
Energy Efficient Software
in an

Engineering Course

João Saraiva1,2 and Rui Pereira1

1 Department of Informatics, University of Minho
2 HASLab/INESC TEC

Portugal
saraiva,rui.pereira@di.uminho.pt

Abstract. Sustainable development has become an increasingly impor-
tant theme not only in the world politics, but also an increasingly cen-
tral theme for the engineering professions around the world. Software
engineers are no exception as shown in various recent research studies.
Despite the intensive research on green software, today’s undergraduate
computing education often fails to address our environmental responsibil-
ity. We present a module on energy efficient software that we introduced
as part of an advanced course on software analysis and testing. In this
module we study techniques and tools to analyze and optimize energy
consumption of software systems. Preliminary results of the first four in-
stances of this course show that students are able to optimize the energy
consumption of software systems.

Keywords: Sustainable Software Development, Energy Efficient Soft-
ware

1 Introduction

The world is increasingly aware of and concerned about sustainability and the
green movement. Computers and their software play a pivotal role in our world,
thus it has a special responsibility for social development and the welfare of our
planet. In this century, the situation is becoming critical since software is every-
where! The widespread use of computer devices, from regular desktop comput-
ers, to laptops, to powerful mobile phones, to consumer electronics, and to large
data centers is changing the way software engineers develop software. Indeed, in
our Internet of Things (IoT) age there are new concerns which developers have
to consider when constructing software systems. While in the previous century
both computer manufacturers and software developers were mainly focused in
producing very fast computer systems, in this century energy consumption is
becoming the main bottleneck when developing such systems [1].

Non wired/mobile devices are our everyday computers and not only do they
need energy efficient hardware, but also need energy efficient software. While the

2 J. Saraiva, R. Pereira

computer hardware manufacturers have for several decades already, done a con-
siderable amount of research/work on developing energy efficient computers, only
recently have the programming language and software engineering communities
started conducting research on developing energy efficient software, the so-called
green software. Indeed, green software is nowadays a very active research area, as
shown by the organization of specific research events on this area (for example,
the ICT4S and IGSC conferences, and the GREENS, RE4SuSy, and MeGSuS
workshops), the many research papers being published in top conferences on, for
example, green data structures [2–4],green software libraries [5], green rankings
of software languages [6], energy greedy programming practices/patterns [7–10],
and green repositories [11], etc.

While research in green software is rapidly increasing, several recent studies
with software engineers show that they still miss techniques and tools to develop
greener software [1, 12–14]. For example, in [14] a large survey on green software
is presented with the following conclusions:

“A survey revealed that programmers had limited knowledge of energy
efficiency, lacked knowledge of the best practices to reduce software en-
ergy consumption, and were unsure about how software consumes energy.
These results highlight the need for training on energy consumption.”

In fact, all those recent studies show that academia should not only define new
advanced techniques and tools for green software developing, but it should also
educate software engineers towards greener software development. Obviously,
this education should be provided from the very beginning of a software engineer
career. Unfortunately, today’s undergraduate computing education often fails to
address our social and environmental responsibility [15]. Indeed, energy efficiency
and sustainability should be part of an undergraduate curriculum in software
engineering.

This document presents a module on green software as part of a discipline
on software engineering that is given in the MSc program on “Engenharia In-
formática” at University of Minho, Portugal. The course introduces green soft-
ware as a new nonfunctional requirements in software engineering: minimizing
software energy consumption is a key concern. Techniques to monitor, instrument
and measure energy consumption by software systems are introduced. To under-
stand the impact of how programmers develop software on energy consumption,
we focus our energy analysis and optimization on the software’s source code.
Thus, a catalog of energy greedy programming practices is presented to students-
that we call red smells - together with corresponding source code optimizations
that reduce such possibly abnormal consumption, named green refactorings. Us-
ing this catalog, students have to build in a lab environment a successful ex-
periment for software energy consumption. This paper also briefly presents our
catalog of smells/refactorings, developed in the context of the Green Software
Laboratory project [16]. Then, we present the first preliminary results obtained
in three instances of this course, where students used this catalog to optimize
the energy consumption of a given software system. The results show that stu-
dents do understand the impact of software over energy consumption, are able

Energy Efficient Software in an Engineering Course 3

to locate red smells in its source code and to apply appropriate refactorings to
optimize the software as to reduce energy consumption.

2 Energy Efficient Software in Higher Education

2.1 Sustainable Development and its Dimentions

Over the past decade, interest in topics related to sustainability has grown
steadily. In fact, sustainability is studied from various angles, for example, eco-
nomic, political, institutional, cultural or ethical ones, and thus it is difficult to
arrive at a common definition that covers nearly all of its aspects. The broader
socio-political concept of sustainability, as presented by the World Commission
on Environment and Development in their 1987 report [17], addresses the well-
known conflicts between environment and development goals by formulating sus-
tainability “as the ability to make development sustainable to ensure that it meets
the needs of the present without compromising the ability of future generations
to meet their own needs.”.

In the extensive discussion and use of this concept, it is commonly agreed
that the central component of sustainable development is best described by
considering the following three dimensions of sustainability [18]:

– Economic:: An economically sustainable system must be able to produce
goods and services, and to avoid extreme sectoral imbalances which damage
agricultural or industrial production.

– Environmental: An environmentally sustainable system must maintain a sta-
ble resource base, avoiding over-exploitation of renewable resources, and de-
pleting non-renewable resources only to the extent that investment is made
in adequate substitutes.

– Social: A socially sustainable system must achieve distributional equity, ad-
equate provision of social services health and education, gender equity, and
political accountability and participation.

2.2 Sustainable Development in Higher Education

There are several works studying how to integrate the concept of sustainable
development into higher education in meaningful ways and to address the three
main dimensions of sustainability and their different combinations [19–21]. For
example, at the university institutional level, [20] presents a procedure at the
University of Gävle in Sweden, designed to stimulate integration of the concept
of sustainable development into courses and research projects. In that study,
faculty members were asked to classify their courses and research funding appli-
cations regarding their contributions to sustainable development. The method
of classifying courses provides a framework to approach sustainable development
from common definitions, but still allows for individual approaches to integrating
it in courses and research. The study shows that it is possible to integrate the
concept of sustainable development into higher education. However, the system

4 J. Saraiva, R. Pereira

needs further development in order to show instructors and researchers that the
integration of sustainability is seen as important to the university administration
so that it stimulates faculty members to integrate sustainable development in
their courses.

At the national level, the paper [19] describes the process of promoting the
disciplinary exploration of sustainable development in the curricula of Dutch
Universities and the lessons learned with that process. The Finnish Government
included the promotion of sustainable development in its development plan for
education and research in 2003. This development plan is a key steering tool for
the Finish ministry of education [22]. In 2010, eight public universities in Hong
Kong signed the Hong Kong Declaration to recognize the vital role of the higher
education sector in the efforts to deal with the challenges caused by climate
change and to include the collective voices from Hong Kong public universities
in the global sustainability community. In [23] a study reviewed what the eight
public universities in Hong Kong have accomplished in promoting sustainability.

Sustainable development is also a concern for worldwide institutions, like for
example ACM: the world’s largest association of computing professionals. As
advocated in [24] information systems can be a driving force for sustainability
improvements and, as a consequence, ACM members could and should play a
critical role in creating and implementing an information strategy. In fact, ACM
promotes sustainability and in 2017, SIGPLAN3 formed the climate committee
to study the climate impact of conferences and possible steps that SIGPLAN
might take in response. ACM hosts a number of annual scientific meetings at
various locations throughout the world. While such meetings are important for
furthering important research, the air travel required for participate in such
meetings is a significant source of greenhouse gas emissions, which in turn are
a significant contributor to environmental change. In their preliminary report
on Engaging with Climate Change: Possible Steps for SIGPLAN , the climate
committee (among other things) presents a number of alternative models such a
physical/virtual hybrids, multi-hub conferences, and regional conferences, with
the goal to reducing carbon footprints. To make its members aware of the con-
ference participation impact on climate, ACM also provides a CO2 footprint
calculator for conferences: https://co2calculator.acm.org/.

Sustainability in the ACM Computer Science Curricula While technical
issues are central to the computing curriculum, they do not constitute a complete
educational program in the field. Students must also be exposed to the larger
societal context of computing to develop an understanding of the relevant social,
ethical, legal and professional issues.

Sustainability was first introduced in the ACM Computer Science 2008 cur-
ricular guidelines, and in that same year [25] presented a policy on computing
education for sustainability for adoption by ACM SIGCSE4. In the Computer

3 The ACM Special Interest Group on Programming Languages
4 The ACM Special Interest Group on Computer Science Education

Energy Efficient Software in an Engineering Course 5

Science Curricula 2013, ACM further recognize the enormous impact that com-
puting has had on society at large emphasizing a sustainable future and placing
added responsibilities on computing professionals.

The outcome of this was the definition of core topics on sustainability which
include the identification of ways to be a sustainable practitioner by taking into
consideration cultural and environmental impacts of implementation decisions
(e.g. organizational policies, economic viability, and resource consumption). The
exploration of global social and environmental impacts of computer use and dis-
posal (e-waste). And, the assessment the environmental impacts of design choices
in specific areas such as algorithms, operating systems, networks, databases, or
human-computer interaction.

2.3 Energy Efficient Software in Higher Education

In recent years, sustainable and energy efficient (green) software became a very
active software engineering research field. However, there are several studies
showing that software engineers still lack knowledge of how to reason and im-
prove energy consumption of their software systems.

In [13] a detailed study on energy-related questions on Stack-Overflow - a
question and answer site for (non) professional software developers5 - showed
that software developers are aware of the energy consumption problems but the
many questions they asked rarely got appropriate answers. They also suggested
eight strategies to reduce energy consumption through software modification.
A large empirical study of how developers think about energy when they write
requirements, design, construct, test, and maintain their software is presented
in [12]. After surveying 464 developers (from ABB, Google, IBM, and Microsoft)
and 18 in-depth interviews with Microsoft employees the study overall conclu-
sions are: “green software engineering practitioners care and think about energy
when they build applications; however, they are not as successful as they could
be because they lack the necessary information and support infrastructure.”.
In [14] show that programmers know little about energy consumption: “The
programmers in our study lacked knowledge and awareness of software energy-
related issues. More than 80 percent of them didn’t take energy consumption
into account when developing software.”. And, authors suggest that the strate-
gies discussed in [13] “should be part of programmers’ education. In addition,
development tools can be created to identify unnecessary energy consumption
and suggest how to reduce it. Educators could develop slides, videos, projects,
and assignments as part of an undergraduate curriculum for energy efficiency
and sustainability.”. A recent article at CACM [1] discusses energy efficiency as
a new concern for software developers, showing that: developers currently do not
know how to write, maintain and evolve green software. They lack the knowl-
edge on how to measure, profile and optimize energy consumption, and they lack
tools to help them in these tasks.

5 http://stackoverflow.com

6 J. Saraiva, R. Pereira

Despite the intensive research on green software and all these recent studies
showing the lack of knowledge and language/tool support software engineers
are currently facing, there is little undergraduate computing education in green
software engineering. Misconception among developers and researchers persist,
rooted in a lack of coherent understanding of sustainability, and how it relates to
software systems research and practice, also makes it difficult [26]. [26] presents a
cross-disciplinary initiative to create a common ground and a point of reference
for the global community of research and practice in software and sustainability,
to be used for effectively communicating key issues, goals, values and principles
of sustainability design for software-intensive systems.

Nevertheless, there is some work advocating the introduction of sustainability
in undergraduate education. In [27] a first study of what is the current state
of teaching sustainability in the software engineering community is presented.
The paper reports the findings from a targeted survey of 33 academics on the
presence of green and sustainable software engineering in higher education. The
major findings suggest that sustainability is under-represented in the curricula
and the main reasons are:

– lack of awareness,
– lack of teaching material,
– high effort required,
– lack of technology and tool support.

A list a group of barriers for sustainability integration into computing ed-
ucation is also discussed in [15]. Two strategies to sustainability integration in
computing are presented: the developing of a new course or the development of
modules easily plugged into existing courses. This short paper gives a very gen-
eral view of the organization of such a course. However, it does not include any
discussion on the course objectives and whether they were achieved by students
or not.

A systematic approach for teaching software engineering for sustainability
and its qualitative evaluation is presented in [28]. The proposed course blueprint
articulated a candidate set of modules. This is an intensive week-long course,
given at a summer school where participants had different backgrounds. In [29]
a course on learning and teaching computing sustainability is also briefly de-
scribed. They are adapting an existing course on professionalism in computing
to incorporate more of these sustainability modules, such as: green mobile cloud
computing systems; integration of green clouds and the Internet of things; energy
saving solutions and trade-offs; sensors and monitoring software tools for evaluat-
ing energy use, among other topics. [30] presents an experiment with integrating
issues of sustainability with information technology in both introductory and
upper-level computer science courses. The course discusses several case studies
that illustrate the many creative ways that IT is being used to address sustain-
ability: transportation and logistics, supply chain management, etc. In [21] it
is described the design of the course Software Engineering Sustainability that
introduces the sustainable concept into educational programs for software engi-

Energy Efficient Software in an Engineering Course 7

neers. The course has been being delivered at the National Aerospace University
“Kharkiv Aviation Institute” in Ukraine.

At the Texas State University in USA, Ziliang Zong offers a full course on
Advanced Green Computing6 which covers hardware and software techniques to
improve the energy-efficiency of computing systems. Topics include best practices
in building energy-efficient data centers and mobile devices, current trends in
reducing the energy consumption of processors and storage components, energy-
aware resource management, software optimizations, and hands-on experience
on power-measurable systems. The objectives of this course is that students will
be able to:

– Analyze research papers and evaluate existing research ideas.
– Compare experimental results from different algorithms.
– Evaluate the strengths and weaknesses of different approaches.
– Design experiments and collect experimental results on power measurable

systems

Patricia Lago and Ivano Malavolta coordinate the Master track in Software
Engineering and Green IT at the Master’s in Computer Science7 offered at Vrije
Universiteit Amsterdam, The Netherlands. The combination of Software Engi-
neering and Green IT in one track provides the students with the instruments
necessary to gain a holistic understanding of large-scale and complex software
systems, to manage their evolution, assess their quality and environmental im-
pact, quantify their value and sustainability potential, and organize their devel-
opment in different local and distributed contexts. Students graduating in this
track are experts of:

– Architecture design of software-intensive systems
– the role of software for sustainability (including energy efficiency, socio-

technical, ecologic and economic impact)
– software engineering techniques for critical analysis and decision-making
– benefits and challenges of developing and maintaining sustainable software
– the pervasive role of software-intensive systems in the digital society
– data-driven measurement and assessment of software quality

3 Software Analysis and Testing with a Green Flavor

In this section we discuss in detail the module on green software we offer as
part of a non mandatory discipline on software engineering, more precisely on
software analysis and testing, that is given in the fourth year of our five year
MSc program.

As mentioned in several papers advocating the inclusion of sustainability and
green software in computing education [26–28, 31–34], we present green software

6 CS 7333 - Advanced Green Computing, https://cs.txstate.edu/academics/

course_detail/CS/7333/.
7 https://vuweb.vu.nl/en/education/master/computer-science.

8 J. Saraiva, R. Pereira

as a module of an already existing course. Moreover, we focus this module in
making future software engineers aware of the impact of programming practices
on software energy consumption.

3.1 Green Software: a Multidisciplinary Module

The green software module requires a multidisciplinary course combining several
software engineering techniques and principles, namely:

Source Code Analysis and Transformation: In order to analyze and transform
software systems we introduce two powerful source code manipulation tech-
niques: Strategic and Aspect Oriented Programming. Strategic programming is
a generic tree traversal techniques that allows for expressing powerful abstract
syntax tree analysis and transformations. Aspect oriented programming is in-
troduced to allow developers to instrument the base source code without adding
the energy monitoring intrusive code, but keeping it in one aspect that is later
weaved to the base program.

Green Aspect: In order to monitor the energy consumption, students need
to traverse and instrument the source code with calls to APIs providing energy
measurements at runtime. In our course we consider two types of measurements:
energy estimation provided by manufacturers of the CPUs, namely the RAPL
framework developed by Intel [35], or using hardware with energy sensors, like
for example the ODroid hardware board8.

Source Code Smells and Metrics: Code smells represent symptoms of poor im-
plementation choices when developing software. Code smells are not faults, they
make program understanding difficult, and possibly indicate a deeper problem
in the software. Software metrics are usually used to detect source code smells,
for example, a too long method smell.

Green Aspect: In our module on green software we present a catalog of energy
greedy programming practices [10]. This catalog can also be seen as a energy
smell catalog, where software metrics can be used to detect such smells in the
source code.

Program Refactoring: refactoring is a controlled source-to-source transformation
technique for improving the design of an existing (source code) software system.
Its essence is applying a series of small semantic-preserving transformations.
Refactorings are usually associated with code smells: for each smell there is a
refactoring that eliminates it.

Green Aspect: We associate refactorings to the catalog of energy smells so
that students can use a green refactoring to eliminate red smells. Because the
main focus of refactoring is to improve comprehensibility, several refactorings
may negatively affect energy consumption. Students also analyze how refactor-
ings available from Java IDEs affect energy consumption. The catalog of green
refactorings for Java data structures in supported by the jStanley tool tool [2].

8 http://www.odroid.com

Energy Efficient Software in an Engineering Course 9

Technical Debt: Technical debt describes the gap between the current state and
the ideal state of a software system. The key idea of technical debt is that
software systems may include hard to understand/maintain/evolve artefacts,
causing higher costs in the future development and maintenance activities. These
extra costs can be seen as a type of debt that developers owe the software system.

Green Aspect: In our module we introduce the concept of Energy Debt [36]
as the amount of unnecessary energy that a software system uses over time, due
to maintaining energy code smells for sustained periods.

Software Testing and Benchmarking Infrastructures: Software testing aims at
ensuring that a software system is defect free. We present the usual levels of
testing: unit, integration, system, regression and beta testing. Automated test
case generation and property based testing is also studied in this course. Code
coverage and mutation-based testing is used to assess the quality of the test
suite. Moreover, we use testing framework and benchmarks infrastructures, like
Google’s Caliper9 in order to execute programs.

Green Aspect: To measure energy consumption, the source code needs to be
executed with proper inputs. We use system testing, where the automated test
case generation techniques produces real inputs of the program under testing.

Fault Localization: When a software systems fails running the defined/generated
test suite, programmers need to locate the fault and fix it. Spectrum-based Fault
Localization (SFL) relies on test cases to run the program and it uses statisti-
cal methods to assign probabilities of being faulty to source code components
(methods, classes, statements, etc).

Green Aspect: Abnormal energy consumption can be seen as a software fault.
In our course we defined a variant of SFL to locate energy leaks in the source
code: Spectrum-based Energy Leak Localization (SPELL) [37, 38], and students
can use it to locate such energy hot-spots in their software.

Automated Program Repair: The goal of automated program repair is to take a
faulty program and a test suite, and automatically produce a patch that fixes the
program. The test suite provides the correctness criterion in this case, guiding
the repair towards a valid patch.

Green Aspect: SPELL adapts fault localization to the green software realm,
while green refactorings eliminate red smells aiming at improving energy effi-
ciency of programs. We combine these two techniques in order to automate the
energy-aware repair of energy inefficient software systems [39, 40].

3.2 Green Software: Module Objectives

The objectives of the green software module are:

9 http://code.google.com/p/caliper/

10 J. Saraiva, R. Pereira

– Be able to instrument, monitor and measure the energy consumption of
software systems.

– Become aware of the impact of programming practices on energy consump-
tion.

– Become familiar with the research problems in the field of green software
engineering.

Course Duration, Organization and Evaluation: The module of green software
is part of the software analysis and testing course. This course one semester long
course with 5 ECTS. It is a non mandatory course included in the the second
semester fourth of the year of the master program on software engineering at
Minho University.

The students have 3 hours per week in the classroom: one hour in a seminar
room, where all theories and techniques are presented. The remaining two weekly
hours are laboratory classes where students have the chance to experiment the
introduced techniques for software energy consumption. The evaluation consists
of two components: an individual written exam, and a group project on ana-
lyzing and optimizing the energy consumption of a given software system. The
considered software system is the students project developed in the introduc-
tory course to object oriented programming the semester before (by second year
students). The idea is to provide students in the course with a simple, non fully
optimized system.

In order to analyze and optimize the energy consumption of Java based soft-
ware systems, we present the students a catalog of energy-greedy Java program-
ming practices. The main goal is to make students aware of some features of
Java’s source code that may indicate an abnormal energy consumption of the
software. The students are also presented with a possible solution by performing
a refactoring of the source code into a more energy efficient one. Moreover, soft-
ware tools that locate such features and (semi) automatically optimize the code
are also presented. In laboratory sessions the students are able to experiment
with smell detection and optimization. Then, outside of class, students have to
work in group (three students per group) and apply the catalog/tools in order
to optimize the energy consumption of a real software project.

3.3 Green Software: Module Supporting Tools

In the context of the Green Software Laboratory project [16, 41] we have devel-
oped several tools that support the laboratory classes, namely:

– SPELL [38]- A toolkit to measure the energy consumption of a Java based
program and detect potential energy hot spots through an adapted Spectrum-
based Fault Localization technique.

– jStanley [2] - An Eclipse plugin that automatically refactors Java collections
to more energy efficient ones.

– Chimera [10]: An energy-greedy Android pattern testing framework for An-
droid.

Energy Efficient Software in an Engineering Course 11

– E-Debitum [42] - A SonarQube extension to manage the Energy Debt of
Java/Android-based software systems.

– GreenSource and AnaDroid [11] - A repository of android source code appli-
cations tailored for green software analysis and a tool to static analyze and
dynamically monitor the energy consumption of such applications.

4 Energy Efficent Software: Students Assessment

We introduced this module on green software as part of the software analysis
and testing course in the scholar year of 2017/2018. In the 2020/2021 scholar
year we offered the fourth instance of the course, totaling 141 students enrolled
across all four instances.

In the first four instances of this module students were quite positive in their
reception of the material and the way it was incorporated in the course. In fact
across all editions, 59% of students obtained at least a B for the module project,
with the average module grade (written exam and project) being a C.

Fig. 1: Project grade distribution across all editions

As shown in Figure 1, most students received a positive evaluation on the
group project where they have to analyze and optimize the energy consumption
of a given software system. With the green software background acquired in the
course, students were not only able to measure energy consumption of a software
system, but also to optimize its energy consumption. Indeed, the catalog of
energy smells and corresponding green refactorings, introduced in the theoretical
classes, provided insights how energy may be abnormally consumed by software
and pointed to the exact locations of where to improve/refactor the source code.

In order to assess the green software learning outcomes of individual students,
the written exam includes questions on green software, as well. In the 2018-2019

12 J. Saraiva, R. Pereira

scholar year we defined a specific question in regards green software. This one
question has been repeated in the future instances so that we have a larger set
of answers.

In this exam question on green software, students are asked to identify energy
smells in the source code of a given Java class (approx. 100 lines long), and
to refactor each of the identified smells by hand. The given Java source code
contains six of the smells included in the red smells catalog we present in the
theoretical classes. The following subsection presents a brief description of the
red smells catalog, and in Section 4.2 we analyze the students’ answers in detail
.

4.1 A Catalog of Energy Smells and Refactorings

In the theoretical classes we present a catalog of Java-based energy smells and
associated refactorings reported in the green software literature [4, 43, 44]. The
following lists the subset of smells that occur in the given Java source code for
the exam question.

Data Structures: Most languages offer mechanisms to manipulate data struc-
tures. Java is no exception with the Java Collections Framework (JCF). There
are several research papers analyzing the energy behavior of such Java struc-
tures [2–4, 45] showing very different energy efficiencies.

String Manipulation: Strings are widely used when developing software, with
modern languages providing special syntax/operators to manipulate them. Java
uses the String class and includes the “+” operator to concatenate them. How-
ever, the StringBuilder class in the Java library exploits buffering, and is more
energy efficient. Thus, every occurrence of the string concatenation “+” in the
source code is an energy smell and it should be refactored to a StringBuilder.

Lambda Expressions: Java 8 adopted lambda expressions as a mechanism to
manipulate its collections. However, the execution of Java streams has several
efficiency problems, either by doing more traversals than necessary, or creating
intermediate data structures. In fact, Java 8 streams are still an order of magni-
tude slower than hand-written loops [43, 46, 47]. Thus, the use of Java streams is
an energy smell and the refactoring considers a for-loop instead. IntelliJ IDEA10

refactoring source code system provides such a detection and refactoring.

Accessing Object Fields: The object oriented paradigm encourages encapsula-
tion, in order to make sure that ”sensitive” data is hidden from users. Thus,
every class should provide public getters and setters. However, the overhead
caused by often calling getters and setters can increase both the execution time
and energy consumption. Thus, the use of a get/set method is an energy smell
and can be refactored to direct access of the attribute [44].

10 https://www.jetbrains.com/idea/

Energy Efficient Software in an Engineering Course 13

Java Exceptions: Exceptions are used to manage any unexpected event in the
code, while ensuring code readability. When an object is in a condition it can-
not handle, it raises an exception to be captured by another object. The JVM
searches backward through the call stack to find methods that do can handle the
exception. Exception handling is expensive and involves object creation, thus it
should be avoided by, for example, the methods returning error codes [44].

4.2 Students Grades

Figure 2 shows the individual grades that students received on the specific ques-
tion regarding energy smell detection and refactoring the given Java class aiming
at improving its energy consumption.

Fig. 2: Green Software Question: Distribution of grades.

As shown in Figure 2, a quarter of the students received a very good (19.63%)
or excellent (4.67%) grade. On the other end, 16.82% of the students failed in
answering this question. Most of these students (60%) also performed poorly in
the other questions and did fail in the overall exam (as we can see in Figures 4,
5, and 6).

The source code of the Java class included in the question contains five energy
smells from the (larger) catalog we introduce in the green software module.
Figure 3 shows the percentage of students who identified each of the occurring
energy smells, in each instance of the course.

As we can observe, when we consider the three instances of the exam, the
String Manipulation smell was identified by roughly 80% of the students, while
the Accessing Object Fields smell (shown as Gets/Sets) was detected by less than

14 J. Saraiva, R. Pereira

Fig. 3: Percentage of students discovering each red smell

30%, only. Such a large difference in smell detection has two possible answers:
since the very first Java OO programming course, students are taught to avoid
the inefficient pre-defined Java string concatenation, thus they are familiar with
identifying it and eliminating it. On the other end, the OO paradigm teaches/-
motivates encapsulation, and thus the use of gets and sets to access the (private)
state of an object. As a consequence, students do not find such a refactoring nat-
ural. Similarly, replacing the elegant Java exceptions mechanism by the use of an
(C-like) error code also goes against the OO paradigm. These students, however,
do have a strong background in imperative programming (with the C language)
and, thus, are used to this basic style of handling exceptions.

Streams offer an advanced functional style of programming in Java. Although
students have a good background in functional programming (in Haskell), most
students find it hard to understand the concept of higher-order functions and to
adopt it. As a result, only half of the students were able to understand, detect
and refactor this Java energy smell. Although the transformation from a stream
to a for-loop is simple11, students are not able to fully understand the functional
code and to hand-write such refactoring themselves.

The students also performed poorly in detecting and refactoring Java energy
greedy collections: in the three instances less than 40% correctly answer this
question. Moreover, in the last instance the grades dropped to approximately
15%. While many of the other energy greed smells taught within the course are
relatively straightforward rules (i.e. replacing string concatenation with String-
Builders), choosing the most energy efficient data structure is inherently more
difficult. This is due to having a wide array of choices between the different
collections, which also depends on the needed methods and operations. Adding

11 Actually, modern Java IDEs, such as IntelliJ, offer this transformation as a predefined
refactoring

Energy Efficient Software in an Engineering Course 15

another requirement, in this case energy efficiency, further raises the complexity.
While during the practical lab sessions students had tools and/or lecture slides
at their disposal, many chose to not take the lecture material to the exam.

Figures 4, 5 and 6 show the comparison between the overall grade students
obtained in the individual exam (represented as bars with the left-axis) and on
the green software question (represented as lines with the right-axis), in the three
instances completed.

Fig. 4: Comparison between exam grade and red smell detection grade for academic
year 2018/2019

We can see that only 8 out of 27 obtained a failing score in the 2018/2019
instances. The average score of the full exam is 68.6%, while the average of the
green software question is 58.6%. We can also observe in Fig. 4 that students
who performed well in the full exam, also received a good make in the green
software question. Additionally, during this first instance, two students obtained
a perfect score for this question (100% grade).

In the 2019/2020 instance of the course, 11 out of 46 failed answering the
exact same green software question. When we compare the scores to the previ-
ous instance, we observe that both the average of the exam and the question
decreased: 57.6% and 55.7%, respectively. However, we observe the same pattern
in the results: students who performed well in the full exam, also performed well
in the question. This is also the case for the 2020/2021 edition.

In the latest instance of the course, 7 out of 33 failed in the green software
question. The average scores went up and are similar to the results of the first
instance: the exam score is 64.7%, that is also similar to the average of the green
software questions 60.1%.

The second instance registered the most number of students in this non-
mandatory course, having 70% more students than the first edition, and 40%
more than the most recent edition. It is in this second instance that students

16 J. Saraiva, R. Pereira

Fig. 5: Comparison between exam grade and red smell detection grade for academic
year 2019/2020

Fig. 6: Comparison between exam grade and red smell detection grade for academic
year 2020/2021

received the lowest average scores, both in terms of the full exam and the green
software question. Since this is a non-mandatory course, the increase in numbers
not only influences (negatively) the quality of students, but also makes it harder
to teach an advanced course to a larger group of students. We are convinced
that this is the main reason for the worsened performance of the students in that
instance. In fact, if we consider the results of the 30 best students of 2018/2019,
a number similar to the previous/following instance, then the average scores
are 66.9% (exam) and 65.4% (question), which in terms of the green software
question would the be the best average result to date.

Energy Efficient Software in an Engineering Course 17

5 Conclusions

This paper presented the module on green software that we introduced as part
of the course on software analysis and testing: an advanced course on software
engineering. We described in detail the green flavor we incorporated in this well
established multi-disciplinary course. Furthermore, we have assessed students in
green decision making when developing/optimizing energy efficient software. Our
first preliminary results are positive: students acquired the necessary engineering
skills to measure and optimize energy consumption of software systems.

Aknowlegments

This work is financed by the ERDF European Regional Development Fund
through the Operational Programme for Competitiveness and Internationali-
sation - COMPETE 2020 Programme within project POCI-01-0145-FEDER-
006961, and by National Funds through the Portuguese funding agency, FCT -
Fundação para a Ciência e a Tecnologia within project POCI-01-0145-FEDER-
016718 and UID/EEA/50014/2013.

References

1. G. Pinto, F. Castor, Energy efficiency: a new concern for application software
developers, Communications of the ACM 60 (12) (2017) 68–75.

2. R. Pereira, P. Simão, J. Cunha, J. Saraiva, jstanley: Placing a green thumb on java
collections, in: Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, ACM, New York, NY, USA, 2018,
pp. 856–859. doi:10.1145/3238147.3240473.
URL http://doi.acm.org/10.1145/3238147.3240473

3. S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, A. Hindle, Energy profiles of
java collections classes, in: Proceedings of the 38th International Conference on
Software Engineering, ACM, 2016, pp. 225–236.

4. R. Pereira, M. Couto, J. Saraiva, J. Cunha, J. P. Fernandes, The influence of the
java collection framework on overall energy consumption, in: Proceedings of the
5th International Workshop on Green and Sustainable Software, GREENS ’16,
ACM, 2016, pp. 15–21.

5. M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di Penta,
D. Poshyvanyk, Mining energy-greedy api usage patterns in android apps: an em-
pirical study, in: Proceedings of the 11th Working Conference on Mining Software
Repositories, ACM, 2014, pp. 2–11.

6. R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes, J. Saraiva,
Energy efficiency across programming languages: How do energy, time, and memory
relate?, in: Proceedings of the 10th ACM SIGPLAN International Conference on
Software Language Engineering, SLE 2017, ACM, New York, NY, USA, 2017, pp.
256–267. doi:10.1145/3136014.3136031.
URL http://doi.acm.org/10.1145/3136014.3136031

18 J. Saraiva, R. Pereira

7. L. Cruz, R. Abreu, Performance-based guidelines for energy efficient mobile appli-
cations, in: Proceedings of the 4th International Conference on Mobile Software
Engineering and Systems, MOBILESoft ’17, IEEE Press, Piscataway, NJ, USA,
2017, pp. 46–57. doi:10.1109/MOBILESoft.2017.19.
URL https://doi.org/10.1109/MOBILESoft.2017.19

8. D. Li, W. G. J. Halfond, An investigation into energy-saving programming practices
for android smartphone app development, in: Proceedings of the 3rd International
Workshop on Green and Sustainable Software, GREENS 2014, ACM, New York,
NY, USA, 2014, pp. 46–53. doi:10.1145/2593743.2593750.
URL http://doi.acm.org/10.1145/2593743.2593750

9. R. Morales, R. Saborido, F. Khomh, F. Chicano, G. Antoniol, Earmo: An energy-
aware refactoring approach for mobile apps, IEEE Transactions on Software Engi-
neering 44 (12) (2018) 1176–1206.

10. M. Couto, J. Saraiva, J. P. Fernandes, Energy refactorings for android in the large
and in the wild, in: 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2020, pp. 217–228.

11. R. Rua, M. Couto, J. Saraiva, GreenSource: A large-scale collection of android code,
tests and energy metrics, in: 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR), 2019, pp. 176–180.

12. I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski, L. Pol-
lock, J. Clause, An empirical study of practitioners’ perspectives on green software
engineering, in: Proceedings of the 38th International Conference on Software En-
gineering, ICSE ’16, Association for Computing Machinery, New York, NY, USA,
2016, p. 237–248. doi:10.1145/2884781.2884810.
URL https://doi.org/10.1145/2884781.2884810

13. G. Pinto, F. Castor, Y. D. Liu, Mining questions about software energy consump-
tion, in: Proceedings of the 11th Working Conference on Mining Software Reposi-
tories, ACM, 2014, pp. 22–31.

14. C. Pang, A. Hindle, B. Adams, A. E. Hassan, What do programmers know about
software energy consumption?, IEEE Software 33 (3) (2016) 83–89.

15. Y. Cai, Integrating sustainability into undergraduate computing education, in: Pro-
ceedings of the 41st ACM Technical Symposium on Computer Science Education,
SIGCSE ’10, Association for Computing Machinery, New York, NY, USA, 2010,
p. 524–528. doi:10.1145/1734263.1734439.
URL https://doi.org/10.1145/1734263.1734439

16. Green Software Laboratory.
URL http://greenlab.di.uminho.pt/

17. G. H. Brundtland, Our common future, from one earth to one world - an overview
by the world commission on environment and development (march 1987).
URL https://sustainabledevelopment.un.org/content/documents/5987our-

common-future.pdf
18. J. Harris, Basic Principles of Sustainable Development, in: S. K. Bawa, R. Sei-

dler (Eds.), Dimensions of Sustainable Development, Vol. 1, Encyclopedia of Life
Support Systems - EOLSS, Oxford, United Kingdom, 2009, Ch. 2, pp. 21–40.

19. G. Appel, I. Dankelman, K. Kuipers, Disciplinary Explorations of Sustainable De-
velopment in Higher Education, Springer Netherlands, Dordrecht, 2004, pp. 213–
222. doi:10.1007/0-306-48515-X 16.
URL https://doi.org/10.1007/0-306-48515-X_16

20. K. Sammalisto, T. Lindhqvist, Integration of sustainability in higher education:
A study with international perspectives, Innovative Higher Education 32 (2008)
221–233.

Energy Efficient Software in an Engineering Course 19

21. I. Turkin, Y. Vykhodets, Software engineering master’s program and green it: The
design of the software engineering sustainability course, in: 2018 IEEE 9th Interna-
tional Conference on Dependable Systems, Services and Technologies (DESSERT),
2018, pp. 662–666.

22. T. Kaivola, L. Rohweder (Eds.), Towards sustainable development in higher edu-
cation - reflections, no. 2007:6 in Opetusministeriön julkaisuja, Opetusministeriö,
koulutus- ja tiedepolitiikan osasto, Finland, 2007.

23. W. Xiong, K. H. Mok, Sustainability practices of higher education institutions in
hong kong: A case study of a sustainable campus consortium, Sustainability (2)
(2020) 452. doi:https://doi.org/10.3390/su12020452.

24. R. T. Watson, J. Corbett, M. C. Boudreau, J. Webster, An information strat-
egy for environmental sustainability, Commun. ACM 55 (7) (2012) 28–30.
doi:10.1145/2209249.2209261.
URL https://doi.org/10.1145/2209249.2209261

25. S. Mann, L. Smith, L. Muller, Computing education for sustainability, SIGCSE
Bull. 40 (4) (2008) 183–193. doi:10.1145/1473195.1473241.
URL https://doi.org/10.1145/1473195.1473241

26. C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, B. Penzenstadler, N. Seyff,
C. C. Venters, Sustainability design and software: The karlskrona manifesto, in:
Proceedings of the 37th International Conference on Software Engineering - Volume
2, ICSE ’15, IEEE Press, 2015, p. 467–476.

27. D. Torre, G. Procaccianti, D. Fucci, S. Lutovac, G. Scanniello, On the presence
of green and sustainable software engineering in higher education curricula, in:
Proceedings of the 1st International Workshop on Software Engineering Curricula
for Millennials, SECM ’17, IEEE Press, 2017, p. 54–60. doi:10.1109/SECM.2017.4.
URL https://doi.org/10.1109/SECM.2017.4

28. B. Penzenstadler, S. Betz, C. C. Venters, R. Chitchyan, J. Porras, N. Seyff,
L. Duboc, C. Becker, Everything is interrelated: Teaching software engineering
for sustainability, in: Proceedings of the 40th International Conference on Soft-
ware Engineering: Software Engineering Education and Training, ICSE-SEET ’18,
Association for Computing Machinery, New York, NY, USA, 2018, p. 153–162.
doi:10.1145/3183377.3183382.
URL https://doi.org/10.1145/3183377.3183382

29. M. Hamilton, Learning and teaching computing sustainability, in: Proceedings of
the 2015 ACM Conference on Innovation and Technology in Computer Science
Education, ITiCSE ’15, Association for Computing Machinery, New York, NY,
USA, 2015, p. 338. doi:10.1145/2729094.2754850.
URL https://doi.org/10.1145/2729094.2754850

30. K. Abernethy, K. Treu, Integrating sustainability across the computer science cur-
riculum, J. Comput. Sci. Coll. 30 (2) (2014) 220–228.

31. C. Pattinson, Ict and green sustainability research and teaching, IFAC-
PapersOnLine 50 (1) (2017) 12938 – 12943, 20th IFAC World Congress.
doi:https://doi.org/10.1016/j.ifacol.2017.08.1794.
URL http://www.sciencedirect.com/science/article/pii/

S2405896317324151
32. K. R. Berntsen, M. R. Olsen, N. Limbu, A. T. Tran, R. Colomo-Palacios, Sustain-

ability in software engineering - a systematic mapping, in: J. Mejia, M. Muñoz,
Á. Rocha, T. San Feliu, A. Peña (Eds.), Trends and Applications in Software En-
gineering, Springer International Publishing, Cham, 2017, pp. 23–32.

33. N. Wolfram, P. Lago, F. Osborne, Sustainability in software engineering, in: 2017
Sustainable Internet and ICT for Sustainability (SustainIT), 2017, pp. 1–7.

20 J. Saraiva, R. Pereira

34. C. Calero, M. Piattini, Green in Software Engineering, Springer Publishing Com-
pany, Incorporated, 2015.

35. H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, C. Le, Rapl: memory power
estimation and capping, in: International Symposium on Low-Power Electronics
and Design (ISLPED), 2010 ACM/IEEE, IEEE, 2010, pp. 189–194.

36. M. Couto, D. Maia, J. Saraiva, R. Pereira, On energy debt: Managing consump-
tion on evolving software, in: Proceedings of the 3rd International Conference on
Technical Debt, TechDebt ’20, Association for Computing Machinery, New York,
NY, USA, 2020, p. 62–66. doi:10.1145/3387906.3388628.
URL https://doi.org/10.1145/3387906.3388628

37. R. Pereira, T. Carção, M. Couto, J. Cunha, J. P. Fernandes, J. Saraiva, Helping pro-
grammers improve the energy efficiency of source code, in: Proceedings of the 39th
International Conference on Software Engineering Companion, ICSE-C ’17, IEEE
Press, Piscataway, NJ, USA, 2017, pp. 238–240. doi:10.1109/ICSE-C.2017.80.

38. R. Pereira, T. Carção, M. Couto, J. Cunha, J. P. Fernandes, J. Saraiva, Spelling
out energy leaks: Aiding developers locate energy inefficient code, J. Syst. Softw.
161 (2020). doi:10.1016/j.jss.2019.110463.
URL https://doi.org/10.1016/j.jss.2019.110463

39. R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Saraiva, Energyware analysis, in: 7th
Workshop on Software Quality Analysis, Monitoring, Improvement, and Applica-
tions (SQAMIA), Vol. 2217, CEUR Workshop Proceedings, 2018.

40. R. Pereira, Energyware engineering: Techniques and tools for green software de-
velopment, Ph.D. thesis, Universidade do Minho (2018).

41. J. Saraiva, R. Abreu, J. Cunha, J. P. Fernandes, GreenSoftwareLab: Towards
an engineering discipline for green software, Impact 2018 (1) (March 2018).
doi:https://doi.org/10.21820/23987073.2018.9.

42. D. Maia, M. Couto, R. Pereira, J. Saraiva, E-Debitum: Managing software en-
ergy debt, in: 1st International Workshop on on Sustainable Software Engineering
(SUSTAIN-SE), (to appear), 2020.

43. O. Kiselyov, A. Biboudis, N. Palladinos, Y. Smaragdakis, Stream fusion, to com-
pleteness, in: Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, Association for Computing Machinery,
New York, NY, USA, 2017, p. 285–299. doi:10.1145/3009837.3009880.
URL https://doi.org/10.1145/3009837.3009880

44. M. Longo, A. Rodriguez, C. Mateos, A. Zunino, Reducing energy usage
in resource-intensive java-based scientific applications via micro-benchmark
based code refactorings, Comput. Sci. Inf. Syst. 16 (2) (2019) 541–564.
doi:10.2298/CSIS180608009L.
URL https://doi.org/10.2298/CSIS180608009L

45. G. Melfe, A. Fonseca, J. P. Fernandes, Helping developers write energy efficient
haskell through a data-structure evaluation, in: 2018 IEEE/ACM 6th International
Workshop on Green And Sustainable Software (GREENS), IEEE, 2018, pp. 9–15.

46. F. Ribeiro, J. Saraiva, A. Pardo, Java Stream Fusion: Adapting FP Mechanisms for
an OO Setting, in: Proceedings of the XXIII Brazilian Symposium on Programming
Languages, SBLP 2019, Association for Computing Machinery, New York, NY,
USA, 2019, p. 30–37. doi:10.1145/3355378.3355386.
URL https://doi.org/10.1145/3355378.3355386

47. W. L. Mendonça, R. de Almeida, J. Fortes, F. Lopes, D. Marćılio, E. Canedo,
F. Lima, J. Saraiva, Understanding the impact of introducing lambda expressions
in java programs, Journal of Software Engineering Research and Development 8

Energy Efficient Software in an Engineering Course 21

(2020) 8:1–8:22. doi:10.5753/jserd.2020.744.
URL https://sol.sbc.org.br/journals/index.php/jserd/article/view/744

