
Verifying temporal relational models with
Pardinus?

Nuno Macedo1,3, Julien Brunel4,5, David Chemouil4,5, and Alcino Cunha1,2

1 INESC TEC, Porto, Portugal
2 University of Minho, Braga, Portugal

3 Faculty of Engineering of the University of Porto, Porto, Portugal
4 ONERA DTIS, Toulouse, France

5 Université fédérale de Toulouse, Toulouse, France

Abstract. This short paper summarizes an article published in the
Journal of Automated Reasoning [7]. It presents Pardinus, an extension
of the popular Kodkod [12] relational model finder with linear temporal
logic (including past operators) to simplify the analysis of dynamic sys-
tems. Pardinus includes a SAT-based bounded model checking engine and
an SMV-based complete model checking engine, both allowing iteration
through the different instances (or counterexamples) of a specification. It
also supports a decomposed parallel analysis strategy that improves the
efficiency of both analysis engines on commodity multi-core machines.

Keywords: Model Checking · Model Finding · Relational Logic · Tem-
poral Logic

1 Introduction

High-level model finders are becoming increasingly useful in software engineer-
ing. The ability to specify properties of a system in some expressive logic and
then automatically find solutions (models) that satisfy such properties is useful
in many applications, ranging from early system design validation to test-case
generation. Kodkod [12] is an example of such model finders, supporting a range
of features that make it quite popular:

– Problems are described using the single concept of relation (of arbitrary
arity), considerably simplifying the syntax and semantics of the language.

– Constraints are expressed in relational logic, first-order logic enriched with
relational algebra and closure operators, enabling a terse, but still readable,
style of specification.

? Work financed by the European Regional Development Fund (ERDF) through
the Operational Programme for Competitiveness and Internationalisation (COM-
PETE2020) and by National Funds through the Portuguese funding agency, Fun-
dação para a Ciência e a Tecnologia (FCT) within project POCI-01-0145-FEDER-
016826 and by the French Research Agency project FORMEDICIS ANR-16-CE25-
0007 and by the research project CONCORDE of the Defense Innovation Agency
(AID) of the French Ministry of Defense (2019650090004707501).



2 N. Macedo et al.

– It allows the user to iterate over alternative solutions of the problem, also
implementing a symmetry breaking mechanism (to avoid the generation of
equivalent solutions) which makes it useful for scenario exploration.

– Partial instances can be provided a priori, as lower- and upper-bounds for
relations, enabling its application to configuration-solving tasks, where the
goal is to find a full instantiation of a partial description of a system.

Kodkod is implemented as a Java API and is designed to be a plugin that can
easily be incorporated as a backend of another tool. Its best-known application
is the analysis of Alloy 5 specifications. Alloy [6] is a language that shares some of
Kodkod’s features – the everything is a relation motto and the usage of relational
logic – but that also supports higher-level constructs to further simplify the
description of a system, namely a type system with inheritance.

Despite its usefulness and popularity, Kodkod can only be directly applied to
analyse structural designs. Analysis of behavioural designs is possible, but cum-
bersome and error-prone. The state and traces of the system must be explicitly
modelled and temporal properties and (bounded) model checking must be speci-
fied directly using transitive closure over the traces. This approach is often viable
for checking simple safety properties, but properly checking liveness properties is
tricky and mostly avoided. Moreover, given the bounded nature of the analysis,
complete model checking could only be directly supported by setting a bound
that covers all reachable states, which is infeasible for most examples.

This paper presents the Pardinus model finder, an extension of Kodkod that
addresses this limitation. It allows the declaration of mutable relations and the
specification of properties in temporal relational logic, an extension of relational
logic with linear temporal logic with past operators (PLTL). Pardinus prob-
lems can currently be analysed by two model finding backends that implement
satisfiability checking for temporal relational logic: the first translates Pardinus
problems back to plain Kodkod problems, by resolving the temporal domain and
implementing a procedure that essentially amounts to bounded model checking
with SAT [1]; the second resolves the first-order domain, and reduces Pardinus
satisfiability checking to PLTL model checking over a universal model of a system
(one that allows all possible behaviours) [10], using the concrete SMV syntax [4].

The main application of Pardinus is in the analysis of Alloy 66 specifications.
This new version of Alloy adds support for mutable relations and temporal rela-
tional logic, an extension previously known as Electrum [8,2]. The architecture of
Alloy 6 and Pardinus is depicted in Fig. 1, with the scope of this paper captured
by thick lines and arrows. Pardinus is also used as a backend in Forge [11], a
system to prototype formal methods tools.

This article summarises [7], which has four main contributions, when com-
pared to previous publications presenting Pardinus and Electrum:

– A unified and complete presentation of both analysis backends (bounded and
unbounded model checking). The paper that introduced Electrum [8] briefly
mentions how specifications can be model checked, but at the time Pardinus

6 https://github.com/AlloyTools/org.alloytools.alloy/releases/tag/v6.0.0



Verifying temporal relational models with Pardinus 3

Alloy 6 Pardinus

Kodkod

SMV

MiniSAT

· · ·

Sat4j

NuSMV

· · ·

nuXmv

Fig. 1: Alloy 6 and Pardinus architecture

did not exist and the two backends were not unified. In a more recent tool
paper about the current version of the Electrum Analyzer [2], Pardinus is
already mentioned as the underlying model finder but not described.

– A novel path iteration mechanism, that returns only non-isomorphic solu-
tions, and that is efficiently implemented using incremental SAT solving.
Trace iteration was approached in [3], but only for single state updates and
without an efficient implementation.

– A decomposed analysis technique that relies on symbolic bounds and parallel
execution to speed up verification. This technique was first introduced in [9],
but only for plain Kodkod problems.

– An extended evaluation, with several new examples and case studies, pro-
viding more confidence about the effectiveness of the proposed techniques.

In the rest of this paper, we present how a Pardinus problem is described,
taking a protocol as an illustrating example. We then briefly mention the different
analyses which are performed by Pardinus. Details can be found in [7].

2 A Pardinus Problem

A Kodkod model finding problem consists of a set of relation declarations plus
a single relational logic formula defined over those (free) relations, whose sat-
isfiability is to be checked. To make the problem decidable every free relation
must be given an upper-bound – the set of the tuples that may be present in the
relation. Tuples are sequences of atoms (uninterpreted identifiers) drawn from
a finite universe, that must also be declared upfront. A relation can also have
a lower-bound, which is useful to capture a priori partial knowledge about the
solution. Pardinus problems extend Kodkod ones as follows:

– Mutable relations, whose value changes over time, can be declared with key-
word var.

– Formulas can use (past and future) linear temporal operators to express
behavioural constraints.

– A relational expression in a formula can be primed to denote its value in the
succeeding time instant.



4 N. Macedo et al.

1 {I0,I1,I2,I3,P0,P1,P2,P3}

2

3 Id :1 {(I0),(I1),(I2),(I3)} {(I0),(I1),(I2),(I3)}

4 next :2 {(I0 ,I1),. . .,(I2,I3)} {(I0 ,I1),. . .,(I2 ,I3)}
5 Process :1 {} {(P0),(P1),(P2),(P3)}

6 id :2 {} {(P0 ,I0),(P0 ,I1),(P0 ,I2),(P0 ,I3),. . .,
7 (P3 ,I0),(P3,I1),(P3,I2),(P3,I3)}

8 succ :2 {} {(P0 ,P0),(P0 ,P1),(P0 ,P2),(P0 ,P3),. . .,
9 (P3 ,P0),(P3,P1),(P3,P2),(P3,P3)}

10 var outbox :2 {} {(P0 ,I0),(P0 ,I1),(P0 ,I2),(P0 ,I3),. . .,
11 (P3 ,I0),(P3,I1),(P3,I2),(P3,I3)}

12 var Elected :1 {} {(P0),(P1),(P2),(P3)}
13

14 id in Process → Id and
15 all p : Process | one p � id and
16 all i : Id | lone id � i and
17 succ in Process → Process and
18 all p : Process | one p � succ and
19 all p : Process | Process in p � ^succ and
20

21 outbox = id and
22 always some p : Process , i : (succ � p) � outbox |
23 outbox ’ = outbox − succ � p → i + p → (i − ^next � (p � id)) and
24

25 always Elected = {p : Process |
26 once (p � id in p � outbox and before not (p � id in p � outbox ))}

Fig. 2: A leader election protocol in Pardinus

The value of the immutable relations, that remains constant in a trace after
being fixed at start, constitutes a so-called configuration of the system. As an
illustration, we consider the specification of a leader election protocol shown
in Fig. 2. This protocol, first proposed by Chang and Roberts [5], assumes a ring
network of processes (or nodes) with unique comparable identifiers.

Specifying configurations (ll. 1–9, 14–19) The immutable portion of the problem
is essentially pure Kodkod and specifies networks following the ring topology,
amounting to the configuration of the protocol. To bound the problem, only rings
with up to four nodes will be considered in the example. Thus, the mandatory
universe declaration (l. 1) introduces four atoms to denote the processes (P0 to
P3) and four atoms for the identifiers (I0 to I3). Next, a set of free relations can
be declared that are the target of the model finding process. For each relation,
besides its name, one must declare its arity (the length of the tuples it can
contain), and its lower- and upper-bounds as tuple sets of the same arity. This
problem declares two immutable sets (sets are simply normal unary relations)
– Id (l. 3) and Process (l. 5) to denote the set of identifiers and processes,



Verifying temporal relational models with Pardinus 5

respectively, that will effectively exist in each solution – and three immutable
binary relations – next to capture the total order between identifiers (l. 4), id to
associate processes with their identifiers (l. 6), and succ to represent the desired
topology, associating each process with its successor in the ring (l. 8).

By setting the lower-bound equal to the upper-bound, relations Id and next
are declared as constants, with next fixing a particular total order between the
four possible identifiers. Then Process is restricted to be any subset of the four
possible process atoms (recall that we intend to specify all rings with up to
four processes), id to contain pairs where the first component is a process and
the second is an identifier, and succ to only contain pairs of processes. The
upper-bounds usually encode (loose) typing restrictions, but are not sufficiently
expressive to restrict valid valuations. For instance, the upper-bound of id alone
does not ensure that its tuples only relate processes that are effectively assigned
to Process, which needs to be enforced in the problem’s constraint. However,
it still considerably speeds up the analysis by restricting upfront possible valua-
tions.

Then, constraints of the problem are specified with a temporal relational
logic formula, whose free variables are the relations previously declared. Due
to space constraints, we do not detail the logic here as it is essentially that of
Alloy 6. The specification of the ring topology consists of a conjunction of six
sub-formulas (ll. 14-19) over the immutable relations.

Specifying behaviour (ll. 10–12, 21–26) The remaining of the problem specifies
the evolution of the protocol. Pardinus problems do not explicitly specify a state
machine. Instead, behaviour is enforced through arbitrary temporal constraints
that restrict which traces are acceptable in the system being modelled.

The protocol is uniform (every process performs the same operations) and
works correctly if no failures occur (eventually one and at most one leader is
elected). The protocol starts with each process ready to send its own identifier
to its successor in the ring. When a process receives an identifier, it compares it
with its own. If it is higher it propagates; otherwise it discards it. A process that
receives back its own identifier is the elected leader. To model this behaviour, a
mutable outbox binary relation is declared (l. 10) to associate each process with
the identifiers it should propagate along the ring. As in [6], where this protocol
is used to illustrate the Alloy 5 language following an explicit state idiom, we
abstract away the inbox of each process and will merge the event of sending
an identifier with that of the respective successor processing the identifier. A
mutable Elected set is also declared (l. 12) to contain the processes that are
elected leaders (hopefully, at most one).

With mutable relations, the constraints of a problem can rely on temporal
operators. Relational expressions can be “primed” to retrieve their value in the
succeeding state, and formulas are composed using the past and future temporal
operators of LTL.

The dynamics of the protocol is specified with two constraints. The one in
l. 21 specifies the initial value of the outbox relation (formulas without temporal
operators must hold in the first state), stating it should be the same as relation



6 N. Macedo et al.

id, i.e., each process should start by sending its own identifier to the successor.
The formula in ll. 22–23 specifies valid transitions, stating that at each time
instant some process p should pick and process one of the identifiers in the
outbox of its predecessor succ � p. The final constraint (ll. 25–26) defines the set
of elected processes by comprehension at each instant, using a combination of
future and past linear time operators: a process is considered elected if at some
point in the past its identifier reappeared in its outbox.

Analyzing the problem If a problem is satisfiable, as in this example, Pardinus
returns a solution. Additionally, in order to check a particular temporal prop-
erty, one should add its negation to the problem to try to find a solution, also
called counterexample in this case. If none is found, the property is valid for the
specified bounds.

The key safety property of this protocol is that at most one leader is elected,
which can be specified as always lone Elected, or as the stronger formula
always all p : Elected | always Elected in p, which forbids different pro-
cesses to be considered elected at different points in time. To be useful, the
protocol should also ensure that some leader is elected. This liveness property
can be specified as eventually some Elected.

3 Iteration on Solutions

As mentioned earlier, once a solution (or a counterexample) is computed by
Pardinus, a mechanism allows for iteration over the set of solutions (or counterex-
amples). The Kodkod approach (i.e., return any different path), would often fail
to incorporate the users expectations when exploring alternative paths. In our ex-
perience, scenario exploration is often performed in distinct stages. For instance,
the user may first explore different configurations, each framing the context over
which the path can evolve, and then explore alternative paths for a selected
configuration, trying to find an interesting evolution scenario. Thus, Pardinus
implements different navigation operations that focus on modifying different as-
pects of the path. To be efficient, these operations are directly implemented at
the solver level, and also incorporate a symmetry breaking mechanism.

As an illustration, let us consider the leader election protocol illustrated in
Section 2. Suppose that in the first solution that is computed by Pardinus, the
set Process consists of the single process P0, the relation succ is a self-loop,
i.e., succ = {(P0, P0) and P0 repeatedly sends its own identifier to itself. The
user may ask Pardinus for another solution, having a different configuration. This
returns a solution with a different number of processes. Notice that a solution
with a single process different from P0 would also correspond to a different
configuration but is considered as symmetrical to the first solution, and is thus
pruned out by Pardinus. Suppose that Pardinus provides a new solution in which
Process = {P0, P1, P2} and succ = {(P0,P1),(P1,P2),(P2,P0)}. Suppose
that in this solution, there are seven different states before a process is elected
whereas the user wants to exhibit the shortest possible scenario to elect a process



Verifying temporal relational models with Pardinus 7

(i.e., with four different states in this case). The user may now ask for another
solution with the same configuration. Pardinus then computes a solution where
Process and succ are the same, but where the behavior, i.e. the sequence of
operations executed by the processes, differs. As soon as the returned solution
does not correspond to the scenario that the user has in mind, a new solution
having the same configuration can be requested. If such a solution exists, it will
necessarily be returned by Pardinus.

4 Parallel Decomposition

Configurations, determined by the immutable relations, are initially arbitrary,
but remain constant as the system evolves. This enables a decomposed analysis
of Pardinus problems that first solves for configurations and afterwards, for each
configuration, solves for possible behaviours. Evaluation shows that in certain
contexts, this decomposition can yield substantial performance benefits. Such
decomposed analysis is also amenable for parallelisation using commodity hard-
ware, since different configurations can be solved independently in different cores.
Moreover, since commonly the values of mutable relations depend on those of
immutable ones, if these dependencies were explicit, the configurations could be
used as partial instances for the succeeding stage, further speeding up analysis.
For that purpose, Pardinus allows users to declare symbolic bounds for mutable
relations, so that dependencies on the immutable relations can be made explicit.

5 Evaluation

We evaluated the scalability of Pardinus for the complete and bounded backends,
the parallel decomposed strategy, and the iteration operations, with multiple
variants of 6 different Pardinus problems.

Both the SAT and SMV bounded backends scaled to considerable model
sizes and maximum trace lengths. The SAT backend seems to scale better with
increasing model size, particularly for satisfiable problems. The SMV procedures
do not seem to have considerable gains for satisfiable problems. As expected,
the complete SMV backend performed worse, but closes on the performance
of the bounded backends as the considered maximum trace length increases.
This supports the application of complete analysis when enough confidence is
obtained from the bounded backends. The parallel strategy shows considerable
gains for satisfiable problems, particularly for the bounded and complete SMV
backends. The gains for unsatisfiable ones are not as consistent, but the SMV
backends seem to benefit more from it. A hybrid approach tames the negative
outliers while preserving the gains otherwise.

Both iteration operations have shown to be feasible for interactive sessions
with both strategies, although configuration iteration seems to be affected by the
number of valid configurations. Configuration iteration performed better in the
non-parallel approach, while path iteration fared better with the parallel one.



8 N. Macedo et al.

6 Conclusion

The full article [7] expands in detail on the topics mentioned before and also
adds a substantial evaluation section, answering several research questions and
demonstrating the relevance of the techniques implemented in Pardinus.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: TACAS. LNCS, vol. 1579, pp. 193–207. Springer (1999)

2. Brunel, J., Chemouil, D., Cunha, A., Macedo, N.: The Electrum Analyzer: Model
checking relational first-order temporal specifications. In: ASE. pp. 884–887. ACM
(2018)

3. Brunel, J., Chemouil, D., Cunha, A., Macedo, N.: Simulation under arbitrary tem-
poral logic constraints. In: F-IDE@FM. EPTCS, vol. 310, pp. 63–69 (2019)

4. Cavada, R., Cimatti, A., Jochim, C.A., Keighren, G., Olivetti, E., Pistore, M.,
Roveri, M., Tchaltsev, A.: NuSMV 2.6 User Manual. FBK-IRST (2010), http:
//nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf

5. Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding
in circular configurations of processes. Communications of the ACM 22(5), 281–283
(1979)

6. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
2nd edn. (2016)

7. Macedo, N., Brunel, J., Chemouil, D., Cunha, A.: Pardinus: A temporal relational
model finder. Journal of Automated Reasoning 66, 861–904 (2022)

8. Macedo, N., Brunel, J., Chemouil, D., Cunha, A., Kuperberg, D.: Lightweight spec-
ification and analysis of dynamic systems with rich configurations. In: SIGSOFT
FSE. pp. 373–383. ACM (2016)

9. Macedo, N., Cunha, A., Pessoa, E.: Exploiting partial knowledge for efficient model
analysis. In: ATVA. LNCS, vol. 10482, pp. 344–362. Springer (2017)

10. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. STTT 12(2), 123–137 (2010)
11. Siegel, A., Santomauro, M., Dyer, T., Nelson, T., Krishnamurthi, S.: Prototyping

formal methods tools: A protocol analysis case study. In: Protocols, Logic, and
Strands: Essays Dedicated to Joshua Guttman on the Occasion of his 66.66th
Birthday. LNCS, Springer (2021), to appear

12. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: TACAS. LNCS,
vol. 4424, pp. 632–647. Springer (2007)

http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf
http://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf

	Verifying temporal relational models with Pardinus

