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Abstract

Sensor fusion for impact detection in vehicles

With the advance of technology surrounding the automobile industry, we are starting to see a shift in

the need a personal vehicle, opting more often for other options like rental cars and car-sharing services.

With this shift these services face more problems and more specific damage to the vehicles in the

fleet. In order to help these services keep track of their fleet state and to help detect impacts if they

happen, a multi-sensor fusion for impact detection in vehicles is proposed.

The main focus of this thesis is to implement a multi-sensor fusion approach to detect impacts in

vehicles. A comparative study of the previously implemented solution is carried out to help develop and

implement the suggested approach. One of the sub-objectives of this work is to find which of the two

implemented fusion methods better improves the system performance.

The sensors that compose the detection strutcure, are a Inertial Measurement Unit (IMU) and a mi-

crophone, which are located inside the vehicle in different positions. Note that the structure used differs

for each dataset.

The fusion works by combining the information of all the accelerometers placed in the vehicle. Two

sensor fusion methods applied to the two datasets in this thesis are as follows: a complementary filter

which is part of the data fusion level and the second consists in a feature fusion approach by fusion features

from vairous sensor combinations.

Keywords: Machine learning, Sensor fusion, Impact detection, Data fusion, Feature fusion.
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Resumo

Fusão sensorial para deteção de impact em veículos

Com o avanço da tecnologia no ramo da industria automóvel, estamos a começar a ver uma mudança

na necessidade de compra e posse de um veiculo pessoal, optando por outras opções como serviços de

aluguer de carros e car-sharing.

Com esta mudança, é esperado que estes serviços encontrem mais problemas, mais em especifico,

danos nos veículos presentes na frota. De maneira a facilitar o acompanho do estado das suas frotas e a

ajudar na deteção de impactos nos veículos quando acontece, é proposto um sistema de fusão sensurial

com o objetivo de detetar impactos em veículos.

O maior foco desta tese é implementar um sistema de fusão sensorial para detetar impactos em

veículos. Um estudo comparativo da solução anteriormente implementada vai ser realizado para ajudar

a desenvolver e implementar a nova proposta. Um dos sub objetivos deste trabalho é encontrar qual dos

dois metodos de fusão consegue melhorar o desempenho geral do sistema.

Os sensores que constituem o sistema de deteção são uma IMU e um microfone, que em sua vez

são instalados no veiculo em diferentes posições. Neste caso a fusão ocorre ao combinar a informação

proveniente de todos os acelerometros dentro do veiculo.

Dois métodos de fusão sensorial vão ser aplicados para fundir a informação medida de cada sensor.

Isto em troca nos vai permitir uma melhor e mais robusta compreensão do ambiente em que se insere.

Uma pesquisa detalhada sobre fusão sensorial foi realizada para completar este objetivo.

Palavras-chave: Machine learning, Fusão sensorial, deteção de impactos, fusão de data, fusão de

características.
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1

Introduction

1.1 Context

With the accelerated growth of population density in cities we are progressing into a future where possessing

a vehicle or multiple vehicles is not essential anymore. If for any reason a vehicle is needed, there is a

plectra of choices for the user to choose from, such as for instance ride halling (Uber or Bolt), car-sharing

(Share Now), and rental car services (Rent-A-Car). These solutions are increasingly popular due to the

possibility to travel anywhere in the city without the downsides of owning a vehicle, like maintenance, taxes

and insurance.

As more people adopt this kind of services it becomes harder to reliably check every vehicle for dam-

ages. These damages can be the result from collision with other objects, such as other vehicles or any

kind of structure. Rental companies and car-sharing services can’t reliably perform inspections to all the

vehicles due to number in each fleet, and the inspections that are performed can miss detecting small

damages on the vehicles. These can lead to major costs for these companies, for instance if a car is

damaged it will need repairs and be taken out of service, aside from that if a vehicle is visibly damage

people won’t rent it as much, which leads to more losses.

To help these companies lower their costs and keep a track of the state of their fleet, one can implement

various solutions, for example a possible solution can be collision detection to warn the user of a possible

impact. The solution that is the focus on this thesis is a impact detection solution. This solution can lead

to many benefits, like helping to detect damage that the inspection may miss.

It’s now possible to gather information needed from a impact with the help of sensors in a vehicle.

One example of these sensors is the combination of a gyroscope and accelerometer, IMU and for the audio

produced by the impact a microphone. With the data capture from this sensors we can fuse then to have

a better understanding of the event the car was in and in turn produce better predictions.

1



CHAPTER 1. INTRODUCTION

1.2 Objectives and expected results

The main goal of this thesis is to implement a multi sensor fusion approach for impact damage detection.

The data needed to detect these events is collected through multiple devices, each one equipped with a

IMU and a microphone for the audio.

The first objective set for this thesis is to investigate and evaluate the benefits of implementing a multi

sensor system instead of a single sensor system. To accomplish this, sensor fusion techniques is applied

to the data from two or more sensors and the accuracy compared with the accuracy of a single sensor.

Although we intend to develop and deploy a new multi sensor fusion we need to keep in mind the cost

of using a large number of sensors. For this reason the second objective is laid out. Here we intend to

find the minimum number of sensors while having an acceptable overall performance.

As for expected results, it’s expected that the use of multiple sensors surpasses the performance

of a single sensor in vehicle impact detection. It’s also expected that the new multi sensor system also

surpasses the already implemented system in terms of overall performance while trying to keep the costs

to a minimum.

1.3 Document structure

The remaining material in this document is divided into the following major sections:

• Chapter 2 describes the state of art reviewed in the area of sensor fusion. The chapter starts with

a introduction on what is sensor fusion, followed by a sensor fusion taxonomy. After that, the main

methods for each of the fusion levels, data level, feature level and decision level are presented. The

chapters ends with some examples of implementation of various sensor fusion systems in a real

context.

• Chapter 3 is composed of two major sections detailing all the progress done in this thesis. The first

section details all the necessary steps to implement the proposed solution. The last section of this

chapter is reserved for the results analysis regarding the two different fusion methods implemented

to better understand the performance gain for each of them.

• As the final chapter of this thesis, Conclusion and Future work gives an overview of the project by

summarizing the important steps and conclusions previously mention in the 3. One can also find

possible solutions that can be used to replaced some of the methods used or help improve them

upon.

2



2

State of the Art

2.1 Sensor fusion

The first appearance of data fusion in the literature was in the 1960s. It was implemented by the US

for the field of robotics and defence. The first definition was in 1980 as the US department of defence

established the Joint Directors of Laboratories (JDL) to address the main issues of data fusion and attempt

to unify the terminology and procedures of this new field. Since then we can find sensor or data fusion in

wide range of field as some examples in robotics, military applications, traffic control, medicine, etc. [2]

Many definitions of sensor fusion or data fusion have been proposed along the years and exist in

the literature. One of the more accepted definitions by the community is the definition created by JDL

that defines data fusion as process of dealing with association, correlation and combination of data or

information, measured from one or more sources of data, in order to achieve a more refined position and

complete and timely assessments of situations and events as well as their significance.[3]

Sensor fusion allows to integrate extracted information form several sources into a single signal or

information. In many applications, the sources of information or data can be sensor or other devices that

allow the understanding or measurement of the changing environment that it is presented. When data is

collected or perceived from the sensors, ”sensor fusion”or ”data fusion”algorithms are used to process

the data. [4]

Due to the advance of technology in the recent years, multisensor data fusion has received more

attention both in the original are it was defined, military applications as nonmilitary applications. Data

fusion uses techniques to combine data from multiple sensors, and related information from databases,

in order to improve accuracies and inferences than otherwise could be achieved by a single sensor. Just

as mention before, as the technology progresses we can see more and better sensor that make real-time

fusion of data increasingly possible. [5]

3



CHAPTER 2. STATE OF THE ART

2.1.1 Problems of multisensor data fusion

The majority of these issues arise from the data to be fused, imperfection and diversity of the sensor

technologies, and the nature of the application environment. [6]

• Data imperfection: data provided by sensors is always affected by some level of impreciseness

as well as uncertainty in the measurements.

• Outliers: the uncertainties in sensors arise not only from the impreciseness and noise in the mea-

surements, but are also caused by the ambiguities and inconsistencies present in the environment.

• Conflicting data: it can be problematic to fuse this data especially if the fusion system is based

on evidential belief reasoning and Dempster’s rule of combination

• Data modality: sensor networks can collect the data similar (homogeneous) or different (hetero-

geneous) such as visual, audio, etc.

• Data correlation: a common and important issue in distributed fusion settings. Some sensor

nodes are likely to be exposed to the same external noise biasing their measurements. This may

influence the confidence of the results from the fusion algorithm.

• Data alignment: before the fusion occurs the data from the sensors must be transformed from

each sensor’s local frame into a commons frame.

• Data association: there are two different forms of data association: measurement-to-track asso-

ciation, which refers to the problem of identifying from which target, if any, each measurement is

originated. The other one being track-to-track association, deals with distinguishing and combining

tracks.

• Operational timing: The environment the sensors are covering can be composed of different

aspects varying in different rates. Also, in case of homogeneous sensors, the frequency of the

sensors may be different. A fusion method should incorporate multiple time scales in order to deal

with such timing variations in data.

• Static vs dynamic phenomena: the phenomenon under observation may be time-invariant or

varying with time.

4



2.1. SENSOR FUSION

2.1.2 JDL Basic Model

JDL model is the most popular conceptual model in the data fusion community, originated from the US

Joint Directors of Laboratories. It was proposed in 1985 by the Department of Defense. The model

consists of five processing levels, an associated database, and an information bus that connects the five

components. [6]

Figure 1: Basic Model of JDL adapted from [7].

The components that are a part of the JDL model are as follows [5]:

• Sources: the sources are in charge of providing the input data. Different types of sources can be

implemented, like sensors, databases and human inputs.

• Human/computer interaction: consists of a interface that allows inputs from the operators and

produces outputs to the operators. A way for the user to interact with the system.

• Database management system: stores the provided information and the fused results. This

system is critical for the hole process due to the large amount of diverse information being stored.

The main core of the Data Fusion Domain is composed of:

• Level 0 processing (Pre-Processing): performs pre-screening of data and then allocates it to

the appropriate process. This is intended to reduce the processing load of the fusion processes.

• Level 1 processing (Object Refinement): This level performs what is commonly known as

data level fusion, where raw data is fused to get a better understanding of the environment. To

achieve this data fusion methods are applied.

• Level 2 processing (Situation Refinement): allows creating a dynamic expression of relation-

ships between entities and events. This level can also be known as feature fusion where feature

fusion methods are used.[8]

5



CHAPTER 2. STATE OF THE ART

• Level 3 processing (Threat Refinement): This level relates the current situations into the

future and draws conclusions about them. Based on a priori knowledge this level tries to draw

inferences about opportunities for operation. [8]

• Level 4 processing (Process Refinement): This level is a process to assess and improve the

performance of real-time systems. In order to get the best performance, this levels monitors the

system and reallocates sensor and sources. [7]

Despite its popularity, the JDL model has many shortcomings, such as being too restrictive and espe-

cially tuned to military applications. The JDL formalization is focused on data (input/output) rather than

processing.

2.1.3 Waterfall Model

Another model that’s commonly found in data fusion literature is the waterfall model. This models differs

from the JDL in the way it’s structure, it emphasizes on the processing functions on the lower levels. Apart

from that, the sensing and signal processing levels correspond to JDL level 0. The feature extraction and

pattern processing levels correspond to the second level of the JDL model. After that, the decision making

level corresponds to the third level of the JDL. [9]

Because of the similarities these models has with the JDL model, it suffers from the same drawbacks.

It has been used in the defense data fusion community in Great Britain.[6]

The water fall model is composed of three levels as follows:

• Signal and sensing processing level - In this level, raw data is transformed to achieve the

required information about the surrounding environment. In order to achieve this, data fusion

methods are applied.

• Feature extraction and pattern processing level - In this level, feature extraction and fusion

of those features happens. To achieve this feature fusion methods are used. This level aims to

minimise the content of data whilst maximising the information it delivers.

• Deciding making level - The final level, relates objects to events. Here we fuse decisions to have

a more complete or precise data. In order to achieve this, we apply decision fusion methods, which

in turn will output the final decisions of our system.

Figure 2: Waterfall model.

6



2.1. SENSOR FUSION

2.1.4 Boyd Model

Although this model is a classic decision-support mechanism in military information operations, it has also

been used for sensor fusion.[6] The model is composed of 4 stages as follows:

• Observe: We can compare this level as the level 0 of the JDL model. Here raw data is fused to

get a more robust measurement rather than using from a single sensor.

• Orientate: In this level we can correspond to levels 1,2 and 3 of the JDL model. As a result of

that, feature and decision fusion techniques can be found to achieve a better understanding of the

environment.

• Decide: This stage corresponds to the last level of the JDL model (Process refinement). Where

we allocate the sensors and resources depending of the system needs.

• Act: This level cant be compared to the JDL model since the model doesn’t close like the Boyd

model. The only model that explicitly closes the loop by taking account of the effect of decisions in

the real world.

Figure 3: Boyd loop.

2.1.5 Data fusion architectures

1. Centralized Architecture: Data fusion is performed using sequential estimate techniques. The

process of this method is performed in a single node as follows: data is transferred to a central

processing device via communication networks or other mechanisms. [10]

2. Decentralized Architecture: Here there’s no need for a central node, since the data is pro-

cessed in each sensor node. Because of this type of architecture, it’s commonly used in applications

that have a large number of sensor. [10]

7



CHAPTER 2. STATE OF THE ART

3. Hybrid Architecture: Represents the combination of the merger in data fusion and vector state.

The state vector fusion is done to reduce the computational workload and communication demand.

the advantage of the hybrid architecture lies in flexibility. [7]

2.1.6 Classification based on the relations between data sources

Sensor fusion can be categorized according to the type of relations between the configuration. Durrant-

Whyte distinguishes three types of relations as indicated in figure 3;

1. Complementary: when the information provided by the input sources represents different parts

of the scene and could thus be used to obtain more complete global information. This helps fix the

problem of incompleteness of sensor data. In general its easy and quick to fuse complementary

data from independent sensors. [6]

2. Redundant: when two or more input sources provide information about the same target and could

thus be fused to increment the confidence. An example of this kind of configuration is to combine

two different measurements from the same sensor at different time intervals.

3. Cooperative: when the provided information is combined into new information that is typically

more complex than the original information. An example of cooperative classification, is by com-

bining two two-dimensional images into a three-dimensional image. In contrast to complementary,

cooperative sensor fusion is hard to design and implement. [6]

Figure 4: Whyte’s classification based on the relations between the data sources.

Although there are three configuration to distinguish the types of relations between sensor, that doesn’t

mean we need to use only one configuration. Some applications use more than one of the three configu-

rations in order to achieve a more robust and accurate data.
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2.1.7 Classification based on input and output

1. Data in-data out (DAI-DAO): the most basic or elementary data fusion method that is considered

in classification. This type of data fusion process inputs and outputs raw data, the results are

typically reliable or accurate. Data fusion at this level is conducted immediately after the data

are gathered from the sensors. It is commonly referred as data fusion, or low level fusion. An

example at this level would be using an average filter to combine two signals streams from different

microphones into a more accurate and robust stream.[11]

2. Data in-feature out (DAI-FEO): this is the next step in this five step hierarchy. At this level, the

data fusion process employs raw data from the sources to extract features or characteristics that

describe an entity in the environment. Fusion here processes inputs or output-fusion into features.

It can be considered as feature fusion or data fusion. [12]

3. Feature in-feature out (FEI-FEO): both the input and output of the data fusion process are

features. Thus, the data fusion process addresses a set of features with to improve, refine or obtain

new features. This process is also known as feature fusion. Techniques applied at this level are in

general feature extraction and after that feature selection processes. [12]

4. Feature in-decision out (FEI-DEO): this level obtains a set of features as input and provides a

set of decisions as output. Most of the classification systems that perform a decision based on a

sensor’s inputs fall into this category of classification. This level is commonly reference as feature

fusion.

5. Decision in-decision (DEI-DEO): this type of classification is also known as decision fusion. It

fuses input decisions to obtain better or new decisions. Although its not always necessary or the

most advisable approach to use this classification, due to the need to have compatible sensors to

permit the previous fusion, it’s a feasible approach. This level is also known as decision fusion.
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Figure 5: Dasarathy’s classification, based on [12].

The levels of classification presented aren’t mutually exclusive. It’s encourage to use then in different

stages of fusion and find the best solution for the problem we want to address.[11]

2.1.8 Classification based on level of abstraction

1. Low level fusion: the raw data are directly provided as an input to the data fusion process, which

provide more accurate data than the the individual sources. [6]

2. Medium level fusion: characteristics or features are fused to obtain features that could give a

better representation of the information. This level is also known as the feature or characteristic

level.

3. High level fusion: also known as decision fusion, takes symbolic representations as sources and

combines them to obtain a more accurate decision.

4. Multiple level fusion: this level addresses data provided from different levels of abstraction.

2.1.9 Advantages of using multi sensor vs single sensor

1. Enhanced signal to noise ratio - the merging of various streams of sensor data decreases the

influences of noise.

10
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2. Diminished ambiguity and uncertainty - the use of data from different sources reduces the

ambiguity of output.

3. More reliable - the data provided from a single sensor are usually more unreliable.

4. Robustness - the use of several similar sensors provides redundancy, which in the end raises the

fault tolerance in the case of a sensor failure.

5. Improved precision/resolution - when measuring the same attribute from different sensors are

merged, the granularity of the resulting value from the merge is finer than in the case of a single

sensor.

2.1.10 Data fusion

Data fusion or signal level fusion is the lowest level of fusion. Its targeted to combine raw data from

sensors of the same type to produce a new raw data, which in turn gives a more robust and informative

measurement than from a single sensor. Because the need to have measurements from commensurate

sensors in order to perform the fusion process, it becomes difficult to use in every applications and it’s

preferably to use feature or decision fusion or a combination of the three .

2.1.10.1 Data Fusion Methods

1. Kalman Filter Kalman filter as been used as the base for many sensor fusion algorithms. By

gathering noisy measurements made to the system we can estimate it’s state. The first step is to

define the initial value of the system state. We can accomplish this by using other methods or by

measuring directly the system. We also need to get the prediction error associated to the prediction.

To measure the prediction error the Kalman filter uses a correlation between the prediction and the

the actually real value.[13, 14] Let 𝑋 be the system state and 𝑌 be the measurements made to the

system.

𝑋0 = 𝑋 (0), (2.1)

𝑃0 = 𝑃 (0), (2.2)

Here, 𝑋𝑘 represents the predicted state the system is in and 𝑃𝑘 represents the error covariance

matrix of the time step 𝑘 . For each prediction step we make, the state and error covariance of the

state are determined based on the dynamics of the system. Let𝐴𝑘 be the dynamics of the system,

𝑄𝑘 be the convariance matrix of motion error, 𝑋𝑘,𝑘−1 and 𝑃𝑘,𝑘−1 be the state prediction with the

associated error covariance matrix, respectively.[14]

𝑋𝑘.𝑘−1 = 𝐴𝑘𝑋𝑘−1, (2.3)
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𝑃𝑘,𝑘−1 = 𝐴𝑘𝑃𝑘−1𝐴
𝑇
𝑘 +𝑄𝑘 (2.4)

After a new set of measurements are acquired from the system, the state of the system along side

the associated error covariance are adjusted.

Although it’s a common fusion method used in many applications, it was originally designed for

linear systems. If the system changes to nonlinear, it will be require changes to fit the new system.

Another shortcoming is the high computational need that comes with it, leaving it undesirable in

some cases, especially if we are considering implementing a real-time application. [14]

Figure 6: Kalman filter flow chart adapted from [15]

2. Weighted Average One of the more simplest methods of data fusion. It consists in taking an

average of all the sensor measurements and combining the information in order to create a more

robust measurement of the environment. As some sensors can have worst reading than others it

wouldn’t be wise to consider every sensor as the same. For this reason a weight is assigned to

each stream of data, which depending on the value will have more or less relevancy to the final

estimate. Theses weights can be manually assigned or determined from other factors.[16, 17]

Let 𝑥 be the estimate we want to calculate, 𝑛 the number of fused stream data and 𝑤 the weight

associated to the streams.

𝑥 𝑓 𝑢𝑠𝑒𝑑 =
𝑛∑
𝑖=0

𝑤𝑖𝑥𝑖 (2.5)
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3. Complementary filter The complementary filter is usually used to remove the noise of a mea-

surement by fusing the data from two or more sensors. Some applications prefer to use this filter

instead of the Kalman filter, because of the low computational, processing power and the accuracy

improvements it provides. [18]

Figure 7: Complementary filter Block Diagram

The complementary filter is composed of a low and high pass filter, which after the two pass filters

are applied to the data, the output is fused to get a better measurement than it would be possible using a

single sensor.[15]

The purpose of a low pass filter is to attenuate signals with a frequencies higher than a selected

cutoff. This type of filters is used to fix jitters in measurements for example coming from accelerometer.

In contrast the high pass filter is used to passe signals that are above a selected cutoff frequency and

attenuates the signals that are lower than that cutoff. It’s usually found to fix drifts in measurements for

example in gyroscopes that tend to drift in time.

2.1.11 Feature fusion

Feature sets extracted from multiple data sources can be fused to create a new high-dimensional feature

vector, we can achieve this by concatenating two or more different feature vectors into one vector.[19] At

this level machine learning and patter recognition algorithms are applied to vectors with characteristics

that later on can be combined to form joint characteristics joint vectors from which the classification is

carried out.

2.1.11.1 Feature Fusion Methods

1. Instance-Based Learning After we define and build the feature set, we can use pattern classifi-

cation techniques to fuse the data from the acquired sensor into more relevant events. The method

Instance-based learning is a learning technique, which after we encountered a new sample we can

make the decision on how to generalise beyond the training data. We can make the decision by us-

ing a nearest neighbour classifier to separate the unlabelled observation and measure its distance

from the different labelled samples in the feature set.
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Let 𝑢 be an unlabelled observation, 𝑣 be the nearest neighbour and 𝑐 (𝑣𝑖) is the assigned label of

𝑣𝑖 . We can classify u as 𝑐 (𝑣𝑖) if

𝑑 (𝑢, 𝑣𝑖) = min
1≤ 𝑗≤𝑁

𝑑 (𝑢, 𝑣𝑖) (2.6)

We can measure the level of thrust in the assigned label by using the distance between the test

sample and the selected reference points and by using the different occurrences for each class in

the selected set. When we select the set of reference points based on a premeditated value 𝑘 , we

use the learning technique known as k-Nearest Neighbor (KNN). [20, 21]

2. Support Vector Machine One of the most widely used algorithms for classification problems is

Support Vector Machine (SVM). The SVM tries to evaluate a linear hyperplane between two classes,

although it can theoretically have an infinite number of hyperplanes. The main purpose of the SVM

is to not only to classify with a high level of certainty the various sample points, but also to maximize

the minimum distance between the optimally divided hyperplane and all training sample points.[22]

For the classification to happen we need to give a training dataset with the training samples and a

label associated with each sample. Let 𝑥𝑖 be the features samples, and𝑦𝑖 ∈ {-1,+1} the target label,

where 𝑦 = +1 corresponds to the class𝐶1 and 𝑦 = −1 corresponds to the class𝐶2, of the training

dataset represented by {𝑥𝑖, 𝑦𝑖}, 𝑖 = 1, 2, ..., 𝑁 , where 𝑁 represents the number of samples in the

training dataset. If the training dataset is to be separate in a linear fasion, the hyperplane equation

is𝑤 · 𝑥 + 𝑏 = 0. Therefore the sample (𝑥𝑖, 𝑦𝑖) needs to satisfy:

𝑦𝑖 [(𝑤 · 𝑥𝑖) + 𝑏)] ≥ 1, 𝑖 = 1, 2, ..., 𝑁 (2.7)

Where𝑤 is the plane normal vector and𝑏 represents the constant term. Support vectors are sample

points that are close to the hyperplane and have an influence on the position and the orientation of

the hyperplane. We can maximize the margin of the classifier using this support vectors.

3. Artificial neural network The fused output is a combination of input signal and corresponding

weights. Several fusion methodologies are used and depending on the input and outputs required

the stages in the model can perform either signal, feature as decision level fusion. Despite that,

it’s more commonly found applied at the feature level fusion. [23]
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Figure 8: Neural network structure for sensor fusion.

Artificial neural network (ANN) were developed following the way the human brain functions. There-

fore, ANN are composed of simple processors nodes which are called ”neurons”and are linked by

connections with a weight associated to them.

The ANN architecture is composed of a input layer, which receives the input values from external

sources. Following the input layer we have one or more hidden layers, that consists in a set of

neurons connected to the input layer and output layer or if there’s multiple hidden layers, connected

to another hidden layer. Finally there’s the output layer, which gives us the output of the network.

This output can be a single neuron that ranges between 0 and 1 or multiple output neurons.[24]

The way we make the neural network to learn can vary according with the objective we want to

achieve. The most common learning method is supervised learning were we compare the output of

the network with the desired output and depending on the result we adjust the connection weights

of each connection to provides us with a more accurate output.[25]
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2.1.12 Decision fusion

Process of selecting a class hypothesis or decision from the set of local hypotheses generated by individual

sensors. A decision is taken by the knowledge, provided by several sources of the perceived situation.

Decision-level fusion output is a unique decision obtained from local decision of multiple(homogeneous

or heterogeneous) sensors, therefore it utilizes the information that has been already abstracted to a

certain level through preliminary senor data-or feature-level processing such that high-level decision can

be made.[26]

2.1.12.1 Decision fusion Methods

1. Bayesian Methods - Its build upon the Bayes theorem. Information fusion based on the Bayesian

inference provides a formalism for combining evidence according to the probability theory rules.

Using the conditional probability terms that describe beliefs and attributes values in the interval

[0,1], where zero indicates a complete lack of belief and one indicates an absolute belief.[27]

𝑃 (𝑌 |𝑋 ) = 𝑃 (𝑋 |𝑌 )𝑃 (𝑌 )
𝑃 (𝑋 ) (2.8)

𝑃 (𝑌 |𝑋 ) represents the belief in Y given the information of X. This probability is obtained by multi-

plying the probability of the hypothesis 𝑃 (𝑌 ) by having the probability of X given that Y is true.

The main disadvantages of the Bayesian methods are the following:

• Difficulty in obtaining the hypothesis value of the previous probabilities.

• The complexity of the method exponentially increases when there are multiple potential hy-

potheses, along with a substantial number of events that depends on the conditions.

• In order to use the Bayes theorem the hypothesis need to be mutually exclusive.

2. Demspter-Shafer Theory - The Dempster-Shavfer theory is a mathematical theory that general-

izes the Bayesian theory. The difference between Dempster-Shafer theory and the previous one is

the frame of discernment. This is defined by Θ which represents all the possible states that define

the system.

Due to the system being only in one state, Θ is mutually exclusive. It’s called frame of discernment,

because the elements in Θ are applied to discern the current state of the system.[27–29]

We also have 2Θ which represents the hypotheses. A probability is attributed to each hypothesis

𝐻 ∈ 2Θ, based on the evidence 𝐸, according to the mass function 𝑚 : 2Θ → [0, 1], which
satisfies:

𝑚(∅) = 0. (2.9)
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The sum of the all mass function of 2Θ is one. The Dempster-Shafer theory defines the belief

function bel : 2Θ → [0, 1] over Θ to express incomplete beliefs in a 𝐻 .[28]

𝑏𝑒𝑙 (𝐻 ) =
∑
𝐴⊆𝐻

𝑚(𝐴). (2.10)

To determine the plausibility of each hypothesis, the function 𝑝𝑙 : 2Θ → [0, 1] over Θ is defined.

𝑝𝑙 (𝐻 ) = 1 − 𝑑𝑜𝑢 (𝐻 ) =
∑

𝐴∩𝐻=∅
𝑚(𝐴). (2.11)

The Dempster-Shafer inference, contrary to the Bayesian inference, does not require a priori prob-

abilities, because at the instant that the information is provided the probability is assigned. It can

also be used to represent incomplete Knowledge and updating beliefs.

3. Fuzzy logic - In contrary to other logical system, fuzzy logic is used in environment of uncertainty

and imprecision. The method provides a way of representing incomplete or imprecise data. In a

nutshell, in fuzzy logic everything, including truth, is a matter of degree [30, 31].

• Fuzzy Sets - Its used to handle the concept of uncertainty and partial truth, which enables

the modeling of natural language. Fuzzy sets, together with fuzzy reasoning systems, are

given the tools to write software, which enables computing systems to understand vague

terms, and to reason with these terms.[32]

The main purpose for fuzzy sets lies in the capability to structure ambiguous and imprecise

data.

• Definitions - Let X be the domain of observable universe, and 𝑥 ∈ 𝑋 be a specific element

of the domain X, and the fuzzy set 𝐴 is specify by a membership mapping function:

𝜇𝐴 (𝑥) : 𝑋 → [0, 1] (2.12)

Therefore, 𝜇𝐴 (𝑥) represents the level of truth or certainty that the element x belongs to fuzzy

set A.

• Membership functions - is used to attribute each elements of the domain 𝑋 of the corre-

sponding fuzzy set𝐴. The membership functions can take any shape over the domain which

the fuzzy sets are established, and need to satisfy two major constraints:

– Any membership function has a range of [0 1].

– For each 𝑥 ∈ 𝑋, 𝜇𝐴 (𝑥) must be unique.

• Fuzzy Operators - In contrary to bivalent logic, fuzzy logic doesn’t have a finite set of pos-

sibilities for each input, which requires the operator to be conveyed as functions for all the

probable fuzzy values. Let A and B be fuzzy sets in the domain 𝑋 .
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– Operator AND

𝜇𝐴∩𝐵 (𝑥) =𝑚𝑖𝑛(𝜇𝐴 (𝑥), 𝜇𝐵 (𝑥)) ∀𝑥 ∈ 𝑋 (2.13)

– Operator OR

𝜇𝐴∪𝐵 (𝑥) =𝑚𝑎𝑥 (𝜇𝐴 (𝑥), 𝜇𝐵 (𝑥)) ∀𝑥 ∈ 𝑋 (2.14)

– Operator NOT

𝜇𝐴 (𝑥) = 1 − 𝜇𝐴 (𝑥) (2.15)

• Fuzzy Rules - The fuzzy system behavior is dictated by a set of if-then statements linguistic

rules involving fuzzy sets, fuzzy logic and fuzzy inference. Fuzzy rules usually follow the form:

𝑖 𝑓 → A is x then B is y (2.16)

• Fuzzy Inference System - The fuzzy inference system is composed of fuzzy sets that oper-

ate on fuzzy rules, which makes the knowledge base, and three components, each performing

a specific reasoning process.

Figure 9: Fuzzy Inference Architecture.

– Fuzzification: its a mathematical procedure for converting an element in the universe

of discourse into a membership value of the fuzzy set. [33]

– Fuzzy Inference: by using the membership functions generated from the a priori

method, logical operations and fuzzy rules, allows the mapping of fuzzified inputs into

fuzzified outputs.

– Defuzzification: the originated fuzzy sets generated by the fuzzy inference process

are mathematically combined, most commonly using the Mamdani inference method

and Center of Gravity method, to make with a single number as output.
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2.2 Research studies in the topic

This section presents a in-depth review of articles about Sensor fusion and the different methods used

to fuse the different sensors found in each article. This gives an overview of some studies where sensor

fusion is applied in a real world context. When looking for articles relating to sensor fusion in a damage

detection context, little was found. Despite that, we can have an idea based on the articles found of

possible solutions for damage detection problems.

When looking for articles regarding sensor fusion, the article in question needed to have at least one

fusion technique performed in one or more sensor presented. Although little was found regarding damage

detection, the majority of articles fall in the activity recognition and fall detection areas. As the years pass

we can see an improvement not only in the sensors quality by also the amount of sensor available, for

example each smartphone comes equipped with various sensor than can facilitate these problems.

Ujwal Koneru et al., [34] describes a solution to the problem of accurate tracking in Augmented

Reality (AR) and Virtual Reality (VR). Tracking in this context is a vital functionality for many applications

like gaming, simulation, etc. In this study,the use of accelerometers and gyroscopes to measure rates

and accelerations, and a camera sensor to process the position and orientation are presented. The fusion

here happens in the highest level of fusion (decision fusion) by using Fuzzy rule sets and adaptive filtering

of data. The authors were able to achieve similar accuracy outcome as some of the other commercial

tracking systems at a fraction of the cost.

Liang Liu et al.,[35] presents a high level fusion (decision fusion) approach for fall detection application.

The study invols the use of two Doppler range control radar sensors and in order to classify the data three

classifiers were used, KNN, Bayes and SVM. As for sensor fusion, the authors chose to implement a

Choquet fuzzy integral fusion. The fusion of information, resulted in a better accuracy compared to the

use of a single sensor, where each classifier produced a reasonable result between 0.88 and 0.97 and

the fuzzy integral fusion produced results between 0.95 and 0.98, proving a better overall classification.

Simon O’Regan et al.,[36] in the context of automatic detection of Electroencephalography (EEG)

artefacts from head movements, uses a feature fusion approach to compare and increase the accuracy of

the detection. In this article the authors extract signals from gyroscopes mounted within an EEG headset

and the signals provided from the headset. Three architectures are presented, each one belonging to

detection of artifacts from gyroscopes, EEG and the fusion of the two using a SVM classifier. Better

accuracy results were obtained using the fused information than only using the signal information from the

gyroscopes or EEG headset. It was also stated that the fused information presented a better classification

performance and robustness.

On the topic of fall detection, Anita et al., [37] gives a comparison on performance of different Machine

Learning (ML) classifiers and the impact of using sensor fusion opposed of using the sensors individually.

As for the classifiers the article presents ANN, KNN, Random forest and XGBoost implementations. The

data gather for the study, where from a vital signs sensor and IMU sensor, in order to extract the heart

rate and position of the user. When comparing the performance across all the different classifiers it was
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demonstrated that when combining the information from the heart rate with a IMU, the accuracy improved.

Despite that, Random forest was the classifier with the best accuracy across all scenarios when applied

the windowing technique. The sensor fusion in this case was performed in the feature fusion and data

fusion domain.

Paola Pierleoni et al., [38] presents a different approach for a wearable fall detector directed for elderly

people. Here the fusion of data is done in the lowest level (data level fusion) where raw data collected

from the sensors is fused to give a better output. The raw data is gather from 4 different sensors, an

accelerometer, gyroscope, magnetometer and finally a barometer. Fusing this sensor proves a better

detection accuracy and better estimation of the position of the user. As for the architecture, the authors

fuse the raw data coming from the accelerometer, gyroscope and magnetometer using a Quaternion-based

Madgwick filter and later fusing the measures coming from the barometer with a complementary filter. The

results compared to other studies in this field provide a better accuracy, in some cases an increase of more

than 20%.

Nikhil kumar et al., [39] describes a more related problem to the one presented in this thesis disserta-

tion. Here the authors are trying to build a Internet-of-Things (IoT) platform for reporting vehicle accidents

detected using sensor fusion as a way to improve the accuracy of the system. In order to find the model

to use in the detection and classification system, it was presented three machine learning models, those

being, Naive Bayes, Gaussian mixture model and decision tree. As for sensors, the work is comprised of

a 9-axis inertial and GPS built in sensors in the SAMSUNG Galaxy S8 Android smartphone and a Sensor-

drone which measures environmental variables, such as temperature, humidity, CO, etc. here the fusion

happens in the feature fusion level and data fusion level. As for data fusion methods, the article presents

the implementation of complementary filter and for feature fusion implements machine learning classifiers

and moving-maximum function. As for the results the Naive Bays model proved to outperform the other

model with and average score of 0.95.

Filipe Felisberto et al., [40] tackles the problem of monitoring the elderly, focusing in a low-cost de-

ployment. Here the authors present a Wireless Sensor Networks (WSN) , where sensor fusion is integrated

to give a more robust understanding of the information. In order to gather the information needed, it was

used three sensors, accelerometer, gyroscope and magnetometer. Sensor fusion was used to obtain the

correct orientation of the node, with the use of thee data fusion algorithms, Extended Kalman Filter (EKF),

Direct Cosine Matrix and control algorithm which fused each individual sample ignoring past knowledge.

The study shows that the use of EKF proved to be the most beneficial to cope with noise spikes, smoothing

them out immediately and handle the incremental error. This articles presents promising results, even

surpassing other previously cited WSN projects in monitoring user’s movements.

Table 1, presents for all the articles described above, the sensors used, which level or levels of fusion

was the fusion applied, and finally the methods used to accomplish the fusion process.
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Article Sensors
Fusion
level

Methods

Ujwal Koneru et al., [34]
Accelerometer,

gyroscopes, Camera
High Fuzzy sets; Adaptive filtering

Liang Liu et al., [35]
Doppler range
control radar

High Choquet fuzzy integral

Simon O’Regan et al., [36]
gyroscopes,
EEG headset

Medium Feature processing, SVM

Anita et al., [37]
IMU,

vital signs
Low,

Medium
Feature processing, ANN, KNN,

Random forest, XGBoost

Nikhil kumar et al., [39]
9-axis inertial

GPS, Sensor-drone
Low,

Medium

Complementary filter, Feature processing,
Naive Bayes, Gaussian mixture,

Decision tree

Paola Pierleoni et al., [38]
accelerometer, gyroscope
magnetometer, barometer

Low
Quaternion-based Madgwick filter

Complementary filter

Filipe Felisberto et al., [40]
accelerometer, gyroscope

magnetometer
Low

EKF, Direct Cosine Matrix
control algorithm

Table 1: Articles information in sensor fusion
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Approach for fusion benchmark

3.1 Data Analysis

This section describes the beginning of the practical work. After all the literature and knowledge gathering

that encapsulates this thesis has finished, the next step, data gathering can begin. Data gathering presents

a necessary step in order to follow a well taught out plan.

3.1.1 Data gathering structure

Before approaching the data and performing all the necessary steps for fusion, a better understanding of

the setup used to capture the data is needed.

As presented before the main focus of this thesis is the use of sensor fusion to improve the detection

of vehicle impacts . There is a need to have at least more than one sensor in the vehicle to perform sensor

fusion. Keeping this structure in mind a system containing three devices, each with an accelerometer,

gyroscope and a microphone, were installed in a vehicle.

As shown in figure 10, the three devices placed in the vehicle are as follows: windshield, right rear

panel and central console. The system was setup this way to test and understand the detection behaviour

of each device location and the different combinations the system can have. Note that this setup is specific

to the previously mentioned structure. Later on, a new setup is presented with a different layout for the

devices.
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Figure 10: AudiA5 multi-sensor setup.

The following table details the specification of each sensor inside the device used. The same sensor’s

configurations and models are present in every chosen device location.

Sensor Sample Rate Bandwidth Range

Accelerometer 1600Hz 434Hz ± 8G

Gyroscope 1600Hz 134HZ ± 250 deg/s

Microphone 44100Hz 1000Hz -

Table 2: Sensor specifications

The three devices were selected due to the capability of recording the vehicle’s state at any given time.

For this project, only the accelerometer is considered as the main objective set is to fuse the measurements

between each accelerometer device location.
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3.2 Data Gathering

The next phase consists of collecting data with the previous setup and all the steps to ensure data can be

used for machine learning applications. The purpose of this phase is to record and store multiple events in

a database so that later, it can be used to train and test the models to detect impact in the vehicle. Before

this project, data collection campaigns took place, which helped speed the testing and development of

sensor fusion solutions.

With this in mind, a series of planned recordings were carried out, recording the necessary events to

build a damage detection dataset. Multiple events with different types of impacts were recorded, allowing

the model to learn and detect more than one impact.

For the model to predict if an impact caused damage to the vehicle or not, two types of events were

defined: either the impact resulted in damage to the vehicle’s exterior or the exterior was undamaged.

With this in mind, the recorded events had to replicate as closely as possible real scenarios for which the

model could later predict. Note that some events recorded did not have any impact on the vehicle, for

example, closing and opening doors, but could be mistaken as one, to help the model correctly predict and

understand what classifies as an impact that resulted in damage and background. Due to the dangerous

nature of experiments, a meticulous and thought-out safety setup was required not to harm anyone in the

process.

The following tables describe the events gathered in the different experiments needed to complete the

dataset. Table 3 consists of the events that can result in damage to the exterior of the vehicle, and Table

4 represents the events that do not cause damage to the exterior.

ID Description
1 Pothole
2 Sewage Cap
3 Speed Bump
4 Expansion Joints
5 Rumble Strips
6 General Bump
7 Door Close
8 Curb Climb
9 Door Open
10 Roof Slap
11 Open/Close Sun Visor

ID Description
12 Detaching/Fixing Sun Visor
13 Wiper
14 Side Window Opening/Closing
15 Opening/Closing Makeup Mirror
16 Mirror Folding Open/Close
17 Windshield Slap
18 Object Sliding Against Windshield
19 Mount/Dismount GPS Holder
20 Car Wash
21 Open/Close Sunroof
22 Open/Close petrol cap

Table 3: No-Damage events
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ID Description

1 Knock

2 Object Impact

3 Scratching

4 Vehicle hits object

5 Door opens against object

Table 4: Damage events.

All the events listed in the tables above are stored in a file with an associated ID. With this structure, it

becomes more effortless in the implementation phase, as only the ids for each event are needed instead

of writing the whole name. Note that some events have variants, one example being, the event ”Door

Open”, which has variants for ”Trunk”, ”Front Right”, ”Back Right”, and so on, but only the primary type

was described due to a large number of variants.

The list of events can grow for each data-gathering campaign as different events can be recorded

if needed. Once a specific event benefits the model’s performance, other campaigns will take place.

Furthermore, only some of the events presented above were recorded for each vehicle, as recording all of

the events would prove a waste of time and could confuse the model when predicting.

The data originated from the collection are stored in two separate files keeping the same name for

easier correspondence when loading and processing the data. The measurements containing the sensor

values and timestamps are stored in a Hierachical Data Format (HDF5) format, more commonly known

as HDF5. The JavaScript Object Notation (JSON) file serves the purpose of storing general attributes of

the recording. The following Table 5 lists all the attributes stored in each JSON file.

Attributes
CarID
Initial Timestamp (UNIX timestamp)
Event Label
Event Start Time
Event End Time
Damage Status
Damage Type
Damage Severity
Road Type
Weather Condition

Table 5: JSON attributes list.
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3.2.1 Labelling

This section describes the process of labelling the recorded data from the previous section. In order to

ensure that all the data is labelled correctly, a two-step setup was implemented.

In the first step, the labelling happens during the data gathering using an internal tool developed to

work with the setup mentioned earlier. This tool allows, in real time to specify the time interval an event

happens, with the use of a specific hotkey which is pressed at the beginning of the said event until the

event ends.

Although this tool allows precise labelling and first-hand confirmation, human error is something to

always have into consideration. For this reason, a second internal tool was implemented after all the data

had been collected and stored to help fine-tune the label of all the events. The tool used can be visualized

in the following image 11 and allow users to change the label meta-data and adjust the time interval of a

particular event.

Figure 11: Labeller tool.

This tool was also a valued asset to the first part of data analysis since the data of multiple events can

be displayed and shown to the user. This permits us to have a better understanding of how the different

device locations record the same event.

26



3.2. DATA GATHERING

3.2.2 Datasets Description

Due to the nature of this work, the dataset needed at least two device spots in different vehicle locations

to perform sensor fusion.

Only two of the many datasets collected previously in this work meet the requirements to perform

sensor fusion. The nomenclature for each dataset follows the vehicle model name. The first dataset used

in this project was the AudiA5 dataset, which, as mentioned before, resulted in the collection of events

using an AudiA5 model. The second dataset is the Tiguan dataset. Since the dataset was still in the

collection/labelling step, it became available only in the later phases of development.

Both datasets follow the same data structure mentioned in the Data Gathering section, storing all

sensor measurements and information with each device location name associated. The difference lies in

the labels and the amount/name of the device locations used.

3.2.2.1 AudiA5 Dataset

The events contained in this dataset were recorded with a four-device location setup in an AudiA5 vehicle.

The device locations are as follows: windshield, right rear panel, central console and engine. Although

the dataset presents four devices, only three are considered for this thesis. Due to the small number of

events recorded using the device placed in the engine was left out.

When creating datasets one objective was making it a balanced dataset, meaning there needed to be

almost the same number of events with the label ’damage’ as events that did not. As shown in the table

12 the dataset consists of 494 events with no damage and 710 with damage.

Figure 12: AudiA5 damage vs non-damage events.

The following image 13 illustrates the different events stored in the AudiA5 dataset. Note that the

events shown in the image are from the latest version of the AudiA5 dataset, which changed from the first

version used in this project. Each event has the number of occurrences which resulted in no damage to

the vehicle represented in blue and in orange the occurrences that did not.
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Figure 13: AudiA5 last update events recorded.

3.2.2.2 Tiguan Dataset

Following the same approach used with the AudiA5 dataset, the recording sessions for the Tiguan dataset

followed a multi-device locations setup. As opposed to the previous dataset, the number of devices de-

creased to only three locations, removing the device placed in the right rear panel. In this instance, all

device locations are present in the fusion and testing phases.

While working with this dataset, more recording sessions were planned and recorded, which led to

a change in the dataset size and performance. The image 14 demonstrates that the dataset consists

of 1836 events with the label ”damage”set to false and 664 events with the label ”damage”set to true,

resulting in an unbalanced dataset.

Figure 14: Tiguan damage vs non-damage events.

Although the Tiguan dataset follows the same approach as the AudiA5, the events recorded differ. For

example, the Knock event represents the majority of events that failed to inflict exterior damage to the

vehicle. Applying the same model used in the AudiA5 dataset for this new dataset, as long as it performs

relatively the same, validates the results obtained in the AudiA5 and proves once again that sensor fusion

can improve the model performance. Another advantage of using different events is that merging both

datasets generates more data for training and testing purposes.
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The following graph displays the events contained in the Tiguan dataset. The reason the events ”object

impact”and ”vehicle hits object”have both true and false values for the label ”damage”happens when the

recorded event displayed no visible damage in the car. This is necessary so the model can learn what

constitutes impact with damage associated with it and what does not.

Figure 15: Tiguan events recorded.

3.3 Initial Iteration

This section presents a set of early experiments and different approaches used for the project that ultimately

ended up being discarded. Although these approaches failed as possible solutions, they proved to help

understand the overall problem which allows to define a more suitable solution.

3.3.1 Vehicle pitch and roll

Research of possible solutions was carried out to find an approach to follow. The method found consists

in the fusion of an accelerometer with a gyroscope to determine the pitch and roll of a vehicle. The pitch

and roll deemed reasonable as the impact can be detected by the shift in the axis.

The purpose of this approach is to fuse data from an accelerometer and a gyroscope to determine the

pitch and roll of the vehicle, allowing to detect of changes in the axis when an impact to the vehicle occurs.

Before fusion can happen, some obstacles need to be resolved. The issues surround measurement

deviations in the readings over time.
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Both sensors suffer from measurement issues in their way. For example, an accelerometer can have

jitters in the reading, resulting in incorrect readings. Different from the accelerometer a gyroscope will

have a drift over time in the readings making it unreliable. Luckily one can find the solution for both issues

with the help of filters.

Although a wide variety of filters could be used, based on the previous research the filters commonly

utilised are the low pass filter and high pass filter. The process of implementing each one is simple, as the

two filters follow the same logic. The case of the low pass filter only allows frequencies to pass that are

below a certain threshold. Same for the High pass filter but the other way around as only high frequencies

get allowed to pass through.

The last step is to apply the filters to the respective measurements. As the accelerometers come with

the issue of jitters the high pass filter is ideal as it will only allow passing the high frequencies, despite the

aformention, when applying a high enough threshold information can end up being removed. Lastly, the

low pass filter can help mitigate the drift of the gyroscope removing any high frequency.

A previous study internally concluded that the information from the gyroscope did not contribute any

relevant information and that only the accelerometer should be used to detect exterior vehicle impacts.

With this knowledge, an approach of fusing an accelerometer with a gyroscope is deemed unfit for this

problem.

3.4 Data Preparation

The step to guarantee the data is to standards consists of a thorough study of the data provided. By

performing the aforementioned study, we can ensure that any problems with performance and evaluation

in the final steps of ML will not likely be related to the data.

3.4.1 Data standardization for analysis

This section details all the work necessary to transform the data so that later sensor fusion methods can

be performed. The main pre-processing steps implemented are to apply the necessary rotation matrix and

time alignment to ensure the data from all the device locations are standardized.

3.4.1.1 Accelerometer rotation matrix

One of the first necessary steps when performing the analysis of the data was the need to perform a

rotation of the data coming from each device location. The need for a rotation happens due to the position

of the devices when placed inside the vehicle.

In order to find the rotation matrix to apply for each sensor location, a calculation for the angles based

on the desired angles was performed. The rotation matrix was also necessary because there was no

previous information on the angle at which the devices were installed.
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Figure 16 shows the raw information coming from an accelerometer placed in the windshield of a

vehicle. It also shows all axis that represents the acceleration of the device in a given sample. Because

the earth has a gravity force of 9.8 ml/s or 1G, the standard angle for all the accelerometers was to have

the axis x and y at zero and the z at 1, this only happens if the car is still on a horizontal plane. As shown

in the image the three axis do not match the standard.

Figure 16: Example of the windshield device signal recorded with and without the rotation matrix applied.

After the right angles found and the rotation matrix created for each of the sensor’s locations, the

first step deemed completed as we can see in the Figure 11. The rotation matrix is a crucial part of the

pre-processing phase. With the angles in the wrong rotation, fusion results in incorrect data deteriorating

the model performance.

3.4.1.2 Data alignment

As with the previous step, data alignment is necessary to apply fusion methods to the data. Data alignment

happens due to the need to combine data or features from the various sensors. When the sensors are

miss-aligned fusing information results in incorrect or outmatched fused data.

First, we need to consider why there is a misalignment in the sensors. This misalignment occurs due

to the positions of the devices in the vehicle. For example, if the impact is registered on the right side of

the vehicle, the closest device will capture the data first and take longer to be captured by other devices.

To resolve the misalignment, the device placed in the windshield serves as the anchor to align the other

two device sensors. As the data of each measurement from the sensors stores the timestamp recorded
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we can use that detail to shift the data from the other device sensors to match the anchor, which in this

case is the device placed on the windshield.

Figure 17: Example of the alignment result.
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3.5 Model implementation

This section details all the planning and work needed to implement the damage prediction model. This

segment represents an essential part of the thesis as it allows the test and comparison of the results that

sensor fusion may bring.

3.5.1 XG-Boost

Although there are many different models, ranging from random forest to complex neural networks, the

model chosen for this work was XG-Boost. This decision was made due to previous work and testing inter-

nally, which proved for this particular problem that XG-Boost held a better performance when compared

to other solutions. Also, because the main focus of this thesis is the improvement that sensor fusion can

bring, most of the time was spent on implementing and testing sensor fusion methods.

Now for a brief explanation of the XG-Boost model and the benefits it brings to machine learning

and sensor fusion. XG-Boost is part of the gradient-boosted trees algorithm family, a supervised learning

algorithm that attempt to predict the target variable by converging the estimates of a set of simpler models.

3.5.2 Augmentation

Augmentations present an important process in machine learning since it can give a different perspective

or view for the algorithm, allowing more information. Even tho the augmentation can seem to lose some

information, the algorithm has a different way of comprehending the data. For example an image had a

rotation applied to it, this augmentation can present a challenge in guessing the image label with the naked

eye. This rotation can allow the model for a better understanding of the enviromnet and help improve the

performance.

After all the events have been generated and are ready to be used as input for the model to train and

predict, some steps are left to execute. The first one is the augmentations. In a total of four augmentations,

only two were used to transform the data in some sense. The augmentations are applied to all the sensor

locations measurements and only for the events in the training files as we do not want to transform the

data in the testing dataset.

All the augmentations implemented are as follows, rotation augmentation, as the name implies per-

forms a rotation to all the user-specified axis. The other augmentation used for the final phase of this work

is time shift augmentation. In contrast to rotation augmentation, instead of rotating the axis, all the data

from each sensor location are shifted with a user specific value.

Finally, the last three augmentations were left out due to lower performance when compared with the

prior augmentations. The first augmentation utilises a Gaussian distribution to generate noise applied to

the raw data. The user can define minimum, and maximum standard deviation values to generate the

noise from the Gaussian distribution and apply the number of different Gaussian distributions. The final
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augmentation present is axis offset to offset along with the minimum, maximum and number of offsets to

apply to each user defined axis.

3.6 Sensor Fusion

In this section a detailed description of the planing and implementation of each sensor fusion method

used.

3.6.1 Complementary filter

The first sensor fusion method used was the complementary filter, which falls into the data fusion methods.

As explained in Chapter 2 of this thesis, the complementary filter is a low-level fusion where the raw data

measurements from the sensors are fused to give a more robust understanding of the events.

Of all the different sensor fusion methods, this one proved to be a good starting point due to the

straightforward approach with little to no need to perform changes to the data in order to achieve fusion.

The only pre-processing done to the data is presented in the chapter Data Preparation. with more details.

The first step to perform this method is to have all the data from the multiple sensors in the same

standard, in this case being the same rotation and aligned with the time. If sensor fusion were to happen

without these steps, the incorrect representation of the events and the surroundings would be passed to

the models and lead to a much lower performance in comparison to using a single sensor.

After the first step, the implementation of the complementary filter takes place. As mentioned earlier

it is one of the simpler methods to implement as long the data is with the right stantards. As the following

equation shows, it consists of the addition of the axis values of each sensor measurement at a given

timestamp multiplied by a user-defined weight.

[𝐻 ]𝑋1 ·𝑊1 + 𝑋2 ·𝑊2 + ... = 𝐹𝑢𝑠𝑒𝑋 (3.1)

With all the planing and implementation of the necessary steps completed the only thing left is to test

and find the best weight for each sensor used.
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Multi-Sensor

Performance

• Test score: 0.778

• Validation score: 0.905

Fusion weight values

• rightrearpanel: 0.1

• centralconsole: 0.1

• centralconsole: 0.8

Confusion Matrix

Table 6: Complementary filter MCC performance

After testing with multiple combinations of sensor locations and weights, the image above proved to be

the best combination found. Here all three sensor locations were included and the majority of the weight

was from the windshield location. This combination also points to the fact that the windshield is more

reliable than the other locations, but still benefits from information the other two locations provide.

This point marks the end of the first objective setup for this thesis. As mentioned early the first

objective of this thesis consisted in proving that a multi-sensor setup improved the performance of a

single-sensor setup. When comparing the MCC score of the best sensor location combination found for

the complementary filter and the best single sensor setup, we can see an improvement of 0.117 when

using the complementary filter.
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3.6.2 Feature Fusion

With the first objective completed and sensor fusion proved to work and improve the performance of the

model, the next step of sensor fusion was to test feature fusion and compare if this method could improve

results from the complementary filter.

Much of the pre-processing applied to the datasets had already been done when testing and imple-

menting the complementary filter. Because of that much of the time spent in the pre-processing could

be now spent on testing and developing the feature fusion method. The method that ultimately ended up

being used to fuse the sensor locations, consists in 3 parts.

The big step was generating events with a time window interval so that later feature extraction and

calculation could be applied. An event in this case does not represent necessarily an impact on the car.

The algorithm generates events based on the magnitude of the accelerometer measurements.

Figure 18: Feature fusion framework.

The image Figure 16 represents the workflow of the first step in feature fusion. The first segment

involves looping through all the locations accelerometer data in a two-second time frame. In a cycle

containing all the specified locations, for each one, the magnitude of the data is calculated in the two-

second interval set before. After acquiring the magnitude, a threshold is passed to check if there is a point

where the magnitude surpasses it. In the positive case, the magnitude transcends the threshold a window

is created with a predefined size, and the cycle breaks for that two-second window. Note that the window

created has a length before the perceived point with the notation 𝐵𝑊 (𝐵𝑒 𝑓 𝑜𝑟𝑒 𝑤𝑖𝑛𝑑𝑜𝑤) and length after
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Figure 19: Feature computation framework.

with the notation 𝐴𝑊 (𝐴𝑓 𝑡𝑒𝑟 𝑤𝑖𝑛𝑑𝑜𝑤). This window is later used to define the time interval feature

computation that will take place and is explained later on in this chapter.

In the case the magnitude fails to reach the threshold, the next location gets cycled in and goes throw

the same process. Given the event that none of the locations magnitudes surpass the threshold, the next

two-second interval is looped and no window is created. The final segment in this process is composed of

checking the label for the specified window and setting the label as a 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 or a 𝑑𝑎𝑚𝑎𝑔𝑒.

The next step implemented begins once a window has been created as mentioned earlier. As presented

in the image Figure 20, the same window is used in all location accelerometer data to delimit the interval

where feature computation happens. The most important part of feature fusion, as the name suggests,

instead of raw fusion data from the measurements we fuse features extracted from them. As presented

above for each axis multiple features are calculated and stored. Finally, all the features from each of the

locations are stored together and later used as input for the model to predict if the vehicle suffered damage

or not.

Before the features get used as input for the damage classification model, there’s still a final step

implemented. This step involves applying a correlation method to remove features with a high correlation

between them. The method chosen for this process is the Pearson Correlation method.
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Figure 20: Correlation between features.

This method calculates the correlation between every feature and passes a threshold to evaluate which

feature to remove. As shown in the figure Figure 21 the correlation can vary in a range o -1 to 1. These

values can help us evaluate if a feature adds any value or if it can be deleted to reduce redundancy. For

this purpose, a threshold of 0.94 was defined if a value is higher than 0.94, this also works if it is less

than -0.94, and one of the features is discarded.
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3.7 Results

This section represents the final step in the development process. Here lies all the performance for all the

models and methods used. Due to the nature of this work, this section holds substantial importance as it

compares the performance of a single-device setup and a multi-device setup.

Concerning the evaluation process, a metric must define as best suited to this thesis work. If the only

element to guide the changes and iteration of the model were the accuracy, it would prove difficult as almost

no information could be helpful to know whether the model is performing poorly. For this same reason,

the metric chosen was Matthews Correlation Coefficient (MCC). This choice was made since this exact

metric takes into consideration every element of the confusion matrix, which contains the True Positive

(TP), False Positive (FP), True Negative (TN), False Negative (FN). Another benefit of using this metric is

regarding unbalanced datasets. Because the algorithm generates events based on the magnitude of the

accelerometer measurements, a condition can happen where there are more events in the test dataset

than in the training dataset.

This metric gives values within a range of -1 and 1. These values have each a representation associated

with each of them, the closest the number is to 1 the closer the model is to a perfect prediction, on the

contrary, closer to -1 represents an inverse prediction. Lastly, the closer the MCC score is to 0 the more

random the prediction is and consequently can tell us that the model is failing to learn and picks the

prediction at random.

𝑀𝐶𝐶 =
(𝑇𝑃 ·𝑇𝑁 − 𝐹𝑃 · 𝐹𝑁 )√

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁 )(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁 )
(3.2)

Another performance evaluation to be had in mind in this stage of the development was the number of FPs

found in the test dataset confusion matrix. The element FP, represents the events that were incorrectly

predicted to result in damage to the exterior of the vehicle where truthfully no damage had been done.

Here the priority is to keep the FP to the lowest number possible as it could trigger any false alarm or

system in place in the vehicle for the eventual circumstance the vehicle suffers damage.

Ultimately the test dataset needed to be untouched when comparing device setups performance. This

ensures that the comparison between the two setups is based on the same test events.

3.7.1 Complementary Filter

The following table demonstrates, side by side, the performance based on the MCC metric obtained on

the best performing models for the best single-device setup and multi-device setup. Apart from the MCC

score, the hyperparameters and confusion matrix are also shown. This process was only done to the

AudiA5 dataset as the complementary filter was used as a proof of concept in order for feature fusion to

take place.
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Single-Sensor Multi-Sensor

Performance

• Test score: 0.782 • Test score: 0.778

• Validation score: 0.838 • Validation score: 0.905

Hyperparamters

• n_estimators: 1000 • n_estimators: 1000

• max_depth: 6 • max_depth: 6

• eta: 0.05 • eta: 0.05

• colsample_bytree: 1 • colsample_bytree: 1

• scale_pos_weight: 1 • scale_pos_weight: 1

Confusion Matrix

Table 7: Complementary filter Single VS Multi sensor scores

As shown in the previous table, when using a multi-sensor setup, the detection model improves up to

12%. The complementary filter setup uses all three sensor locations, helping the model understand the

environment. Regarding the false positives, as demonstrated in the confusion matrix, the complementary

filter can maintain a low number of cases, thus lowering the possibility of a false alarm.
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3.7.2 Feature fusion

Similar to the complementary filter, the following tables portray the performance, side by side, from both

single and multi-device setups. Note that this time for feature fusion, instead of only showing the per-

formance comparison on the AudiA5, it also presents the performance obtained on the Tiguan dataset.

In order to validate the results acquired previously, by applying the same model and process to a new

dataset, any flaws and irregularities can be detected and improved upon.

Single-Sensor Multi-Sensor

Performance

• Test score: 0.782 • Test score: 0.811

• Validation score: 0.838 • Validation score: 0.970

Hyperparamters

• n_estimators: 1000 • n_estimators: 1000

• max_depth: 6 • max_depth: 6

• eta: 0.05 • eta: 0.05

• colsample_bytree: 1 • colsample_bytree: 1

• scale_pos_weight: 1 • scale_pos_weight: 1

Confusion Matrix

Table 8: Feature fusion Single VS Multi sensor scores for AudiA5
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As mentioned before, the following table displays the performance comparison between a single-device

setup and the feature fusion method used to enable a multi-device setup.

Single-Sensor Multi-Sensor

Performance

• Test score: 0.782 • Test score: 0.811

• Validation score: 0.909 • Validation score: 0.913

Hyperparamters

• n_estimators: 1000 • n_estimators: 1000

• max_depth: 6 • max_depth: 6

• eta: 0.05 • eta: 0.05

• colsample_bytree: 1 • colsample_bytree: 1

• scale_pos_weight: 1 • scale_pos_weight: 1

Confusion Matrix

Table 9: Feature fusion Single VS Multi sensor scores for Tiguan

As described in the state of the art section of this thesis, sensor fusion can improve the performance

of machine learning solutions by combining information from multiple sensor measurements. With the

use of complementary filter and feature fusion methods, the model performance improved compared to

single sensor performance. Although the accuracy can give some information about how the model is
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performing it doesn’t take in consideration the TP and FP. With this in mind the performance is evaluated

by two metrics one being the mcc score that takes in consideration all the elements in the confusion matrix

and the number of FP as this is a algorithm to detect impacts there is a need to minimize the percentage

of FP occurrences thus not to set any potential alarms.

In conclusion, the use of sensor fusion looks promising in a vehicle damage detection environment,

opening more possibilities and developments in the sensor fusion area to improve detection performance

even further. Although sensor fusion proved to work, many improvements can still be applied to all phases

of this project. Some solutions and modifications are presented in the future work section.
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Conclusion and Future work

The purpose of this chapter splits into two parts. The first one describes the work’s final observations and

thoughts. Moreover, the second part is reserved for presenting an alternative approach and future work

related to sensor fusion.

4.1 Conclusion

As mentioned earlier, this main objective of this thesis is to combine multiple sources of information by

using sensor fusion methods and consequently improve the performance of the already existing damage

detection model. First, a data-level fusion approach was proposed to prove if sensor fusion could improve

the model performance. Before applying any modification to the sensor data, a detailed analysis of the

already implemented system was required. After the analysis, the processing step began by applying the

necessary steps so sensor fusion could occur. The first modification was finding the rotation matrix for

two locations so that all the sensors had the same rotation. as a The second transformation required was

aligning the sensor’s measurements so that the events match all the sensor’s locations.

After all the required steps were established, the first implementation of sensor fusion started. As

mentioned before, to test and validate the benefits of sensor fusion, the method of choice was the com-

plementary filter, as it proved simple to implement. As was foreseeable, using multiple sensors improved

the model performance, in this case, by up to 7% while keeping the false positives to a low occurrence.

Completing the first objective opens the doors to testing other methods to help improve the performance

even further.

The next step consisted of implementing a medium fusion approach known as feature fusion. As the

name implies, the fusion does not happen at the data level but after a set of features extracted from the

sensors’ measurements. For this reason, the already implemented model had to be changed, and the

pipeline had to consider multiple sensors. Also, a more dynamic approach was developed to help test and

compare multiple combinations of sensors. All details regarding the work to change the model pipeline

are described in the section Feature fusion.

By this point, the only usable dataset was the AudiA5, as the Tiguan was still in the recording and
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labelling phases. Sens fusion can be validated and proved to work in different environments by testing

and comparing results from both datasets. The last phase of this project consisted of experimenting and

comparing different sensor fusion combinations with both datasets combined.

Concerning the objectives of this thesis, even though the main objective of proving the benefits of

sensor fusion in a damage detection context was completed, one objective failed. Due to time and hard-

ware constraints, a multi-sensor fusion setup in a vehicle with multiple devices could not be implemented

and is described in the future work section of this thesis. Regarding the primary goal of this project, as

expected from the state-of-the-art section, the results proved promising and open the possibility for diverse

experiments in the area of sensor fusion.

4.2 Future Work

Due to the possibilities offered by the context of this thesis theme and promising results from using sensor

fusion, a different approach for some of the phases of development and next steps can be presented.

Initially, by recording more diverse events, the detection model’s performance could validate the use of

sensor fusion even further. Concerning sensor fusion methods, a new high-level fusion approach can help

improve the model prediction and increase the understanding of the environment. The work presented in

this thesis can be used with a high-level fusion method, allowing multiple experiments with different fusion

strategies.

Although the complementary filter was used and compared with a single sensor setup, the main

objective consisted in proving that sensor fusion can improve the model performance. The next step is

combining the features from feature fusion in conjunction with the result from the complementary filter to

take advantage of both methods’ benefits. Regarding the augmentations, the next step would be adding

and testing new augmentations found in the literature phase and combining them with existing ones to

improve performance. Besides using Pearson correlation to remove highly correlated features, the method

can again be used to remove features with a significant correlation with the prediction class, consequently

removing redundancy.

The last two future work set for this work involves the implementation of a multi-sensor setup in a

vehicle containing additional device locations than the previous experiments. By adding five to seven more

device locations, many combinations can be tested and later compared to find the best setup by trying

to maintain the lowest possible number of devices and good performance. Finally, more sensors can be

used to perform sensor fusion, enhancing the understanding of the environment.
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