

View

Online


Export
Citation

CrossMark

AUGUST 22 2023

Predicting vehicle category using psychoacoustic indicators
from road traffic pass-by noise 
Ablenya Barros  ; Michiel Geluykens; Frederico Pereira; Luc Goubert; Elisabete Freitas; Cedric Vuye

Proc. Mtgs. Acoust. 51, 040001 (2023)
https://doi.org/10.1121/2.0001775

 11 February 2024 10:35:05

https://pubs.aip.org/asa/poma/article/51/1/040001/2908153/Predicting-vehicle-category-using-psychoacoustic
https://pubs.aip.org/asa/poma/article/51/1/040001/2908153/Predicting-vehicle-category-using-psychoacoustic?pdfCoverIconEvent=cite
https://pubs.aip.org/asa/poma/article/51/1/040001/2908153/Predicting-vehicle-category-using-psychoacoustic?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0002-7781-1392
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
https://doi.org/10.1121/2.0001775
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2061339&setID=592934&channelID=0&CID=753418&banID=520987851&PID=0&textadID=0&tc=1&scheduleID=1987272&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fpoma%22%2C%22inurl%3A%5C%2Fasa%22%5D&mt=1707647705130715&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Fasa%2Fpoma%2Farticle-pdf%2Fdoi%2F10.1121%2F2.0001775%2F18098522%2F040001_1_2.0001775.pdf&hc=8c79071bfe0f3d3607d221fca32f1a8fa6d5f457&location=


Volume 51 http://acousticalsociety.org/

184th Meeting of the Acoustical Society of America 
Chicago, Illinois

8-12 May 2023

Noise: Paper 2aNS2

Predicting vehicle category using psychoacoustic
indicators from road traffic pass-by noise
Ablenya Barros
Faculty of Applied Engineering, University of Antwerp, Antwerp, 2020, BELGIUM;
ablenya.barros@uantwerpen.be

Michiel Geluykens
University of Antwerp, Antwerp, BELGIUM; michiel.geluykens@weit.co.at

Frederico Pereira
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A set of road traffic pass-by noises containing more than 2000 vehicles was recorded following the Statistical Pass-By 
(SPB) methodology. Besides the acoustic descriptors, psychoacoustic indicators (loudness, sharpness, roughness, 
fluctuation strength) were retrieved for each pass-by of three vehicle categories defined in the standard (passenger 
cars, dual-axles and multi-axles heavy vehicles). A fourth vehicle category, comprised of delivery vans, was also 
investigated. All psychoacoustic indicators significantly differed among vehicle categories, meaning that not only 
intensity descriptors but also temporal and spectral features of pass-by noise distinguish those classes. With enough 
instances and a balanced dataset across groups, a machine-learning classification algorithm was trained with 70% of 
the dataset to predict vehicle categories using the psychoacoustic indicators. Classification accuracy on the test set 
reached 72%. Accuracy losses were primarily caused by 25% of the actual passenger cars being misclassified as vans 
and vice-versa. These results show the potential of using noise features other than uniquely the maximum noise level 
to classify vehicles in terms of noise perception. In this way, limiting classifications based on visual aspects of vehicle 
categories may be overcome, increasing the practicality and accuracy of measurements such as the SPB, as vehicle 
fleets worldwide are more consistently represented.
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1. INTRODUCTION
Psychoacoustics strives to establish functional relationships between acoustic properties and the

auditory perception phenomena. In this sense, psychoacoustic indicators aim to objectively quantify how 

acoustic information is perceived1. Given the increased interest in environmental acoustics research to 

switch from an approach based on physical noise exposure towards one more focused on the human 

experience, psychoacoustic indicators create a valuable bridge between the complex characteristic of noise 

and the practicality of using single-value indicators.  

Road traffic noise is considered the second most prevailing environmental risk factor to human health, 

especially in densely populated European cities2. To date, strategies concerning road traffic noise reduction 

account mainly for exposure levels, even though it is known that noise levels decrease solely does not 

necessarily reduce the annoyance and other health outcomes trigged by it. 

Among the already limited number of studies exploring psychoacoustic indicators from road traffic 

noise, tyre/road noise samples are often the subject of study3,4,5. In this way, differences in road surface 

characteristics are assessed, but the actual traffic flow, as perceived by the receiver, is not accounted for. 

Studies where roadside noise measurements were carried out typically retrieve the psychoacoustic 

indicators from the noise of a traffic assemblage6. However, understanding the acoustic signature of 

individual vehicles is appealing, given that large-scale urban traffic noise maps are developed from 

characteristics of the traffic flow microstructure, such as vehicle type and driving speed. Finally, studies 

that assessed psychoacoustic indicators of individual pass-by vehicles have used only a few instances to 

mainly evaluate noise-induced annoyance7,8.  

In this work, the authors leveraged the Statistical Pass-By (SPB) method (ISO 11819-1:20239) to collect 

a large number of noise samples on individual pass-by vehicles. The strict requirements of  ISO 11819-

1:2023 for free-field conditions, low background noise, and pass-by vehicles driving at a constant speed 

while maintaining sufficient distance from other vehicles ensure that recordings from these measurements 

result in clean audio samples of individual vehicles. The pass-bys were categorized into the three vehicle 

classes according to ISO 11819-1 (passenger cars, dual and multiple-axle heavy vehicles), besides an extra 

category composed of delivery vans. With a dataset of 2199 vehicle audio samples, the psychoacoustic 

indicators differences across vehicle categories could be investigated. 

Besides gaining insights on the sensitivity of psychoacoustic indicators to vehicle category, this work 

aimed at tackling an issue brought by ISO 11819-1:2023. This standard prescribes a visual-based vehicle 

classification method performed on-site by the operator based on the number of seats, vehicle size (related 

to gross vehicle mass), and number of axles. However, vehicle fleets worldwide can have very different 

aspects, and the application of this visual classification becomes limited.  

Noise levels may not provide enough information to differentiate among vehicle categories, but 

psychoacoustic indicators bring information on more complex noise characteristics. Therefore, we checked 

the feasibility of using the indicators as features to train a classification algorithm to predict vehicle category 

and, in this way, reduce the visual dependency of the current vehicle classification system.  

2. MATERIALS AND METHODS
Figure 1 displays a flowchart of the research methodology. The data collection via the SPB method is

detailed in Section 2A, the segmentation of the audio samples and calculations of the (psycho)acoustic 

indicators is given in Section 2B, and the logistic-regression statistical and machine-learning models are 

described in Section 2C.  
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Figure 1. Research methodology steps. 

A. STATISTICAL PASS-BY MEASUREMENT CAMPAIGN

SPB measurements were conducted in three locations in Belgium, over two months. A sonometer model

NTi XL2 and speed radar KR-10 SP were used. The road surfaces of these locations were in hot mix asphalt, 

with maximum aggregate sizes of 10 mm. By visual inspection, they were determined to be in good 

conservation condition.  

The operators registered each vehicle pass-by according to the three categories defined in ISO 11819-

1: passenger cars, dual-axle heavy vehicles (HD) and multiple-axle heavy vehicles (HM). Many delivery 

vans were observed as part of the vehicle fleet on the measurement sites, thus the operators decided to 

record them as a separate group.  

B. RECORDINGS AND CALCULATIONS

Continuous audio files were recorded and the moment the pass-bys' midpoint passed in front of the

microphone was registered. This moment results in the peak in maximum A-weighted sound level (LA,max) 

caused by a vehicle passage. To capture enough information on the vehicle approaching and driving away 

from the microphone to comprise a noise sample for each vehicle passage, a time window of 4 s was chosen 

around that moment for cropping the long audio files. The audio files and timestamps recorded in this 

measurement campaign can be retrieved from an open-source online data repository10.  

Using the 4-s audio excerpts, the following psychoacoustic indicators were calculated from a 

MATLAB-based environment using algorithms from PsySound311: Loudness (N), Sharpness (S), 

Roughness (R), and fluctuation strength (FS). The percentile 50 from the calculations was chosen to 

represent each indicator. Besides these, the average maximum A-weighted sound level (LA,max) was 

retrieved, along with ΔL, which means the subtraction between the LA,max at 2 seconds in the signal (peak) 

and the LA,max from the beginning of each signal. 

A dataset with 2199 observations was retrieved in total, with 823 passenger cars, 188 vans, 85 HD, and 

1103 HM. 

C. LOGISTIC REGRESSION

Logistic regression (LR) is a classification algorithm used to predict a binary categorical outcome. LR

models the relationship between the input variables and the probability of the outcome being in a certain 

class. Multinomial logistic regression (MLR) is an extension of LR for more than two classes.  

In LR, the dependent variable is treated as an event. The odds of an event are the probability of its 

occurrence (π) divided by the likelihood of the non-occurrence (1-π). Using a linear function to fit a 

probability would lead to predicted values outside the range of 0 to 1. A sigmoid curve, such as the logistic 

function, is, instead, the natural choice for modelling a probability. For that, a logit transformation is applied 

to the term π/(1-π) so that it can be modelled as a linear function of the n predictors (Equation 1): 

𝐿𝑜𝑔 (
𝜋

1 −  𝜋
) =  𝛽0 +  𝛽1𝑋1 +  𝛽2𝑋2  + ⋯ +  𝛽𝑛𝑋𝑛 (1) 

Where: 𝑋1, 𝑋2, … , 𝑋𝑛: n predictors; 𝛽0, 𝛽1, … , 𝛽𝑛: regression coefficients
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In the case of multinomial logistic regression, one of the response categories is set as a baseline, and 

the log odds for all other categories are described in relation to this reference. To implement an MLR model 

and to study the impact of the explanatory variables on vehicle classification, the MNLogit function from 

the Statsmodels library in Python was used.  

While classic statistics emphasizes inference, machine learning aims to optimize predictive accuracy. 

Therefore, besides explaining and describing the contribution of each explanatory variable, the capability 

of predicting vehicle categories from the available dataset was explored. 70% and 30% of the dataset were 

employed to respectively train and test the model using the LogisticRegression function from the Scikitlearn 

library in Python. The training algorithm used the cross-entropy loss given that the ‘multi_class’ option was 

set to ‘multinomial’, the ‘lbfgs’ solver, and L2 regulatization.  

The imbalanced sample size across classes in the dataset needed to be fixed to avoid injecting bias into 

the model's predictive tasks. For that, the goal was to achieve 500 observations per class. Vehicle categories 

containing more than 500 instances (passenger cars and HM) were reduced using random undersampling. 

To create new synthetic instances for HD and vans, Synthetic Minority Oversampling Technique (SMOTE) 

was applied12. Therefore, the final dataset contained 2000 observations. 

The features chosen to train the model were LA,max, ΔL, N50, S50, R50, and F50. However, after a 

preliminary study, LA,max and N50 presented strong multicollinearity, as expected, given that both are 

measures of noise intensity. A model with N50 led to higher prediction accuracy, so LA,max was removed to 

the final model. 

Lastly, the features were standardized to a mean of 0 and a standard deviation of 1 (Z-scored). This 

procedure is beneficial for the logistic regression model as it helps to prevent features with larger scales 

from dominating the model's learning process and ensures that the coefficients accurately represent the 

relative importance of the predictors. 

3. RESULTS AND DISCUSSION

A. AVERAGE ACOUSTIC AND PSYCHOACOUSTIC INDICATORS

In far-field noise measurements like the SPB, driving and environmental conditions, such as the air

temperature and speed, impact vehicle noise levels and spectra and, therefore, are expected to affect the 

psychoacoustic indicators. Before grouping the observations and comparing them across vehicle categories, 

the indicators were normalized to a reference temperature of 20 °C and 50 km/h speed. These corrections 

were performed via the slope of linear regressions for those indicators that presented a statistically 

significant linear correlation with temperature and speed. 

Table 1 presents the average results and the standard deviations for the acoustic and psychoacoustic 

indicators after normalization.  

Table 1. : Acoustic and psychoacoustic indicators averages and standard deviations 

Passenger cars Vans HD HM 

LA,max (dB) 75.2 ± 2.0 75.9 ± 2.0 79.7 ± 2.1 81.7 ± 2.6 

ΔL (dB) 10.1 ± 4.1 10.1 ± 4.1 13.5 ± 4.2 14.4 ± 4.1 

N50 (sone) 23.07 ± 2.37 24.54 ± 2.45 31.94 ± 3.07 37.21 ± 4.67 

S50 (acum) 1.254 ± 0.060 1.293 ± 0.065 1.263 ± 0.055 1.302 ± 0.058 

R50 (asper) 0.059 ± 0.009 0.062 ± 0.009 0.065 ± 0.009 0.072 ± 0.011 

FS50 (vacil) 0.502 ± 0.061 0.489 ± 0.049 0.468 ± 0.051 0.494 ± 0.075 

Considering the two extreme ends (Passenger and HM), the noise level difference of 6.5 dB results in 

HM being perceived as twice as loud as passenger cars. Although the LA,max of passenger cars and vans 

almost overlap, ANOVA at a 5% significance level with Tukey's post hoc tests showed that their means 
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still differ significantly. HD and HM are 2 dB apart. This difference is smaller but similar to the 2.7 dB 

prescribed in ISO 11819-1 (2023) to be added in the LA,max of HD to create a single group pooled with HM. 

ΔL gives information on the noise level increase rate caused by the approaching vehicle. Table 1 shows 

that these rates are sharper for heavier vehicles. According to Tukey's test results, no statistically significant 

differences were observed between passenger cars and vans (p-value = 0.900) or between HD and HM (p-

value =  0.222).  

Regarding loudness (N50), vans exhibit a 1.5 sone increase compared to passenger cars, whereas the 

difference expands to 8.9 sones for HD and 14.1 sones for HM. ANOVA with post hoc Tukey tests have 

confirmed the statistical significance of the average differences in N50 across all categories. 

The sensation of sharpness depends on the noise spectral envelope rather than the spectrum's fine 

structure. Sharpness is a noise high-frequency content descriptor since narrow-band noises increase sharply 

at high center frequencies. For a noise signal with a loudness level of 60 phon, the sharpness produced by 

a narrow-band noise centred at 200 Hz, corresponding to 2 Bark, is about 0.25 acum. From frequencies 

near 200 Hz to high frequencies around 10 kHz, sharpness increases by approximately 50 times13. 

Therefore, a large high-frequency content variation is necessary to increase the magnitude of sharpness. 

Considering the S50 values displayed in Table 1 range from 1.25 to 1.30 acum, the differences in high-

frequency noise content among the vehicle categories are probably not extensive enough to result in a large 

variation in sharpness. Furthermore, there is no evident relation between vehicle characteristics and 

sharpness. The ANOVA with post hoc Tukey test results indicate no statistically significant differences 

between passenger cars and HD (p-value = 0.491), nor between vans and HM (p-value = 0.172). Studies 

such as Morel et al.14, Fu and Murphy15, and Paviotti and Vogiatzis16 also did not find trends for sharpness 

with vehicle type.  

Roughness and fluctuation strength are both measures of temporal modulations of noise signals. While 

the first captures quickly modulated noise indistinguishable by the human ear, the latter accounts for 

slowlier modulation, which patterns are more perceptible. Table 1 shows that roughness, represented by 

R50, tends to increase from light to heavy vehicles. One possible explanation for this result is a share of 

engine noise present in the heavy vehicles' noise samples. ANOVA with post hoc test results indicate that 

all differences in mean across each pair of vehicle categories are statistically significant.  

Lastly, fluctuation strength (F50) is the largest for passenger cars and the lowest for HD. ANOVA with 

Tukey's post hoc test showed that the differences in mean for vans to passenger cars and HD to HM were 

not statistically significant. Unlike most of the other psychoacoustic indicators, F50 does not exhibit a clear 

pattern; thus, it is challenging to relate this result to any characteristic of the vehicle categories. 

B. STATISTICAL MODEL

The model fitting information allowed us to conclude that there is a statistically significant difference

between the model without independent variables and the model with independent variables [χ2(15) = 

2907.370, p<.001], which suggests a relationship between the independent variables and the dependent 

variable. 

Table 2 presents the parameter estimates with passenger cars as the baseline category. The p-values 

coloured in red are the indicators that did not present statistically significant differences between the 

baseline and the compared categories. It is observed that ΔL and FS50 do not contribute to differentiating 

passenger cars and vans; the differences between passenger cars and HD are not pronounced for S50 and 

FS50; and FS50 is the only parameter that does not aid the model in telling apart passenger cars to HM. 

A positive β value or an Exp(β) ≥ 1 means that, with an increase in the indicator, the vehicle noise 

sample is more likely to belong to the comparative category than the base category. Additionally, the odds 

ratio (exp(β)) indicates that for every one unit increase in an indicator, while holding all other variables in 

the model constant, the odds of a vehicle belonging to the comparative category rather than the base 

category increases by a factor equal to the odds ratio. 
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Table 2. Parameter estimates of logistic regression model 

Category β 
Std. 

error 
Wald df Sig. Exp (β) 

95% Confidence 

Interval for Exp(B) 

Lower 

bound 

Upper 

bound 

Vans Intercept 1.252 0.186 45.452 1 <0.001 

N50 1.242 0.200 38.470 1 <0.001 3.464 2.339 5.130 

ΔL -0.059 0.081 0.533 1 0.465 0.942 0.803 1.105 

S50 0.710 0.079 81.236 1 <0.001 2.033 1.743 2.373 

R50 0.463 0.090 26.379 1 <0.001 1.589 1.332 1.896 

FS50 -0.013 0.083 0.026 1 0.872 0.987 0.838 1.162 

HD Intercept 2.315 0.199 134.720 1 <0.001 

N50 5.774 0.330 306.380 1 <0.001 321.893 168.622 614.485 

ΔL 0.834 0.145 33.238 1 <0.001 2.301 1.734 3.055 

S50 -0.184 0.130 1.995 1 0.158 0.832 0.644 1.074 

R50 0.467 0.160 8.488 1 0.004 1.595 1.165 2.183 

FS50 -0.198 0.148 1.802 1 0.180 0.820 0.614 1.096 

HM Intercept 0.305 0.250 1.491 1 0.222 

N50 7.960 0.380 438.270 1 <0.001 2865.19 1359.843 6036.970 

ΔL 1.048 0.170 38.020 1 <0.001 2.852 2.044 3.980 

S50 0.359 0.161 4.959 1 0.026 1.432 1.044 1.963 

R50 1.029 0.187 30.397 1 <0.001 2.797 1.940 4.032 

FS50 0.312 0.167 3.514 1 0.061 1.367 0.986 1.895 

The B values for all statistically significant indicators are positive. Therefore, with an increase in these 

indicators, the odds increase for a vehicle noise sample to belong to vans/HD/HM rather than passenger 

cars.  

Looking at the exp(β) values for each pair individually, for passenger cars and vans, the impact of N50 

in the model means that for every 1-sone increase in a vehicle noise sample, the chances that it is a van 

rather than a passenger car is 3.464 times greater. S50 and R50 also have considerable significance in 

differentiating between the two classes. The importance of N50 in aiding the model telling apart a vehicle 

from passenger cars increases for HD and HM (exp(β) equal to 322 and 2865, respectively). In these cases, 

ΔL is the second most important indicator to differentiate these classes, followed by R50.  

C. PREDICTION TASK

Figure 2 displays the confusion matrix for the machine-learning model using ΔL, N50, S50, R50, and F50

as features. The values in each cell represent the count of predictions falling into each category, from 150 

instances per class in the test set.    

The overall accuracy of the model reached 71.5%. Notably, accuracy decreases are primarily caused 

by a 27% misclassification between passenger cars and vans, and vice-versa. Additionally, 17% of the 

actual HD were mistakenly identified as HM, while 19% of the HM were incorrectly labelled as HD. There 

were hardly any misclassifications between passenger cars and vans as HM, but a small portion (8%) of 

passenger cars and vans were classified as HD. 
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Figure 2. Confusion matrix from predictions on the test set. 

The high misclassification between passenger cars and vans is expected, given the similarities in the 

averages of psychoacoustic indicators observed in Section 3A and the relatively small exp(B) values 

observed in the statistical model. This performance demonstrates that vans are considerably similar to 

passenger cars regarding the auditory sensation of their passage. One way to leverage having a "vans" group 

in an SPB measurement would be to combine them with the passenger cars. This practice could enhance 

the practicality of SPB measurements as vehicles that would be excluded in the current vehicle classification 

could instead increase the number of samples collected. 

However, if the goal is to develop an auditory-based classification system that captures the nuances of 

traffic flow microstructure to estimate factors like noise-induced annoyance, it may be more advantageous 

to have a greater number of detailed classes, even if it leads to a decrease in prediction accuracy. 

4. CONCLUSIONS
This study showed the feasibility of calculating the acoustic and psychoacoustic indicators of pass-by

road traffic noise obtained from SPB measurements. 

The averages of the indicators related to noise intensity, namely LA,max, ΔL, and loudness, increased as 

the vehicle type became heavier, larger and with more axles. Similarly, roughness also grew for heavier 

vehicles, a behavior attributed to a large share of engine noise. On the other hand, no clear patterns were 

identified for sharpness and fluctuation strength through the vehicle categories. 

Given the large number of instances in the dataset plus the considerable differences in psychoacoustic 

indicators observed across vehicle categories, a prediction model for vehicle categories could be developed 

using the following features: ΔL, N50, S50, R50, and FS50. 

With a statistical multinomial logistic regression model, the regression coefficients allowed for making 

inferences on the contribution of each indicator to differentiate among vehicle categories. N50, S50 and R50 

shared almost the same importance in helping the model tell apart passenger cars to vans. On the other 

hand, N50 became the primary indicator for distinguishing between passenger cars to HD and HM, with ΔL 

and R50 following behind. 

Lastly, using machine learning to train an algorithm with the same features led to a prediction accuracy 

of 71.5% in the test set. This relatively good accuracy indicates that the psychoacoustic indicators have 

allowed the algorithm to derive patterns that matched the visual vehicle classification.  

For the SPB method, this result demonstrates the potential to facilitate a vehicle classification task less 

reliant on visual cues and operator subjectivity. Instead, the classification could be accomplished using 

features extracted from the audio signal. In this way, the problem of inconsistent vehicle classification 

systems outlined in ISO 11819-1 for the vehicle fleet worldwide may be tackled. Additionally, pass-by 
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vehicles that do not match the category defined in ISO 11819-1:2023 could be included within the existing 

classes based on their acoustic similarity, as demonstrated by vans and passenger cars in this study. 

In the context of environmental noise control, where the focus is more and more on minimizing noise 

exposure based on the human perception of noise, a vehicle classification system that considers the auditory 

sensation instead of factors like vehicle size, gross vehicle mass, or number of axles, can be used to reshape 

the vehicle classes. Such an approach can be further implemented to create noise maps and better assess 

noise-induced annoyance. 

ACKNOWLEDGMENTS 
The authors thank the Research Foundation – Flanders (FWO) for the travel grant allocated to Ablenya 

Barros (file ID K149723N). 

REFERENCES 

1 M. Engel., A. Fiebig, C. Pfaffenbach, J. A. Fels, "Review of the Use of Psychoacoustic Indicators on Soundscape 

Studies", Current Pollution Reports 7, 359–378 (2021).  

2 O. Hänninen, A. B. Knol, M. Jantunen,  T.-A. Lim, A. Conrad, M. Rappolder, P. Carrer, A.-C. Fanetti, R. Kim, J. 

Buekers, et al., "Environmental Burden of Disease in Europe: Assessing Nine Risk Factors in Six Countries", 

Environmental Health Perspectives, 122, 439–446 (2014). 

3 F. Soares, E. Freitas, C. Cunha, C. Silva, J. Lamas, S. Mouta, J. A. Santos, "Traffic noise: Annoyance assessment of 

real and virtual sounds based on close proximity measurements". Transportation Research Part D: Transport and 

Environment, 52, 399-407 (2017). 

4 Z. Guo, J. Yi, S. Xie, J. Chu, D. Feng, "Study on the Influential Factors of Noise Characteristics in Dense-Graded 

Asphalt Mixtures and Field Asphalt Pavements". Shock and Vibration, 5742412 (2018). 

5 E. Freitas, F. Martins, A. Oliveira, I. Rocha Segundo, H. Torres, "Traffic noise and pavement distresses: Modelling 

and assessment of input parameters influence through data mining techniques". Applied Acoustics, 138, 147-155 

(2018). 

6 F. Lo Castro, G. Brambilla, S. Iarossi, L. Fredianelli, "The LIFE NEREiDE project: psychoacoustic parameters and 

annoyance of road traffic noise in an urban area". Euronoise 27-31 May 2018, Heraklion, Crete (2018). 

7 J. Morel, C. Marquis-Favre, L. A. Gille, "Noise annoyance assessment of various urban road vehicle pass-by noises 

in isolation and combined with industrial noise". Applied Acoustics, 101, 47–57 (2016). 

8 M. E. Altinsoy, "The Evaluation of Conventional, Electric and Hybrid Electric Passenger Car Pass-By Noise 

Annoyance Using Psychoacoustical Properties". Applied Sciences, 12(10), 5146 (2022).  

9 EN ISO 11819-1; EN ISO. Acoustics—Measurement of the Influence of Road Surfaces on Traffic Noise—Part 1: 

Statistical Pass-By Method. The International Organization for Standardization: Geneva, Switzerland (2023). 

10 A. Grangeiro de Barros, C. Vuye, "Psychoacoustic indicators of pass-by road traffic noise" [Dataset]. Zenodo 

(2023). https://doi.org/10.5281/zenodo.7904680 

11 D. Cabrera, D. Jimenez, W. Martens, "Audio and Acoustical Response Analysis Environment (AARAE): a tool to 

support education and research in acoustics". Internoise 16-19 November 2014, Melbourne, Australia (2014).  

A. Barros et al. Predicting vehicle category with psychoacoustic indicators from road traffic noise

Proceedings of Meetings on Acoustics, Vol. 51, 040001 (2023) Page 8

 11 February 2024 10:35:05

https://doi.org/10.5281/zenodo.7904680


12 N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, "SMOTE: Synthetic Minority Over-sampling 

Technique". Journal of Artificial Intelligence Research 16, 321–357, (2002). 

13 H. Fastl, E. Zwicker, "Psycho-acoustics: facts and models". 3rd edition. Springer, Berlin, Germany (2007) 

14 J. Morel, C. Marquis-Favre, D. Dubois, M. Pierrette, “Road Traffic in Urban Areas: A Perceptual and Cognitive 

Typology of Pass-By Noises”. Acta Acustica United With Acustica 98, 166-178 (2012). 

15 Y. Fu, D. Murphy, "Spectral Modelling Synthesis of Vehicle Pass-by Noise". Internoise 27-30 August 2017, Hong 

Kong (2018). 

16 M. Paviotti, K. Vogiatzis, "On the outdoor annoyance from scooter and motorbike noise in the urban environment". 

Science of the Total Environment 430, 223–230 (2012).  

A. Barros et al. Predicting vehicle category with psychoacoustic indicators from road traffic noise

Proceedings of Meetings on Acoustics, Vol. 51, 040001 (2023) Page 9

 11 February 2024 10:35:05


