) highlight the remarkable improvement in the 545 

modal identification process gained by using Bayesian inference. As all considered vibration modes 546 

fall within the frequency range 0-10 Hz, only this part of the spectra is presented. Figure 7 and Figure 547 

8 present similar probability spectra but are computed for ST01 and ST02 configurations; for a 548 

straightforward visualization of the PDFs, the instantaneous feature variation is not presented.  549 

 550 

Figure 6: EMILIA time-dependent probability spectrum computed from ST00 stiffness configuration using all available 551 
channels, with a DB45 mother wavelet function and a six-level MODWPT decomposition. 552 

 553 

Figure 7: EMILIA probability spectrum computed from ST01 stiffness configuration using all available channels, with a 554 
DB45 mother wavelet function and a six-level MODWPT decomposition. 555 
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 556 

Figure 8: EMILIA probability spectrum computed from ST02 stiffness configuration using all available channels, with a 557 
DB45 mother wavelet function and a six-level MODWPT decomposition. 558 

 559 

3.3 MAC validation for EMILIA algorithm instantaneous mode shapes 560 

As mentioned in Section 2, one of the major strengths of the EMILIA algorithm lies in the 561 

possibility to automatically compute time-dependent outputs for every single mode, thereby yielding 562 

as many instantaneous mode shapes as the number of samples, or time-steps, of the analysed data.  563 

To assess the accuracy of the time-varying modal displacements, the Modal Assurance Criterion 564 

(MAC) is here applied to compare each one of the instantaneous mode shapes computed by the 565 

EMILIA algorithm (“dynamic values”) against the corresponding eigenvectors computed through the 566 

FE eigenvalue analysis and through the EFDD and SSI estimators (“static values”).  567 

The outputs come in the form of histograms describing the number of occurrences of the computed 568 

MAC values over the entire time window (60.000 datapoints). If no damage occurs during the 569 

acquisition of the nodal responses, instantaneous MAC values are expected to be consistently equal to 570 

or greater than 0.90, implying a correct subsequence and a positive identification of the undamaged 571 

mode shapes computed by EMILIA.  572 

Conversely, histograms with higher amounts of instantaneous MAC values lower than 0.60 are 573 

expected if structural damage occurs during the acquisition of the vibration response of the system.  574 

Figure 9 shows the instantaneous MAC histograms measuring the degree of consistency between 575 

the four considered mode shapes computed by the EMILIA algorithm for the ST00 stiffness 576 

configuration and the corresponding numerical eigenvectors or experimental mode shapes.  577 

For the sake of completeness, Figure 10 gives a visual insight into all four deformed shapes of the 578 

undamaged bridge deck estimated by the EMILIA algorithm (f1 = 1.86 Hz, f2 = 4.93 Hz,   f3 = 5.63 579 

Hz,  f4 = 9.10 Hz) at the instant associated with the maximum MAC value (MAC = 1) along with the 580 

evolution of the MAC histograms across the entire number of samples.  581 

As expected, instantaneous MAC values are nearly always greater than 0.90 for all the considered 582 

modes, demonstrating the algorithm capability of not incurring into misidentifications and false 583 

positives, problems that are rather common in many standard modal identification algorithms. 584 
 585 
 586 

 587 
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 588 
 589 

 590 
Figure 9: Instantaneous MAC results for the considered mode shapes of the undamaged bridge.  591 

 592 
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 593 
Figure 10: Mode shapes computed by the EMILIA algorithm for the ST00 configuration and relative instantaneous 594 

MAC against the numerical eigenvectors. 595 

4. Time-dependent modal analysis across successive damage scenarios 596 

An additional data set is built by combining the three bridge damage scenarios to generate a unique 597 

30-minute acquisition of the 26 nodal responses (13 accelerations per direction, 180.000 datapoints 598 

per channel), suitable to be processed through the EMILIA algorithm and to be exploited for a 599 

continuous time-dependent modal analysis. The resulting trend of the instantaneous frequency values 600 

for the four modes of interest for the bridge across successive damage scenarios can be observed in 601 

Table 8. 602 

Table 8: EMILIA frequency results and percentage difference among the three stiffness configurations. 603 

Mode fMEVST00 [Hz] fMEVST01 [Hz] Δ00-01 [%] fMEVST02 [Hz] Δ00-02 [%] 

1 1.86 1.81 -2.69 1.71 -8.06 

2 4.93 4.49 -8.92 4.20 -14.81 

3 5.63 5.67 0.71 5.63 ≈ 0.0 

4 9.10 9.38 3.08 9.47 4.07 
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Figure 11 shows the time-dependent probability spectrum computed using the 30-minute-long data 604 

set. The colour scale on top of the plot allows tracking both the frequency and amplitude variations of 605 

the identified modes over time, instant-by-instant.   606 

 607 
Figure 11: EMILIA time-dependent probability spectrum computed across all stiffness configurations. Close-up of the 608 

first mode’s instantaneous frequency values over the three scenarios.  609 

The EMILIA algorithm enables to follow the instantaneous frequency changes passing from the 610 

ST00 sound condition (blue samples) to the ST01 stiffness configuration (green samples) and, finally, 611 

to the ST02 stiffness configuration (yellow samples).  612 

The close-up presented in Figure 11 provides a better insight into the changes in the instantaneous 613 

frequency values for the first mode and how EMILIA outcomes enable to follow this evolution over 614 

time, highlighting progressive frequency downshifts from 𝑓𝑀𝐸𝑉 = 1.86 Hz (ST00, blue samples) until 615 

𝑓𝑀𝐸𝑉 = 1.71 Hz (ST02, yellow samples).  616 

The blue striped line rectangle highlights the modal information about the second mode, whose 617 

instantaneous frequency values decrease from the initial 𝑓𝑀𝐸𝑉 of 4.93 Hz, for the ST00 scenario, until 618 

the 𝑓𝑀𝐸𝑉 of 4.20 Hz in the ST02 configuration.  619 

Analogously, the green striped line rectangle identifies the instantaneous frequency data from the 620 

third mode. Unlike the first two modes, the third one does not undergo any sudden change in the 621 

instantaneous frequency values that remain almost constant at around 5.65 Hz throughout the 622 

acquisition window, irrespective of the new scenarios outbreak. Given the type of deflected shape 623 

featured by this mode, the insensitivity to mid-span damage was expected. A slight frequency increase 624 

is instead found for the fourth mode, highlighted in the same Figure by the pink striped line rectangle. 625 

Dealing with a longitudinal bending mode, the induced damage does not lead to an overall decrease of 626 

the global modal parameters of the bridge. 627 

The evolution of the system’s condition is further assessed by analysing the instantaneous modal 628 

displacements. Figure 12 presents, for each scenario, the deflected shapes of the four vibration modes 629 

tracked by the EMILIA algorithm, displayed in the configuration corresponding to a MAC value of 1 630 

(numerical eigenvectors are used as reference metrics), together with the evolution of the 631 

instantaneous MAC values over the entire number of samples. The close inspection of the plots allows 632 

perceiving that the first three mode shapes experience only minor modifications upon the damage 633 

outbreak. As damage is a local phenomenon, the deflected shapes associated with global low-634 

frequency modes are always less affected by component-wise shifts. The higher the number of 635 
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inflexion points of the mode, which typically increases for higher-order frequencies, the greater the 636 

coordinate-dependent variation due to the occurrence of damage [99]. 637 

To test the capability of the EMILIA algorithm of catching possible damage-induced variations of 638 

the mode shapes during a single acquisition, further cross MAC validation is carried out considering 639 

the four FE eigenvectors estimated from the undamaged condition (ST00) as reference metrics. 640 

Progressive MAC values between EMILIA and FE mode shapes are computed in each one-second 641 

time-window, namely the maximum out of the 100 instantaneous mode shapes estimated in each 642 

second (as per the sampling frequency).  643 

 644 
Figure 12: Evolution of the bridge mode shapes and instantaneous MAC values with progressive damage. 645 

The obtained results are reported in Figure 13 as time-dependent MAC plots. After each damage 646 

onset, clear drops can be observed for the MAC values associated with the fourth mode and, to a 647 

minor extent, with the first and second modes. At the same time, the variance of the MAC values 648 
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increases with damage across the different stiffness configurations (except for the third mode, whose 649 

MAC values remain almost constant throughout the observation time). 650 

 651 

 652 
Figure 13: Evolution of the time-dependent MAC values with progressive damage for all four modes of interest. 653 

The same time-dependent data can be also plotted in a traditional Hilbert spectrogram, aiming at 654 

identifying the precise moment of occurrence of sudden changes in the instantaneous frequency or 655 

instantaneous amplitude information. The Hilbert spectrogram associated with the first mode of the 656 

bridge is presented in Figure 14. Indeed, it is possible to locate with accuracy when the instantaneous 657 

frequency value drops after each damage onset. Although providing a better resolution in time, the 658 

Hilbert spectrum lacks information related to the probability analysis outcomes. 659 
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 660 
Figure 14: Hilbert spectrogram showing the first mode's instantaneous frequency evolution across the three stiffness 661 

configurations (white continuous line shows a MA of the same data). 662 

5. Algorithm tests: parameter settings, robustness and sensitivity 663 

Upon completion of the validation stage, additional tests are carried out to investigate the 664 

robustness and the sensitivity of EMILIA to its main parameters and processes. To this end, the same 665 

numerical case study is used to generate the needed datasets. 666 

5.1 Decomposition level 667 

During validation, a six-level decomposition was set according to the criteria reported in sub-668 

section 2.1. This produced 64 subsequences from the wavelet decomposition, ensuring a good 669 

identification of the four target modes. The analyses of the ST00 dataset are here repeated considering 670 

four, six, and eight-level decompositions and using the same non-parametric Kernel distribution. 671 

According to the results reported in Table 9, by decreasing the number of decompositions below a 672 

certain level, the algorithm misses the identification of some modes, especially if they are closely 673 

spaced. 674 
Table 9: ST00 8-level, 6-level, and 4-level Kernel results. 675 

Modes 
8-level decomposition 6-level decomposition 4 -level decomposition 

fMEV [Hz] σ² BPDFmax fMEV [Hz] σ² BPDFmax fMEV [Hz] σ² BPDFmax 

1 1.86 ≈ 0.0 20.48 1.86 ≈ 0.0 20.48 1.86 ≈ 0.0 20.48 

2 4.93 ≈ 0.0 20.48 4.93 ≈ 0.0 19.55 
5.04 0.004 8.96 

3 5.62 ≈ 0.0 20.48 5.63 ≈ 0.0 14.65 

4 9.23 ≈ 0.0 20.48 9.10 ≈ 0.0 14.8 9.08 ≈ 0.0  20.48 

For instance, the four-level decomposition produces only 16 subsequences, not enough to properly 676 

cover the 50 Hz frequency span. Thus, the algorithm outputs for the second and third modes are 677 

mixed (highlighted in light grey in Table 9), showing considerably lower probabilities and higher 678 

variance than for the six-level decomposition results. On the other hand, increasing the number of 679 

decompositions leads to higher peaks in the computed BPDFs but, after a certain level, with little 680 

improvement of the modal identification accuracy. 681 

Selecting a large number of decomposition levels is not worth the increment in computational 682 

burden (namely computation time and memory requirements). Yet, at the beginning of any modal 683 

analysis process using the EMILIA algorithm, it is fundamental to establish the initial level of 684 



23 

 

decomposition by checking the frequency span to be analysed and the required frequency resolution. 685 

Indeed, the resolution depends on the space between the modes which is rarely known a-priori.  686 

According to what is mentioned in sub-section 2.1, for a sampling rate between 20 Hz and 50 Hz, 687 

choosing a decomposition level between three and five is a good starting point that produces between 688 

eight and thirty-two subsequences. Similarly, for a sampling rate between 50 Hz and 400 Hz, a four-689 

level to eight-level decompositions would provide between 16 and 256 subsequences, respectively. 690 

With these suggested decomposition levels, and according to the relation (𝑓𝑠 2⁄ ) 2𝑚⁄ ,  choosing a 691 

four-level decomposition for analysing data sampled at 40 Hz will produce 16 spectrum segments, 692 

each one with an equal span of  1.25 Hz; while choosing a six-level decomposition for data sampled at 693 

100 Hz will produce 64 spectrum segments with an equal length of 0.83 Hz each one. Undersetting 694 

the decomposition level will produce longer spectrum spans, thus affecting the accuracy of the 695 

identification and increasing the probabilities of mixing too closely located modes.  696 

Increasing the MODWPT decomposition level does increase the number of computed 697 

subsequences, thus, the number of segments in which the frequency spectrum will be divided 698 

(increased frequency resolution). However, using extremely high decomposition levels produces an 699 

enormous amount of KPDFs and BPDFs placed really close along the frequency spectrum, with a 700 

massive increase in the computational burden. It is worth mentioning that the algorithm has a 701 

geometric O(2m) time complexity related to the decomposition level, and the space complexity of the 702 

outputs is also affected by the same complexity. Moreover, increasing the level likely flattens the 703 

probability spectrum, hindering the modal identification. Therefore, a correct setting of the 704 

decomposition level is paramount and finding a good trade-off between resolution and computational 705 

burden may require a case-specific preliminary modal analysis. 706 

5.2 Probability analyses settings and configurations 707 

5.2.1 Effects of varying the PDF distribution: Nonparametric vs Parametric 708 

During the validation, the dynamic identification was carried out by relying on the non-parametric 709 

Kernel distribution. This distribution is arguably the best fit for instantaneous frequency information. 710 

This can be seen in Figure 15, where PDFs computed resorting to Kernel non-parametric probability 711 

distributions (red lines) are compared against PDFs computed using Gaussian normal probability 712 

distributions (blue lines).  713 

 714 

Figure 15: EMILIA probability spectrum showing the probability analyses outputs computed by using a Gaussian 715 
parametric distribution (blue lines), and by using a Kernel non-parametric distribution (red lines). 716 
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Here, the 30-minute combined scenarios data set is considered, and as expected, the lower peaks of 717 

each PDF computed with the Gaussian distribution are considerably evident. This, in turn, hinders the 718 

automatic identification when Gaussian distribution is used, since the lower peaks fail to overcome 719 

the threshold set to ten-times the decomposition level (60%). Finally, the estimation produced through 720 

Bayesian inference applied to the Gaussian PDFs presents a lower accuracy in terms of frequency 721 

values, which further deteriorates when assessing non-linear data. 722 

5.2.2 Bayes Inference for computing final outcomes 723 

EMILIA algorithm features a final stage based on Bayesian inference to ensure a better and more 724 

accurate calculation of the natural frequencies with respect to the commonly adopted frequentist 725 

approach that directly computes the mean of the maximum probability values from each KPDF. For 726 

instance, Figure 16 on the left shows the EMILIA output for the first mode in the sound condition 727 

scenario (ST00) computed with a resolution of 1024 FFT lines. This is the first bending mode; 728 

therefore, it presents higher modal displacements at mid-span. The exact frequency value is 1.87 Hz. 729 

The red striped lines in Figure 16 show the KPDFs, while the computed BPDFs are plotted in red 730 

continuous line. Comparing the estimated frequency values reported in the left plot legend, it is clear 731 

how using Bayes inference gives more accurate results (𝑓𝑀𝐸𝑉 = 1.86 Hz) than the simple average of 732 

all KPDFs maximum probability values (𝑓𝐴𝑉𝐺 = 1.94 Hz). Such results can be explained by analysing 733 

the distributions computed from each channel data: the KPDFs with higher probabilities are computed 734 

from nodes located at mid-span, while the KPDFs with lower probability peaks are from the nodes 735 

located along the side spans.  These latter KPDFs are shifted over the frequency spectrum, with 736 

respect to the former, leading to a lower accuracy of their mean. Bayesian inference, instead, weights 737 

the estimation based on each measurement point by the computed distribution densities, therefore, 738 

higher peaks contribute more to the final BPDF. 739 

 740 
Figure 16: Mode 1 Kernel PDFs and Bayesian PDFs computed using data from the ST00 stiffness configuration. For the 741 

left plot PDFs computation, a resolution of 1024 FFT lines is used; whilst for the right plot, a resolution of 10240 FFT lines 742 
is used. 743 

5.2.3 PDFs frequency resolution setting 744 

Similar to the decomposition level, the PDFs frequency resolution is an intrinsic parameter of the 745 

EMILIA algorithm, which may affect its performance both in terms of accuracy and computational 746 

burden. Increasing the frequency resolution, indeed, generates better fits and smoothest distributions, 747 
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likely increasing the accuracy of the computed natural frequencies as well. For instance, Figure 16 at 748 

right shows a time-dependent probability spectrum computed from the first mode data of the ST00 749 

scenario using 10240 lines of resolution for all the KPDFs and the subsequent BPDFs.  750 

Comparing this spectrum with the one in the left plot, where the default 1024 lines are used, it is 751 

noted that the distributions present higher amplitude and narrower bandwidth, with an overall 752 

improved estimation performance, considering the exact frequency value of 1.87 Hz. However, this 753 

almost negligible increment in the accuracy of the result (0.53%) requires a considerable increment of 754 

the computational burden, both in the time needed to complete the analysis and in the size of the 755 

output files.  Moreover, the 𝑓𝑀𝐸𝑉 results converge to the one presented in Figure 16’s right-plot 756 

legend by using a resolution of 4069 lines, and they remain almost constant until 32768 lines of 757 

resolution (no further analyses with higher resolution were computed). Therefore, commonly used 758 

resolutions of 512 to 2048 lines can be used as a good initial setting. Case-specific analyses might be 759 

carried out to optimise the parameter setting. 760 

6. Conclusions 761 

In the present work, a novel non-parametric algorithm for automatic time-dependent modal 762 

identification was presented and validated over the simulated structural response of a three-span 763 

bridge, comparing the results against well-known traditional modal estimators (i.e. EFDD and SSI-764 

UPCX). The proposed EMILIA algorithm successfully identified the modal parameters of the system 765 

in its undamaged and damaged conditions, where the latter was obtained by applying a progressive 766 

stiffness reduction factor to a selected area of the deck. The algorithm allowed the processing of data 767 

generated by combining in a single simulated acquisition the records from different structural 768 

conditions, leading to time-dependent outputs. From the analyses performed, the following 769 

conclusions can be drawn:  770 

 771 

• The combination of WT and HT produces an effective mean for decomposing, processing 772 

and assessing structural data. MODWPT decomposition can deal with high noise-773 

contaminated data and can precisely separate MIMO vibration measurements into a set of 774 

orthogonal time-dependent subsequences, where each subsequence is a pseudo-SDOF 775 

spectral component. As broadband signals are not good candidates for HT analysis, and as 776 

ambient structural vibration measurements have the deterministic information well-hidden 777 

between stochastic data, the MODWPT decomposition is of critical importance to 778 

successfully apply the HT to analyse structural vibrations due to ambient excitations and 779 

finally compute well behaved time-dependent instantaneous frequency and instantaneous 780 

amplitude functions. Furthermore, WT and HT are not limited by the superposition 781 

principle, and they can properly extract time and frequency information on non-linear and 782 

non-periodic data, thus they can be used to assess temporal changes in the structural 783 

response, even with measurements recorded during seismic or other exceptional events.  784 

• Using probability analysis to compute the algorithm outputs improves the accuracy and the 785 

performance of the EMILIA algorithm. When dealing with time-varying data, parametric 786 

distributions may cause misidentifications and deteriorate the estimation accuracy. 787 

Therefore, a Kernel non-parametric probability distribution was employed to fit the 788 

instantaneous frequency data produced by each measurement point. Finally, by applying 789 

Bayesian inference to the KPDFs the accuracy in the estimation of the natural frequencies 790 

is further enhanced, irrespective of the number of channels used and the location of the 791 

sensors in the structure.  792 

• For long-term structural assessment, the time-dependent outputs, namely the instantaneous 793 

frequency values and instantaneous mode shapes, allow to directly perform further signal 794 

processing and statistical analyses for SHM and damage identification purposes. In 795 

particular, the EMILIA algorithm was able to correctly track the evolution over time of the 796 

case study frequencies and mode shapes, including their damage-induced shifts, 797 

demonstrating potential beneficial use as a tool for prompt damage detection during 798 

seismic events. 799 
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• The time-dependent modal features that can be considered resorting to an EMILIA-driven 800 

dynamic identification are not limited to instantaneous frequencies and displacement mode 801 

shapes, but also mode shape derivatives (e.g. slopes and curvatures) can be computed as 802 

time-dependent functions. This capability of the EMILIA algorithm to compute time-803 

dependent outputs and to track the temporal evolution of the modal parameters certainly 804 

represents an added value for SHM, especially for rapid structural integrity assessments, as 805 

the proposed tool can be successfully employed for online structural monitoring and 806 

damage identification, safely driving rescue operations during emergency phases. 807 

• A shortcoming of the current configuration of the algorithm is regarding the hurdle to 808 

separating closely spaced modes that are located in the same frequency span, especially 809 

when there are big differences in the complexity of the modes. Large civil structures can 810 

usually be characterised by the assessment of the first two or three pairs of bending modes, 811 

in addition to the first pair of torsional modes, all of them generally located on the lower 812 

part of the frequency spectrum, thus, the EMILIA algorithm is designed to mainly work 813 

with low frequencies. The previous will have as an outcome the previously mentioned 814 

impossibility to separate closely spaced modes located inside the same frequency span, 815 

which will affect especially the higher modes. 816 

 817 

Other aspects that deserve in-depth investigations are the capabilities of the algorithm to properly 818 

extract and render the nonlinearities of time-variant structural responses, in addition to assessing the 819 

robustness of the algorithm to deal with uncorrelated noise contamination. To this end, additional 820 

analyses for a comprehensive assessment of the proposed method are under development making use 821 

of nonlinear time-dependent data from more realistic cases of study subjected to progressive seismic-822 

induced stiffness reductions. Lastly, further exploring EMILIA time-dependent modal outputs and 823 

associated derivatives as damage-sensitive features for online and nearly real-time early warning is, 824 

indeed, the ultimate target of the research. 825 
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