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Abstract
Bayesian Monte Carlo (BMC) is a promising integration technique which considerably broadens the theoretical tools that
can be used to maximize and exploit the information produced by sampling, while keeping the fundamental property of data
dimension independence of classical Monte Carlo (CMC). Moreover, BMC uses information that is ignored in the CMC method,
such as the position of the samples and prior stochastic information about the integrand, which often leads to better integral
estimates. Nevertheless, the use of BMC in computer graphics is still in an incipient phase and its application to more evolved
and widely used rendering algorithms remains cumbersome. In this article we propose to apply BMC to a two-level adaptive
sampling scheme for illumination integrals. We propose an efficient solution for the second level quadrature computation and
show that the proposed method outperforms adaptive quasi-Monte Carlo in terms of image error and high frequency noise.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing

1. Introduction

Global illumination is a computationally very demanding task,
whose execution time depends on the overall number of samples
used to estimate the illumination integrals. Assigning a fixed num-
ber of samples to each integral evaluation is not optimal, since dif-
ferent image regions often exhibit different types of incident illumi-
nation and material’s light scattering properties, therefore requiring
different sampling rates to achieve identical quality. Alternatively,
adaptive sampling allows for locally selecting the number of sam-
ples. When using adaptive sampling, a first estimate with few sam-
ples is computed. Then, if some quality criterion of the estimate is
not met, a new sample set is drawn and used to refine the previous
estimate. Consequently, regions of the image where the sampled
signal contains higher frequencies will be more densely sampled.

We propose to apply a two-level adaptive sampling approach to
the Bayesian Monte Carlo (BMC) framework for evaluating the il-
lumination integral. BMC is particularly well suited to this prob-
lem given its flexibility to incorporate prior knowledge which, in
the case of the second level integral estimate, would be the infor-
mation produced by the first integral estimate. Our contribution is
twofold: (i) we derive a closed form solution of the second level
BMC quadrature; (ii) we propose an efficient method for the second
level quadrature computation within the spherical Gaussian (SG)
framework of [MBR∗13a].

2. Related work

2.1. Adaptive sampling

Most of the work regarding adaptive sampling and refinement crite-
ria has been developed for image plane sampling. The rationale is to
detect regions of the image plane for which the sampling rate does
not allow an adequate signal reconstruction. The sampling rate is
then locally increased to reduce aliasing. Finally, the sampled sig-
nal (i.e., the incident radiance function at the image plane) is recon-
structed by combining the samples using a filter whose support can
be adapted to the desired resolution. Lee et al. [LRU85] and later
Purgathofer [Pur87] have developed adaptive sampling algorithms
which determine whether or not local oversampling is necessary
based on the variance of the estimate of the pixel values. In [Mit87],
Mitchell has proposed a two-level sampling method which gener-
ates point sets having spectral characteristics similar to those of
blue noise point sets. As refinement criterion he uses a contrast met-
ric based on human visual perception [Cae81], which operates per
RGB channel. These works present complete solutions to the adap-
tive sampling problem. A complete overview of the recent advances
in adaptive sampling and reconstruction for Monte Carlo rendering
can be found in [ZJL∗15]. Several other works focus only on the
refinement criterion. Rigau et al. [RFS02] propose the use of Shan-
non entropy which can be viewed as a measure of the uncertainty
associated with a random variable. The same authors, in [RFS03],
further combine the samples’ color and geometry entropies to de-
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rive a contrast metric. Xu et al. [XBZ∗05, XFSS07, XSFS10] later
proposed using Tsallis entropy instead. All the above criteria rely
on the sampled values to compute the uncertainty of the estimate
and use it to decide on whether to refine. Estimating the illumina-
tion integral at each shading point generally requires much fewer
samples than reconstructing incident radiance functions at the im-
age plane. There are however obvious similitudes w.r.t. adaptive
sampling for both processes. A refinement criterion is required to
decide, based on the information brought by the samples already
taken, whether a local higher sampling rate is required, an effective
distribution of samples is also required, which aims at maximizing
the information brought by the new samples.

2.2. Bayesian Monte Carlo

Bayesian Monte Carlo is a relatively recent method for estimating
the value of complex integrals [O’H91], which can be seen as the
Bayesian counterpart of the classic Monte Carlo (CMC) method.
Rasmussen and Ghahramani [RG02] have shown that BMC outper-
forms classic Monte Carlo with importance sampling thanks to the
use of prior knowledge for careful sample placement and weight-
ing. However, the increased complexity of BMC w.r.t. CMC pre-
vented a direct application to rendering. Brouillat et al. [BBL∗09]
pioneered the use of BMC for rendering diffuse surfaces. More re-
cently, Marques et al. [MBR∗13a] generalized the use of BMC for
rendering by presenting a SG-based framework for BMC which
supports any material whose BRDF can be modeled as a sum of
SG functions. In [MBSB15], Marques et al. show that BMC out-
performs the state of the art QMC techniques for hemispherical in-
tegration applied to illumination integrals. These results confirmed
the potential of BMC for efficiently solving the rendering integral.
However, the use of BMC in rendering is still in an incipient phase
and its application to more evolved and widely used algorithms re-
mains cumbersome. In this paper we propose an algorithm for ap-
plying BMC to a two-level adaptive sampling scheme, where the
result of the first level estimate is injected as prior knowledge for
a second level estimate. Furthermore, we show that our adaptive
BMC algorithm outperforms adaptive QMC.

3. Adaptive Bayesian Monte Carlo

In the following we formalize the mechanism of a two-level adap-
tive sampling BMC estimate and propose an efficient approach for
computing the resulting quadrature rule.

3.1. Background

The Bayesian approach to Monte Carlo integration is to estimate
the value of an integral of the form:

I =
∫

f (x)p(x)dx , with x ∈ RD, (1)

where p(x) is the analytically known part of the integrand, and
f (x) is the unknown part of the integrand. For illumination integrals
f (x) is usually the incident radiance function, p(x) is the product
between the cosine term and the BRDF, and x = (θ,φ) is an inci-
dent direction on the unit hemisphere where θ and φ are the polar
and azimuthal angles, respectively. In a Bayesian approach, the un-
known function f (x) is represented through a probabilistic model,
usually a Gaussian Process model (GP), which is a stochastic rep-
resentation of our knowledge about f (x) before any samples are

drawn. A GP is completely defined by a mean function f̄ (x) and a
covariance function k(x,x′), which must be positive definite. The
prior GP model of f (x) is denoted as f (x)∼GP1[ f̄1(x),k1(x,x′)].
f̄1(x) =E[ f (x)] can be thought of as a rough approximation of f (x)
before any samples are drawn, whereas k1(x,x′) = cov[ f (x), f (x′)]
characterizes the smoothness of the prior GP model. The sam-
pling stage conditions GP1 to a set of n1 noisy samples (i.e., ob-
servations) D1 = {(xi

1,Y
i
1) | i = 1, . . . ,n1} with Y i

L = f (xi
L) + ε

i
L,

ε
i
L being an i.i.d. Gaussian noise with mean 0 and variance σ

2
n.

This results in a new GP model of f (x), called posterior, which
incorporates the information brought by the samples. It is de-
noted GP2[ f̄2(x),k2(x,x′)], where f̄2(·) and k2(·, ·) are the pos-
terior mean and covariance functions, respectively, and are given
by [RG02]:

f̄2(x) = E[ f (x)|D1] = f̄1(x)+kt
1Q−1

1 (Y1− F̄1) (2)
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′)−kt
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−1
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1 ,x))t
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F̄1 = ( f̄1(x
1
1), . . . , f̄1(x

n1
1 )) .

In practice, under a squared exponential stationary covariance func-
tion, the Bayesian estimate Î1 of I amounts to computing the value
of Eq. (1) by replacing the unknown function f (x) by its maxi-
mum a posteriori estimate according to the posterior model GP2,
i.e., f̄2(x). This is achieved by computing the Bayesian quadrature
equations [RG02]:

Î1 = Ī + zt
1Q−1

1 (Y1− F̄1) (4)

where
Ī =

∫
f̄1(x)p(x)dx and z1 =

∫
k1(x)p(x)dx .

For further details see [MBR∗13a,MBSB15]. Note that z1 is a vec-
tor with as many integrals as the number of samples n1. Also note
that the covariance matrix Q1 (which accounts for the relative posi-
tions between samples) has to be inverted for each integral estimate.
To make BMC practical for rendering purposes, these operations
must be computed efficiently. In [MBR∗13a], the authors propose
a SG-based solution for a non-adaptive BMC estimate. Both p(x)
and k1(x,x′) are modeled through SG functions and the location
of the samples is known before rendering time, which allows Q−1

1
to be precomputed and each integral z1 to be evaluated through
a simple query to a precomputed 2D table of spherical Gaussian
integrals (SGI, see Eq. (22) of [MBR∗13a]). In the following we
maintain the same assumptions and show how the same framework
can be used to compute a two-level BMC estimate.

3.2. Refining a Bayesian Monte Carlo estimate

Adaptive sampling requires that after computing Î1, and if some
refinement criterion is met, a second set D2 of n2 noisy samples of
f (x) is collected, such that:

D2 = {(xi
2,Y

i
2) | i = 1, . . . ,n2}, with Y i

2 = f (xi
2)+ ε

i
2,
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The second level BMC estimate Î2 is computed using as prior the
posterior GP2 resulting from the first level estimate, yielding:

Î2 = Ī2 + zt
2Q−1

2 (Y2− F̄2) (5)

where
Ī2 = Î1

z2 =
∫

k2(x)p(x)dx

k2(x) = (k2(x
1
2,x), . . . ,k2(x

n2
2 ,x))t

Q2 = (K2 +σ
2
nIn)

K(i, j)
2 = k2(x

i
2,x

j
2) with (i, j) ∈ [1,n2]

2

F̄2 = ( f̄2(x
1
2), . . . , f̄2(x

n2
2 ))

While the terms of the Bayesian quadrature rule of level two in
Eq. (5) have roughly the same role as presented in Eq. (4), the co-
variance function k2 is no longer stationary and has a more com-
plex expression as can be seen in Eq. (3). Consequently, z2 can no
longer be computed through a simple query to a 2D table of SGI as
in [MBR∗13a].

3.3. Efficient quadrature computation

Given our assumption that the sample’s locations are known before
rendering, Q−1

2 can be precomputed to accelerate BMC integration.
Nevertheless calculating the vector of integrals z2 is still the most
computationally intensive operation. Using Eq. (3), the ith element
of the z2 vector from Eq. (5) can thus be expressed as:

zi
2 =

∫
k1(x

i
2,x
′) p(x′)dx′︸ ︷︷ ︸

SGI

−

T i
2∫

kt
1(x

i
2)Q−1

1︸ ︷︷ ︸
constant

k1(x
′) p(x′)dx′ . (6)

Note that the leftmost integral of Eq. (6) is a spherical Gaussian
integral (SGI, see Eq. (22) of [MBR∗13a]). Its value can thus be
quickly computed within the SG framework of [MBR∗13a], by re-
sorting to a compact precomputed 2D entry table. Recall that this
table is only precomputed once, so there is no need to precompute
it again for the adaptive BMC case. In the rightmost integral of
Eq. (6) T i

2, two terms are constant since they are not dependent on
the integration variable x′. These terms can thus be taken out of the
integral and T i

2 can be rewritten as:

T i
2 = kt

1(x
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2)Q−1

1

∫
k1(x
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2)Q−1

1 z1 ,

where z1 is the vector of integrals computed for the first level
estimate. The term k1(xi

2) is a vector containing the covariance
(k1(xi

2,x
1
1), . . . ,k1(xi

2,x
n1
1 )) of the new sample xi

2 with each of the
samples x j

1, j ∈ {1, . . . ,n1} of the first level and can be precom-
puted since the locations of all samples are known a priori. More-
over, both Q−1

1 and z1 have been computed for the previous level
and can be reused for computing z2, hence accelerating the second
level estimate.

4. Results

In this section we evaluate the efficiency of our adaptive BMC ap-
proach, by comparing it to adaptive QMC for estimating the value
of the illumination integral under its hemispherical formulation.

The results were generated with the Mitsuba raytracer [Jak10]. For
simplicity, the values of the samples are computed from an environ-
ment map. The extension to global illumination will be addressed
in future work. Reference images are computed using importance
sampling. The used oversampling criterion is the samples’ color
entropy [RFS03].

Fig. 1 (a) to (c) shows a test case used to assess the quality of
the images generated using adaptive BMC and adaptive QMC. The
images shown in (b) and (c) have been generated using 40 sample
directions for the first sampling level and 40 for the second level,
making a total of 80 samples for the oversampled zones. The sam-
ple set is generated using a Sobol (0,2)-sequence and are the same
for both methods. Fig. 1 (c) shows a sampling map. The zones se-
lected for oversampling are shown in red, while the zones where
only 40 samples are taken are shown in green. The close-up views
on Fig. 1 (b) show a comparison between adaptive BMC and adap-
tive QMC for a zone of the image which has been oversampled.
It can be seen that the BMC-based image is closer to the refer-
ence than the QMC-based image and exhibits fewer high frequency
noise. The RMSE of the oversampled zone for QMC is 6.83%
higher than that of BMC for the same zone. As regards the com-
puting time, both methods rendered the full images associated with
Fig. 1 (b) roughly within the same time (6.6s).

The RMSE curves shown in Fig. 1 (d) have been calculated by
only taking into account the oversampled zone of the image shown
in red in Fig. 1 (c). The results were generated using 10 samples
for the first level of sampling and n2 ∈ {10,30,70} samples for
the second level. The lines in the plot correspond to the following
methods:

• adaptive BMC and QMC using a Sobol sequence [Sob67];
• adaptive BMC and QMC using spherical Fibonacci (SF) point

sets [MBR∗13b];
• adaptive BMC using optimized sample sets optimized indepen-

dently for the number of samples of each sampling level follow-
ing [MBR∗13a].

Note that the sample sets used in adaptive BMC with optimal sam-
ple sets are independently optimized for each sampling level, mean-
ing that the sample positions are not optimal as a whole since the
second level sample set is produced without taking into account the
sample set from the first level. To alleviate the effect of superposing
samples of different levels, the sample set of level two is rotated by
an angle of π w.r.t. the first level sample set. The same approach
is also taken when using the spherical Fibonacci point sets. The
results show that adaptive BMC outperforms adaptive QMC when
using the same sample sets. For example, the RMSE of adaptive
BMC is consistently smaller than that of QMC (roughly 5% lower)
when both methods use a Sobol (0,2)-sequence. The results also
show that Fibonacci point sets and optimized sample sets seem to
have an advantage over a Sobol sequence, despite the hierarchi-
cal character of the latter point system. Nevertheless, the use of
non-hierarchical point sets should be progressively more and more
inefficient as the number of sampling levels increases. This is be-
cause the samples from high sampling levels would be more likely
to overlap with samples from previous levels. The computing times
are once again roughly the same for QMC and BMC, BMC being
slightly slower in the case where n1 = 10 and n2 = 70 (6.7s for
BMC and 6.6s for QMC). Note that this difference is totally neg-
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Figure 1: Experimental results. (a) reference image. (b) close-up views comparison between adaptive BMC (ABMC) and adaptive QMC
(AQMC) for a zone of the image which has been oversampled. (c) sampling map: the zones selected for oversampling are colored in red,
while the zones not oversampled are in green. (d) RMSE for ABMC and AQMC using different sample sets. The value in the x-axis reflects
the total number of samples for the oversampled zones.

ligible in a real global illumination setting (such as, for example,
final gathering for photon mapping) where sampling is much more
costly than in our simple environment map-based test case.

5. Conclusion and future work
We proposed a two-level BMC adaptive sampling approach by de-
riving the second level quadrature rules and introducing an efficient
quadrature computation method based on the spherical Gaussian
framework of [MBR∗13a]. We show with a simple test scene that
adaptive BMC overcomes adaptive QMC using the same samples.
This improvement is justified by the judicious use BMC makes of
the information available prior to sampling. Future work will in-
clude extending the proposed approach to global illumination and
explore what is the best proportion between samples allocated to
the two sampling levels. Another interesting research line is to
choose the samples sequentially, similarly to Huszár and Duve-
naud [HD12]. Each new sample would be placed in the position
of the integration domain where it decreases the most the variance
of the estimate. Applied to adaptive BMC it entails starting from
the optimal sample set of the first level and adding the new sam-
ples one by one until the desired number of samples for the second
level is reached. The current approach’s main limitation is the re-
quirement to keep full information from all samples of previous
sampling levels, which might prevent a generalization to a large
number of sampling levels.
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