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Abstract. This paper proposes a novel method called U Analysis for in-
terpreting the behavior of image classification models. The method allows
the evaluation of the interdependence between patches of information in
an image and their impact on the model’s classification performance.
In addition, the paper introduces the Model Inspector tool that allows
users to manipulate various visual features of an input image to under-
stand better the model’s robustness to different types of information.
This work aims to provide a more comprehensive framework for model
interpretation and help researchers and practitioners better understand
the strengths and weaknesses of deep learning models in image classi-
fication. We perform experiments with CIFAR-10 and STL-10 datasets
using the ResNet architecture. The findings show that ResNet model
trained with CIFAR-10 and STL-10 presents counter-intuitive feature
interdependence, which is seen as a weakness. This work can contribute
to developing even more advanced tools for analyzing and understanding
deep learning models.
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1 Introduction

As deep learning models become more popular, they become more present in
our lives in different applications. This is no different for image classification
models; they are important for applications of several domains, for example,
classifying medical images such as MRI [15] and classifying images in e-commerce
to automatically tag products [11]. Despite their success, image classification
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models also have failures. For example, they are vulnerable to artificial and
natural Adversarial attacks [20], biased to background information [21], and
sometimes makes wrong prediction when we rotate the object in the scene [3].
This list of failures shows that we still need tools to harnessing and interpret the
image classification model’s behavior to understand its decision.

With the increase in model complexity and the resulting lack of transparency
in the decision-making process, model interpretability methods have become
increasingly important. The model transparency and interpretability usually are
associated with the degree to which a human can understand the cause of a
decision. When making predictions with a neural network, the data input is fed
through many layers of multiplication with the learned weights and through non-
linear transformations. A single prediction can involve millions of mathematical
operations, thus being difficult for us humans to follow the exact mapping from
data input to prediction. We would have to consider millions of weights that
interact in a complex way to understand a prediction by a neural network. We
need specific interpretability methods to interpret the behavior and predictions
of neural networks.

In recent years, several methods have been proposed to interpret deep learn-
ing model outputs [17, 16, 19, 18]. Given an input x, model f , and target category
y, these interpretability methods build an attribution map a with the same size as
x, where ai means how much important the feature xi for f(x)y. There are some
libraries developed with Python that we can use to instantiate these methods
and interpret models developed in Pytorch or TensorFlow, for example Captum
4, Innvestigate [2], and TensorFlow Interpretability 5. These libraries have an
easy-to-use interface where we can instantiate the interpretability methods to
produce the attribution maps to our inputs. Still, we need to codify all input
interactions that we want to infer the impact of feature changes in model output
or attribution maps, thus being a challenge to beginner or even intermediate
users to debug its models.

In this paper, we propose a new method called U Analysis, which allows
us to evaluate the importance of different patches in an image and understand
the impact of removing them on the model’s classification performance. We also
introduce a Model Inspector tool that allows users to manipulate various vi-
sual features of an input image to understand better the model’s sensitivity
to different types of information. Our goal is to provide a more comprehensive
framework for model interpretation and help researchers and practitioners better
understand the strengths and weaknesses of deep learning models in image clas-
sification. This work is structured as follows. Section 2 discusses the proposed U
Analysis, and section 3 presents the Model inspector tool. The section 4 presents
and discuss the experiments made with U Analysis, and we conclude the work
in section 5.

4 https://captum.ai/
5 https://tf-explain.readthedocs.io/en/latest/
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2 Related works

In the recent years, the scientific community has proposed several interpretabil-
ity methods [17, 16, 19, 18]. These methods tries to decompose the model output
strength into the input space, attributing a importance weight for each input
pixel. Although these methods represents a path towards black-box model un-
derstanding, there is still concerns about its usefulness to infer how each input
region (grid of features) impacts the model decisions [1]. Instead of attribute a
degree of importance for each input feature, other methods proposes to infer the
input feature importance by manipulating the input image and verify its im-
pact on model output. [6] proposes the deletion and preservation games, where
the first is to search for the smallest deletion mask (Md) that when applied to
the input image the model will change its prediction, on the other hand, the
preservation game search for the smallest preservation mask (Mp) that when
represents the sufficient input region to the model classify the input image cor-
rectly. [22] proposes the Occlusion approach to verify if some input image patch
is important to model prediction by occluding it with a constant signal, such as
grey patch.

The related works discussed so for focus on interpretability or model under-
standing methods that aim to attribute importance weights to individual input
pixels, or infer the input region importance for model prediction. On the other
hand, the method proposed in this work, called U Analysis (UA), addresses the
co-dependence of input image patches for accurate model prediction. UA focuses
on identifying groups of patches that need to co-exist to the model make accu-
rate predictions. It systematically verifies the significance of these co-dependent
patches by systematically manipulating the input image and observing the im-
pact on the model’s output. This method differs from the related works by
explicitly finding the co-dependence among image patches rather than assign-
ing importance weights to individual features or patches, instead it uses these
weights as input to perform the analysis.

3 U Analysis

Different methods were proposed to visualize features and concepts learned by
the neural network models, which have a performance that is less ’interpreta-
tive’ and usually qualitatively evaluated. These methods compute how much
each input feature contributes to the model output/prediction, but they do not
explain the input features’ interdependence nor the order of importance. In this
work, we propose the U Analysis (UA), a systematic method to verify the co-
dependence of input image patches for model prediction, a group of patches that
must co-exist for the model to predict accurately.

The Algorithm 1 presents the U Analysis steps with a Python-based syntax.
Given an input image x, model f , and attribution map I, the UA method first
computes the importance of each x’s patch of dimension W ×W by summing up
all attribution weight of each respective feature. Next, it sorts the x’s patches
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Algorithm 1: U Analysis.
Input: Given a trained deep learning model f , input image x, target,

interpretability vector I, window size w, order type order, and noise
type n

region_weights← get_region_importance(I, w) ;
region_sorted← sort_region(region_weights, order) ;
gen_batch← removeregions(x, region_sorted, noise) ;
pred_batch← f(gen_batch) ;
y_batch_pred← pred_batch.argmax(1) ;
pos_pred_correct← where(y_batch_pred == target) ;
u_triples← [] ;
for i = 0 to len(y_pred_correct)− 1 do

idx_left = pos_pred_correct[i] ;
idx_right = pos_pred_correct[i+ 1] ;
if (idx_right− idx_left) is larger than one then

middle_idx← choice_between(idx_left, idx_right);
u_triples.append((idx_left, idx_middle, idx_right)) ;

return u_triples

by importance. It cumulatively replaces each one of the input images by noise,
creating new xi images, where the xi images are equal to x, except that does not
have the information about the first i patches (i.e. gen_batch variable). Thus,
assuming that the input image has N patches, the xN image does not have any
information (i.e., only noise such as zeros, ones, or Gaussian noise). Figure 1
shows a sample of the UA processing.

Input

Importance

Pixel
Interpretability

Grid
Interpretability

Step 43
 Category 12

Step 0
Category 12

Step 44
 Category 7

Step 46 
Category 12

0                    0.5                       1

Step 64

U Analysis - Removing from the less important patch to the most important

1)

2)

Fig. 1. U Analysis pipeline. The UA has two main steps, 1) given a input image it
compute the model inference and interpretability, then it process the grid level inter-
pretability. 2) Given the grid level interpretability, it sorts each image patch according
to its importance and removes patch-by-patch from the input image from the less im-
portant to the most one.

After constructing the sequence of new images, it is possible to see that all
the information from image xi is present in xj<i. Thus, if we have a case where
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left < middle < right and f(xleft) = y, f(xmiddle)! = y, and f(xright) = y,
it means that the information contained in xleft and xright is sufficient for the
model to infer correctly. However, the patches in xmiddle but not in xright create
negative strength for y when they coexist with the other patches. We call this
counter-intuitive case as U-occurrence.

4 Model Inspector

Image comprises different types of visual information, such as shape, color, tex-
ture, patterns, and objects. Each type of information may impact the model
classification decision in different ways, for example, a model may be biased to
texture, color, or shape [14, 3, 9, 23]. Thus, tweaking these types of information
in the input image and evaluating the model with the newly image can help
assess the classification model’s robustness regarding different versions of the
same signal, thus producing a local analysis of the model. Interpretability meth-
ods also can be used to debug image classification models. They produce how
important is each input image pixel for model decision and attribution map to
visualize. Thus the pixel importance can be used to compute metrics such as
Top-K erasing and RFS [13]

Beyond these types of visual information, an image can be composed of two
main spatial regions: foreground and background. The foreground is the image’s
main focus, which includes the subjects or objects of interest. On the other
hand, the background is all the information that is not in the foreground. Usu-
ally, in image classification tasks, we want to classify the information that is in
foreground, thus, it can be considered the signal while the background is the
context. Background robustness is the ability of an image classification model
to classify a signal even when it is on a different background. [21] showed that
image classification models may be biased to background information and make
a wrong prediction even when the foreground is present in the image but have
a not common background. Thus, it is important to evaluate if the signal infor-
mation is enough for the model to classify the image accurately or if the model
is biased to background information.

The discussion presented so far shows we need a pipeline to evaluate the im-
age classification model weakness. Therefore, we propose the image classification
Model Inspector tool 6 whose goal is to allow users to evaluate image classifica-
tion robustness against different types of transformations. It is composed of three
different modules which the user can evaluate the image classification against
different image processing functions, interpretability maps, and signal vs. noise
sensitivity. The Model inspector is developed as a Web App which the user can
load models from Pytorch or Timm7 library and interact with its input-output
results. In the following, we will present each Model inspector’s module in detail.

6 https://github.com/faos/image-classifier-model-inspector
7 https://timm.fast.ai/
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4.1 Image processing

The image processing module comprises several image transformation functions
that add noise to the input image. The user can apply these transformations
in the input image and visualize the model output difference with the original
image, thus getting insights about the model robustness related to the transfor-
mation. The module implements three types of noise: Gaussian noise, Shot noise,
and Impulse noise. Although we may add them intentionally, they can be natu-
rally caused by phenomena such as random variations in light, sensor noise in the
camera, interference in the transmission process, or bit errors. These noise func-
tions can also be found in [8], where the authors created ImageNet [5] variations
with them to evaluate the robustness of several image classification architectures
on the ImageNet [5] dataset.

Gaussian, Shot, and Impulse noise are transformations that change the im-
age color of texture. However, in addition to them, the image processing module
also has spatial transformations (e.g., Patch Shuffle, Horizontal Shuffle, Vertical
Shuffle) that deform the shape of the objects in the image, but it keeps the tex-
ture and color information, so it is helpful to infer whether the object’s shape is
important to the model predictions. Patch shuffle transformation splits the input
image in disjoint squared patches with size W ×W , shuffles them, and creates
a new image. On the other hand, horizontal shuffle creates disjoint horizontal
patches with height H and size equal to the input image, shuffle them, and create
a new image. The vertical shuffle is similar to the horizontal, the difference is
that the patches are vertical, so their size is equal to the image height, and the
width is W. Figure 2 presents the pipeline of this module and an example of
each analysis function.

1)

Analysis
Function

2)
Gaussian Shot Impulse
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Fig. 2. Image processing pipeline. The part 1) show the main pipeline of the image
processing; Given a input image, the user should select which function it will use to
process the image and compare the model inference with the original image inference.
The part 2) shows the functions available in model inspector, they are grouped by two
types, texture and structure.
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4.2 Interpretability

The interpretability module is composed of two main components: (1) inter-
pretability methods and (2) U Analysis. In the first component, we implement a
wrapper for the Captum library so the user can select the interpretability method
and visualize its outputs. The second component implements the U Analysis
discussed before, where the user can choose the noise method and window size.
Besides, if the analysis finds counter-intuitive samples, it will show them. It is
important to highlight that the attribution map used in the U Analysis is the
output of the first component.

4.3 Signal

The signal module allows the users to interact with the input by selecting which
region of the input image they consider the signal. The users may select the
signal with three formats: rectangle, circle, and polygon. After selecting the sig-
nal, the module computes the signal-to-noise and background texture analyses.
The signal-to-noise analysis calculates the importance of the signal region and
compares it with the context to verify which region is more important to the
model. The background texture analysis allows the user to apply all the image
transformations from the first module to the image background only, thus ver-
ifying if the model decision is impacted by background texture changes while
keeping the signal information. The noise analysis proposed in [13] inspired the
background texture analysis. Figure 3 presents the signal pipeline.

Main pipeline

SIGNAL
SELECTION

BACKGROUND
PROCESSING

An
al

ys
is

Signal Background
sensitivity

Input

Fig. 3. Signal analysis pipeline. This module allows the user to select the signal
of the input image using different formats, for example polygon, rectangle, and circle.
After select the signal, it can add transformation to the image background to verify
the model sensitivity to background changes while keeps the original signal. The main
pipeline is composed of three steps, 1) select the input image, 2) select the signal
information, and 3) apply the background processing functions. The signal selection
and background processing has a output to compare the model inference using only
each information.
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5 Experiments and results

5.1 U Analysis

This section presents the experiments and results achieved with the U Analy-
sis. First, we describe the datasets and architecture used and then present the
percentage of U occurrence found. To perform the experiments, we used the
CIFAR-10 [10] and Self-Taught Learning 10 (STL-10) [4] datasets. The CIFAR-
10 dataset is composed of 60,000 32x32 color images grouped into ten classes
and has 50,000 images for training and 10000 for testing. It is a well-balanced
dataset. Thus, each class has 5,000 training and 1,000 testing images. On the
other hand, STL-10 has the same classes as CIFAR-10 (i.e., airplane, automo-
bile, bird, cat, deer, dog, frog, horse, ship, and truck) but has 13,000 96x96 color
images, where 5,000 are for training and 8,000 for testing. We train a ResNet-18
[7] instance for each dataset using Stochastic gradient descent (SGD) with a
learning rate 1e− 2. Each network was trained by 50 epochs, and we chose the
model with best accuracy on test set to perform the U Analysis.

The U analysis has several hyperparameters. For example, we can use differ-
ent interpretability methods to compute the contribution of each input pixel to
the model output, the order in which we sort the patch can be random, increas-
ing, or decreasing, and we can replace the original patch information with several
types of noise, and the patch’s size (noise window size) itself is a parameter. To
perform the U Analysis with the ResNet-18, we use 10 different interpretability
methods, 3 sorting types, 6 noise types, and 5 different patch sizes, resulting
in 900 runs for each dataset. Figure 4 presents the results achieved by the U
analysis with all datasets and parameters. The results group the U occurrence
for each hyperparameter value to infer which configuration is more susceptible
to finding counter-intuitive behavior in image classification.

The findings show that all the attribution methods used have almost the same
U occurrence. Thus they affect it in the same way. This conclusion is similar to
the sorting method, in which all of them have almost the same U occurrence
percentage, except the Increasing order in CIFAR-10, which is slightly higher
than others. Although the attribution methods and noise window order have
close U occurrence percentages, the type of noise has different values for each
parameter value. The U occurrence was the lowest for both datasets when we
used the image region mean and Gaussian noise. We argue that this behavior
can be due to different reasons. For example, while the Gaussian noise does not
represent information regarding the dataset, thus is easy for the model ignores
it, the image region mean is a statistic of the patch that was removed, thus it
still has information about the original patch.

The results show that the noise window size is the most important hyperpa-
rameter, with a patch size of 10% the parameter value with the most U occur-
rence in all scenarios. This result indicates that tiny patches instead of bigger
ones may impact the ResNet-18, as the 33% presents a low U occurrence. In
addition, the ResNet-18 may correlate the features of lower patches instead of
bigger ones.
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Fig. 4. U analysis results. The graph shows the results grouped by each parameter
type (i.e. Attribution methods, type of noise, noise window size, and noise window
order) and value. Besides, each curve represent the results for each dataset. The blue
curve represents the results obtained from the CIFAR-10 dataset while the orange is
with STL-10.

5.2 Model inspector demonstration

This section analyzes the model inspector tool and shows how the user can use
it to infer insights about image classifier models. This analysis uses a ResNet-
18 architecture trained with FGVC Aircraft [12] dataset to classify the aircraft
manufacturer. Figure 5 presents the outputs obtained from the model inspector
and has three crops extracted.

Part 1 shows the Image processing module applying the Gaussian transfor-
mation on the input image, while part 2 is the Patch shuffle transformation.
Part 3 shows a sample of the signal module when we select the aircraft as the
signal and apply the Gaussian noise into the background. All three parts have a
barplot on the right to compare the ResNet output when we input the original
image and the respective transformed image. Part 1 shows that when we insert
Gaussian noise in the input image, the model changes its prediction, thus being
sensitive to Gaussian noise. Part 2 also shows that when we destroy the spa-
tial information with patch shuffle, the model also changes its prediction, which
means that the signal structure is important for the prediction. Finally, part 3
shows that when we insert noise only in the background, the model does not
change its prediction. Thus, joining these results with part 1, we can conclude
that the model is sensitive to change in the signal only as it keeps its decision
when we keep the original signal.
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Fig. 5. Model inspector demonstration. Parts 1 and 2 show the outputs of the
Image processing module for texture and structure transformation, respectively. While
part 3 shows the result of the signal background texture transformation. On the left
side, all parts have a selectbox so the user can select the transformation, and on the right
side, there is a slider so the user can select the parameter value for the transformation.

6 Conclusion

In this paper, we presented U Analysis, a novel method for visualizing and inter-
preting the behavior of image classification models. UA allows us to understand
the importance of patches in an image and their interactions, which can be used
to understand how models make inferences and identify their weaknesses. Fur-
thermore, we proposed a tool, Model Inspector, that allows users to interact
with the input image and analyze the robustness of image classification models
by changing visual information, such as texture, color, and shape.

Our experiments with UA show that the U-occurrence phenomenon can occur
in some cases thus showing the image classification models has counter-intuitive
feature interaction. We also showed that Model Inspector can be used to evaluate
the robustness of image classification models to different versions of an image,
and to detect biases in the model’s decision-making process.

In summary, UA and Model Inspector are powerful tools for understanding
and interpreting image classification models and can be used to improve their
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performance and identify their weaknesses. Our work may help further research
in the field of model interpretability and lead to the development of even more
advanced tools for analyzing and understanding deep learning models.
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