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Abstract. We consider the problem of buying and locating equipment
for covering a given region. We propose two approaches, based on mathe-
matical programming modelling and the epsilon-constraint method, that
allow obtaining the efficient frontier of a bi objective optimization prob-
lem. In one of the approaches, lexicographic optimization is used to incor-
porate additional objectives – besides maximizing coverage and minimiz-
ing cost, we also consider maximizing double coverage and minimizing
the maximum fire rate of spread of uncovered points. The latter objective
comes from the specific application that motivated this work: wildfire de-
tection. We present results from a case study in a portuguese landscape,
as an example of the potential of optimization models and methods to
support decision making in such a relevant field.

Keywords: Location· Multi-objective optimization· Wildfire detec-
tion.

1 Location problems and wildfire

In this paper, we consider the problem of buying and locating equipment for
covering a given region.

Location problems have their modern roots in the 1960s. Nowadays, the
existing body of work on models, methods and location applications is quite
extensive. For a comprehensive work on location problems, we refer the reader
to the book by Laporte et al. [10].

The problem we address in this paper can be seen as a variation of the
well known maximal coverage problem [3]. The basic version of this problem
can be stated as to decide which sites should be chosen (from a discrete set of
potential sites) to install facilities to maximize the number of clients covered
(e.g. within a given ray of a facility). In [12] an overview of more recent work
in the maximal covering problems is provided, including applications, solution
methods and variants.
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The covering problem addressed in this paper extends the maximal coverage
problem in two ways: firstly, it includes a budget for the equipment cost that
is not known a priori; secondly, the coverage objective is addressed as a set
of hierarchically related objectives. These extensions result on a bi-objective
problem (cost vs. coverage) with a coverage objective function resulting from
lexicographic optimization.

The motivation for this problem comes from the desire to improve wildfire
detection in a Portuguese municipality. Optimization has been used in wildfire
detection. In particular, [4] use the maximal covering problem in wildfire detec-
tion. We extend that work by using a bi-objective approach and consider addi-
tional objectives, namely to maximize double coverage (as defined in, e.g., [8])
and to minimize the potential of fire spread. We show how these objectives can
be integrated (through using lexicographic optimization in the epsilon-constraint
method) to provide the efficient frontier to a decision maker. We refer the reader
to [11] and [6] for surveys on optimization and fire.

We describe a practical application of the models and methods proposed
which consists in the use of drones (unmanned aerial vehicles - UAV) in fire de-
tection. Fire detection comprises find and gathering information about ignitions.
When an ignition alarm appears, a drone may be sent to the (approximate) lo-
cation of the ignition to collect information about if the ignition is real or just
resulting from a false alarm, the current status of the fire (e.g. perimeter and
intensity) and its potential for spreading. This information may improve the de-
cisions to be made about the initial attack resources and fire suppression tactics
to be employed.

The paper is organized as follows: In Section 2 we define the problem, intro-
duce the base model and describe the method to solve it. Section 3 addresses
the additional objectives and how they are incorporated through lexicographic
optimization in the solution approach described previoulsy. Section 4 described
the practical application of proposed methods. The conclusions of this works are
drawn in Section 5.

2 Bi-objective optimization for buying and locating
equipment

2.1 Problem definition

We consider the problem of deciding which resources to buy and where to locate
them in order to cover a given region. The available locations and the areas to be
covered are discrete, i.e. they are set points. We characterize each type of resource
by a unit cost and by the set of points it covers in each potential location. In the
base version of the approach, we consider two conflicting objectives: to maximize
the coverage and to minimize the cost.

The motivation for addressing this problem comes from its applicability in
wildfire detection, where demands are associated with potential fire ignitions.
With small adjustments, the proposed model is suitable for supporting decisions
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about, for example, locating vigilance towers, activating water sources, buy and
positioning drones, pre-positioning fire fighting resources, buy and locating cam-
eras and sensors.

2.2 Model

The mathematical notation to be used in the following models is:

– J set of demand points;
– K set of types of resources;
– Ik set of potential locations for resources k, k ∈ K;
– Jki set of demand points covered by a resource of type k, k ∈ K, located at

i, i ∈ Ik; Jki ⊆ J ;
– KIj set of pairs (k, i) of a resource of type k, k ∈ K, and a location i, i ∈ Ik,

that cover demand j;
– ck cost of one unit of the resource of type k.

We note that the coverage relation is represented explicitly by the set of
covered points for each pair type of resource - location through the sets Jki and
KIj . This allows flexibility in the type of resources to be included in the model.
Although elementary coverage rules, as defining the demand points covered as
the ones that are inside a circle centered in the location with the ray characterized
by the type of equipment, can still be used, virtually any function can be used.
For example, we may use non linear functions of the distance for sensors or
explicitly enumerate points that are not covered by vigilance towers because
they stand in a valley.

If the single objective is minimizing cost, the well known set covering model
can be used directly. We define the decision variables:

yki =
{

1, if an equipment of type k is located at point i

0, otherwise
k ∈ K, i ∈ Ik.

The model is:

Minimize
∑

k∈K,i∈Iki

ckyki (1)

Subject to:∑
(k,i)∈KIj

yki ≥ 1 j ∈ J (2)

yki ∈ {0, 1} k ∈ K, i ∈ Ik (3)

The objective function (1) minimizes the cost of the equipment to buy and
locate. Constraints (2) assure each demand is satisfied and constraints (3) define
the domain of the decision variables.

This model is infeasible if there are demands that cannot be covered, even if
all resources are used. Therefore, to avoid that, but also to increase the flexibility
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to the more elaborated models to be proposed next, we consider the inclusion of
decision variables xj related to the demand being satisfied or not:

xj =
{

1, if demand point j is covered
0, otherwise

j ∈ J

A model to maximize coverage is then:

Maximize
∑
j∈J

xj (4)

Subject to:

xj ≤
∑

(k,i)∈KIj

yki j ∈ J (5)

yki ∈ {0, 1} k ∈ K, i ∈ Ik (6)
xj ∈ {0, 1} j ∈ J (7)

The objective function (4) maximizes the coverage, while constraints (5) state
that for a demand to be counted as covered it must effectively be covered, at
least, by a resource location pair. The domains of the variables are given by (6)
and (7).

In practice, both objectives, to minimize cost and to maximize coverage, are
relevant and therefore we model the problem as a bi-objective problem:

Minimize
∑

k∈K,i∈Iki

ckyki (8)

Maximize
∑
j∈J

xj (9)

Subject to:

xj ≤
∑

(k,i)∈KIj

yki j ∈ J (10)

yki ∈ {0, 1} k ∈ K, i ∈ Ik (11)
xj ∈ {0, 1} j ∈ J (12)

2.3 Solution method

Given the power of current state of the art mixed integer programming solvers
and the relatively small size of the model for typical real world instances, we use
the epsilon-constraint method [2], to obtain efficient solutions. We note that, with
this method, the full efficient frontier can be obtained (including non-supported
solutions) in opposition with weight-based approaches. We keep the coverage as
an objective and address the cost as a constraint resulting in the following mixed
integer programming model, termed MIP (b):
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The MIP (b) model is:

Maximize
∑
j∈J

xj

Subject to:

xj ≤
∑

(k,i)∈KIj

yki j ∈ J

∑
k∈K,i∈Iki

ckyki ≤ b (13)

yki ∈ {0, 1} k ∈ K, i ∈ Ik

xj ∈ {0, 1} j ∈ J

Constraint (13) comes from the first objective of (8-12). For different values
of the budget b, a solution that maximizes the coverage is obtained. If the b val-
ues are chosen systematically and with sufficiently small variations, the efficient
frontier is obtained.

Algorihtm 1 corresponds to this approach and uses the notation:

– b current budget;
– z proportion of covered demands;
– x optimal solution of the current MIP;
– S set of efficient solutions;
– ∆ step of the epsilon-constraint method (budget increment from one iteration

to the next);
– MIP (b) MIP model with b as the right hand side of the budget constraint.

After the initialization, at each iteration, the epsilon-constraint method solves
the mixed integer programming model, MIP (b), with a fixed budget. If the
optimal solution of MIP (b) was not found before, the optimal solution is added
to the set of the efficient solutions. The iteration ends with the updating of the
coverage and the budget. The algorithm ends when a 100% coverage is obtained.

Algorithm 1 Epsilon-constraint method
S ← ∅
b← 0
z ← 0
while z < 1 do

Solve MIP (b)
S ← S ∪ {x}

z ←
∑

j∈J
xj

|J|
b← b + ∆

end while
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3 Addressing additional objectives

3.1 Modeling double coverage and min max uncovered demand

Besides the objectives previously introduced, we consider two other objectives,
both related with coverage. The first one is motivated by the potential need to
satisfy different demands in the same time interval - solutions with better double
coverage (i.e. with more points covered by, at least, two resources) are preferable.
This is a straightforward way of addressing dynamic (time evolving) aspects of
the problem: if a resource is busy, a demand can be satisfied by another one.

The model below maximizes double coverage and relies on the definition of
the decision variables

wj =
{

1, if demand point j is covered at least twice
0, otherwise

j ∈ J

Maximize
∑
j∈J

wj (14)

Subject to:

2wj ≤
∑

(k,i)∈KIj

yki j ∈ J (15)

∑
k∈K,i∈Iki

ckyki ≤ b (16)

yki ∈ {0, 1} k ∈ K, i ∈ Ik (17)
wj ∈ {0, 1} j ∈ J (18)

The objective function 14 maximizes the double coverage. Constraints 15
relate the double coverage variables with the resource location variables, not
allowing that a non covered twice demand to be counted as covered. The domain
of the varibales are defined by 18.

In the second additional objective, weights are associated with demand points.
The objective is to minimize the weight of the uncovered demand with higher
weight. The additional parameters and decision variables, and the model are
presented below.

– parameters rj - weight of demand point j, j ∈ J ;
– decision variable z - weight of the uncovered demand point with higher

weight.
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Minimize z (19)
Subject to:
z ≥ rj(1 − xj) j ∈ J (20)

xj ≤
∑

(k,i)∈KIj

yki j ∈ J (21)

∑
k∈K,i∈Iki

ckyki ≤ b (22)

xki ∈ {0, 1} k ∈ K, i ∈ Ik (23)
z ≥ 0 j ∈ J (24)

Objective (19) and constraints (20) translate the well known linearization of
minmax functions. The domain of the decision variable z is defined by 24. If all
demands are covered, then z = 0.

3.2 Lexicographic optimization
Taking into account the motivation of this work, we consider the three coverage
objectives hierarchically. Given the high importance of early detection of igni-
tions in the success of initial attacks (e.g. [9]), the first objective is to maximize
the (single) coverage. Among solutions with the same coverage, a solution with
double coverage is preferred. Among solutions with the same double coverage, a
solution with the maximum uncovered demand as small as possible is chosen.

In algorithmic terms, for a fixed budget (b), problem MIP (b) is first solved.
Let f1 be the value of its optimal solution (i.e. the optimal single coverage value).
This value is used in a constraint (constraint (25) in the model below) that does
not allow the single coverage to be deteriorated when the double coverage is
maximized. The second problem to be solved is then:

Maximize
∑
j∈J

wj

Subject to:∑
j∈J

xj = f1 (25)

xj ≤
∑

(k,i)∈KIj

yki j ∈ J

2wj ≤
∑

(k,i)∈KIj

yki j ∈ J

∑
k∈K,i∈Iki

ckyki ≤ b

yki ∈ {0, 1} k ∈ K, i ∈ Ik

xki ∈ {0, 1} k ∈ K, i ∈ Ik

wj ∈ {0, 1} j ∈ J
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Let f2 be the value of the optimal solution of this second problem (i.e. the
optimal double coverage value with a constraint on the optimal coverage value).
The last problem to be solved is:

Minimize z

Subject to:
z ≥ rj(1 − xj) j ∈ J∑
j∈J

xj = f1 (26)

∑
j∈J

wj = f2 (27)

xj ≤
∑

(k,i)∈KIj

yki j ∈ J

2wj ≤
∑

(k,i)∈KIj

yki j ∈ J

∑
k∈K,i∈Iki

ckyki ≤ b

xki ∈ {0, 1} k ∈ K, i ∈ Ik

yki ∈ {0, 1} k ∈ K, i ∈ Ik

wj ∈ {0, 1} j ∈ J

z ≥ 0 j ∈ J

Constraints (26) and (27) forbid the deterioration of the single and double
coverages.

An interesting variation of this approach is to assign weights to the demands
in the coverage objective(s) to take into account fire danger and/or fire spread
potential (through fire rate of spread estimates as used in the unconvered demand
objective). Another interesting variation is to consider the uncovered demand
objective as the second most important when single coverage is not total (keeping
double coverage as the second objective when coverage is total).

4 Practical application

4.1 Description

We applied the proposed method in a landscape that includes Baião, a munici-
pality in the north of Portugal, in the problem of buying drones and establishing
their base for wildfire detection. The local authorities provided six potential
location for drones (e.g. firefighters headquarters) and defined a landscape of
217.7km2 centered in the municipality.

We characterized the demand through land use data, publicly available [5].
From the nine existing categories of land use (in the first categorization level),



A bi-objective optimization approach for wildfire detection 9

we selected forest and bushes (the flammable ones) as demand points (around
75% of the total number of nodes).

Land use was also used to determine the fuel category associated with each
demand point (through a correspondence between the land use level 4 and the
portuguese fuel models [7]). Based on the fuel models, slopes and (upslope)
wind, a fire rate of spread was obtained with BehavePlus6 [1] corresponding to
a worst-case value for each demand point.

We considered three types of drones characterized by a unit cost (1.5 k€, 2
k€, 15 k€) and a range (4 km, 6 km and 11 km, in the same order as the cost).

4.2 Cost vs. single coverage

By applying the method described in Section 2.3, we obtained the values of (all)
efficient solutions displayed in Table 4.2.

Table 1. Values of the efficient solutions.

Budget Coverage
(k€) (%)

0 0.0
1.5 25.0

2 53.2
3.5 71.7

4 87.9
5.5 91.6

6 93.2
7.5 94.4

8 94.5
16.5 94.7

17 99.2
18.5 99.9

30 100.0

For example, with a budget of 4 k€ (two drones of the second type with the
bases displayed in Figure 1) is enough to cover almost 90% of the landscape. A
budget of 17 k€ allows covering 99 % of he landscape (Figure 2).

4.3 Cost vs. coverage with lexicographic optimization

The major results of the application of the methods described in this paper to
the case study are displayed in Figure 3. The data series ’coverage’ is the single
coverage for each budget (the values of Table 1). Data series ’lex: double coverage’
and ’lex: min max ros’ refer to the values of the objective functions described in
Section 3, while ’max coverage: double coverage’ refers to the values of double



10 F. Alvelos et al.

Fig. 1. Optimal solution for a budget of 4 k€.

Fig. 2. Optimal solution for a budget of 17 k€.
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coverage when only single coverage is optimized. The arrows signal particularly
significant increases of the double coverage when the lexicographic optimization
approach is used.

Fig. 3. Results for different approaches for buying and locating drones
.

5 Conclusions

In this paper we addressed the problem of buying and locating equipment for cov-
ering a given spatial region. Our motivation came from the potential of optimiza-
tion in practical wildfire detection. Using a combination of well-known models
and methods (mixed integer programming, covering models, epsilon-constraint,
lexicographic optimization) we proposed a general way of approaching this type
of problems. We presented results on a case study where it was intended to buy
drones and locate them to cover a landscape around a municipality. The efficient
frontier of the bi-objective problem (cost vs. coverage) with lexicographic cov-
erage optimization (double coverage and min max uncovered fire rate of spread
are also optimized) was obtained, allowing the municipality to make an informed
choice between the different alternatives.
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Marinha do Zêzere for the constant support and for accompanying in the tech-
nical and field visits to Baião.



12 F. Alvelos et al.

References

1. Andrews, Patricia L. 2014. Current status and future needs of the BehavePlus Fire
Modeling System. International Journal of Wildland Fire 23(1):21-33.

2. Chankong, V. and Haimes, Y. Y. (1983). Multiobjective Decision Making Theory
and Methodology. Elsevier, New York.

3. Church, R., ReVelle, C. (1974, December). The maximal covering location prob-
lem. In Papers of the regional science association (Vol. 32, No. 1, pp. 101-118).
Berlin/Heidelberg: Springer-Verlag.

4. Dimopoulou, M., Giannikos, I. (2001). Spatial Optimization of Resources Deploy-
ment for Forest-Fire Management. International Transactions in Operational Re-
search, 8(5), 523-534.
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7. Fernandes, P., Gonçalves, H., Loureiro, C., Fernandes, M., Costa, T., Cruz, M. G.,
Botelho, H. (2009, July). Modelos de combust́ıvel florestal para Portugal. In Actas
do 6o Congresso Florestal Nacional. SPCF, Lisboa, Portugal (pp. 348-354).

8. Gendreau M, Laporte G, Semet F (1997) Solving an ambulance location model by
tabu search. Location science 5:75–88
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