
Machine Learning Modeling and Insights into the

Structural Foundations of Polymyxin-like

Antimicrobials

Inês Machado,† João Inácio,‡,¶,§ Paula Jorge,‡,¶,§ and Filipe Teixeira∗,‡

†Institute for Polymers and Composites, University of Minho, 4800-058 Guimarães,
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Abstract1

Antimicrobial resistance (AMR) is a silent pandemic that represents an urgent2

threat to human health. Unfortunately, the antibiotic development pipeline is slow3

even though AMR has been escalating uncontrollably fast, namely amongst Gram-4

negative pathogens. Although out of use until recently due to their toxic side effects,5

polymyxins have been revived as a last-line therapeutic option since all other antibiotics6

are currently failing. In an attempt to ameliorate their toxicity and improve antimicro-7

bial activity, many studies have been generating polymyxin analogues through different8

strategies, mostly empirical. As such, there is still a lack of faster and more reliable9

approaches to make analog design efficient in order to tackle AMR in a timely fash-10

ion. The solution to accelerate the discovery of new drugs probably lies in the use of11

in silico approaches, such as machine learning, due to their faster pace and time and12
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cost efficiency. In this work, machine learning was applied to Quantitative Structure-13

Activity Relationship (QSAR) modeling with the objective of providing a working14

semi-quantitative model capable of predicting the activity of polymyxin-like molecules15

for a given species. For this, we applied four different learning algorithms and ten dif-16

ferent families of molecular descriptors to our dataset of 408 molecule/microorganism17

pairs retrieved from PubChem. The AdaBoost model devised using the CKP set of18

descriptors was the best performer, with good accuracies and very low false negative19

and positive predictions. Preliminary exploration of the model’s response to systematic20

changes in the structure of polymyxin B reveals a trend towards increased antimicro-21

bial activity when exchanging some of its constituent amino acids for more lipophilic22

ones. Experimental studies are already underway based on this model’s application23

and we believe it will become a crucial tool for drug development.24
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1 Introduction25

Antimicrobial resistance represents one of the current biggest health-threats worldwide,26

whose impact has been heightened by the escalation of multidrug resistant (MDR) Gram-27

negative bacteria. Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneu-28

moniae head the WHO list of priority pathogens not responding to front-line antibiotics1,29

and their ability to grow as biofilms further heightens their role as troublesome pathogens30

highly associated with lower respiratory infections and with high mortality/morbidity rates2.31

Polymyxins (PMs) B and E are the two most studied and utilized variants of the an-32

timicrobial peptide PM group and are currently used in last resort treatments for Gram-33

negative bacterial infections3. PMs were first put into clinical use in the 1950s, but were34

subsequently replaced by other drugs due to their nephrotoxic and neurotoxic side effects.35

Nevertheless, improved dosing regimens and the rise of Gram-negative MDR strains led to a36

renaissance of their clinical use when everything else was failing4. Sadly, PM resistance has37

also emerged, mostly due to outer membrane lower permeability7, but also through nonspe-38

cific mechanisms (e.g. capsules, efflux pumps)6. This, along with PM’s poor bioavailability,39

nephro-/neuro-toxicity, and narrow-spectrum activity, compromises what is already the last40

available treatment option11.41

PMs possess two key structural domains, polar (L-α,γ-diaminobutyric acid, Dab, residues)42

and hydrophobic (N-terminal fatty acyl chain; position 6-7 residues), which are relevant43

for PM-lipopolysaccharide (LPS) and outer membrane interaction5. Specifically, PMs act44

against Gram-negative bacteria by outer membrane destabilization/disruption, PM uptake,45

cell content leakage, and bacterial death6–8. Additionally, studies suggest that PMs have46

an ability to inhibit NADH-quinone oxidoreductase type II (NDH-2). This finding opens47

up the possibility that a secondary mode of action of polymyxin B (PM-B) against Gram-48

negative bacteria may involve inhibition of vital respiratory enzymes in the bacterial inner49

membrane9. There is also rising evidence indicating that PM-B nephrotoxicity is associated50

with DNA damage, leading to chromosome missegregation and genome instability. This51

3



novel mechanistic information may lead to new strategies to overcome the nephrotoxicity of52

this important last-line class of antibiotics10.53

With no new antibiotics entering the market, repurposing and enhancing what is al-54

ready available could be the solution. Therefore, PM structural modification aiming at55

improving its activity against MDR Gram-negative bacteria and diminish its toxicity has56

gained great interest. Modifications occurring at the Nα-terminal fatty acyl12, Dab side57

chains13, D-Phe6-L-Leu7 motif14,15, cyclic heptapeptide ring16, and tripeptide (Dab1-Thr2-58

Dab3) segment15,17 have met variable success. Many of these studies are empirically-based18
59

(with structure-activity relationships - SARs - often missing) and output analogues inactive,60

or less active than PMs6,7,19. Moreover, claims of PM toxicity reduction are often misleading61

or undocumented. Additionally, most PM analogue designs are not supported by knowledge62

of LPS-binding/outer membrane-disrupting mechanisms and, therefore, do not specifically63

target PM resistance15. To this date, more than 2000 PM analogues have been identified, but64

only a few have proceeded to preclinical studies, clinical trials, FDA approval, or market11.65

As such, an increased understanding of the SARs of this important class of compounds is66

required to further the development of the next generation of PM-related antibiotics.67

Many researchers began to study the option of mimicking the physicochemical properties68

of PMs. Frecer et al.20 reported a series of cyclic amphipathic peptides consisting of alternat-69

ing cationic (Lys) and nonpolar (Phe) residues, loosely based on the amphipathic properties70

of the PM-B structure. The compounds exhibited potent antimicrobial activity against bac-71

teria of the genera Escherichia, Salmonella, Pseudomonas, Klebsiella, and Shigella, and a72

high affinity for LPS. Velkov et al.7 addressed the modelling of pharmacophores based on73

the collective two-dimensional SAR data of PMs in the literature combined with the three-74

dimensional model of the PM-B-LPS complex, confirming that the positive charge of the75

Dab side chains represents key characteristic. Hydrophobic properties are also key features76

in the Nα fatty acyl chain and positions 6 and 7 on the cyclic heptapeptide ring. The77

pharmacophore model showed that the PM-B molecule can be divided into a set of polar78
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and hydrophobic domains, namely the polar residue segments Dab and Thr residues, the79

hydrophobic Nα fatty acyl chain, and the D-Phe6-L-Leu7 motif. The model further high-80

lighted the integral scaffolding function of the linear tripeptide and the cyclic heptapeptide to81

maintain the optimal distance between each domain, giving the structure its amphiphilicity,82

an essential property for antimicrobial activity.83

The prospects for discovering a novel antibiotic are actually great when considering the84

vast possibilities among the existing 1030-1060 drug-like chemicals, with 20n variants per85

n-length canonical amino acid. But individual experiments cannot be conducted on every86

candidate molecule both in terms of time and money. The conventional process of antibi-87

otic development is not only slow, tedious, and expensive, but also has a high failure rate,88

contrasting with the fast and continuous process that is bacterial evolution21,22. This inca-89

pacity to keep up with AMR development is illustrated by the small amount (only 14) of90

new approved antibiotics between 2014 and 201923.91

Computational approaches are key to overcome the antibiotic crisis and surpass conven-92

tional development pipelines. In fact, several antibiotics or drug candidates with putative93

antimicrobial activity and minimal toxicity have been identified through machine learning94

(ML) and quantitative structure–activity relationships (QSAR)21. ML is a branch of artificial95

intelligence that deals with the development of algorithms and models that can automati-96

cally learn patterns from data and perform tasks without explicit instructions. In the recent97

decade, with the systematic generation and management of data on an unprecedented scale98

and increases in computational power, ML has begun to explore new frontiers in many fields,99

including biology and chemistry. ML is particularly suited to exploratory tasks with combi-100

natorially or exponentially complex solutions. Thus, ML is an excellent approach to many101

challenges in antibiotic science because it can generalize from training data to explore new102

solutions, speeding up the identification of physiological processes involved in drug–target103

interactions (e.g. mechanisms of action, cytotoxicity pathways, resistance mechanisms)24–27.104

With the various existing approaches of ML, QSAR emerged as the most frequent appli-105
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cation area. In view of the large libraries of compounds now being treated by combinatorial106

chemistry and high-throughput screening, the use of computational techniques such as QSAR107

modeling is highly advisable. QSAR serves as lead optimization in early drug discovery, be-108

fore they are subjected to more intensive studies, such as receptor docking and empirical109

determination of in vitro and in vivo activity/toxicity. QSAR methodology consists in the110

representation of the chemical structure using molecular descriptors, which serve as useful111

physicochemical information to determine the correlation between the chemical structure112

and the biological activity. Nowadays, there are thousands of molecular descriptors with the113

potential to be applied in drug design22,27,28.114

The successful development of new antimicrobials based on the PM scaffold would greatly115

benefit from the development of QSAR models to aid navigating this vast chemical space.116

In this work, we endeavor to explore several approaches to model the antimicrobial activ-117

ity (measured by its Minimum Inhibitory Concentration) of PM-like molecules towards an118

assortment of microbial species using different ML strategies. The best performing model119

is further explored in terms of its response under systematic mutations of the PM-B struc-120

ture, in order to gain new insights onto the most preponderant features of highly active PM121

derivatives. The main goal is to provide a working model capable of discerning the most122

promising molecules towards a given species and thus aid in the quick development of much123

needed new antimicrobial agents.124

2 Methodology125

2.1 Polymyxin Activity Dataset126

To the best of our knowledge, there are no previous datasets devoted to the antimicrobial127

activity of PMs and PM-like molecules. Thus, a large dataset containing the Minimum In-128

hibitory Concentration (MIC) for 408 molecule/microorganism pairs was collected from Pub-129

Chem29. Data collection procedures encompassed Polymixin B nonapeptide (CID 123978),130
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as well as the 1000 most similar structures (based on the 2-dimensional Tanimoto finger-131

print), which were first filtered by the availability of antimicrobial assay data (Biological132

Assays), and then by the availability of a defined value for MIC, MIC50, or MIC95.133

The data was then curated for the removal of duplicates, entries without description of134

the targeted microorganism or pertaining to drug-combination studies. During the curation135

process, the information regarding the targeted microorganism in each assay was condensed136

into two variables: one containing the taxonomic genus of the target (TxG), and another one137

concerning a broader classification of the type of microorganism (MTyp), which can take one138

of three values: Gram-negative bacteria, Gram-positive bacteria, or fungi.139

Preliminary calculations aiming for a regression model of the MIC failed, prompting a140

semi-quantitative approach targeting the quartile (among the full data) of the MIC reported141

for a given compound/target pair. This strategy not only allowed for some semi-quantitative142

assessment of the inhibitory activity of novel compounds, but also ensured that the different143

categories of the target are equally represented in the data. The curated dataset of 399144

entries is provided in the Electronic Supplementary Information (ESI).145

Starting from the simplified molecular-input line-entry system (SMILES) representation146

of each molecule in the dataset, several families of molecular descriptors were calculated147

using the RDKit software package30. The naming scheme for these sets of descriptors, their148

composition, and the number of features present in each set are provided in Table 1.149

2.2 Machine Learning Models150

In order to explore the potential of ML methods modeling the antimicrobial activity of PM-151

like molecules, four supervised learning algorithms were considered: logistic regression34,152

decision tree35, random forest36, and AdaBoost37, as implemented in the Scikit-learn pack-153

age38, version 1.0.2. The variables TxG and MTyp were added to each set of molecular154

descriptors in order to form the feature set used by each model. Each algorithm/descriptor155

set pair was trained targeting a multi-class prediction of the MIC quartile, using a 65:35156
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Table 1: Labeling convention used for the sets of molecular descriptors used in this work, as
well as their general description and the number of features (nfeat.) within each set.

Acronym Description nfeat.

Gen. BalabanJ, BertzCT, Ipc, HallKierAlpha,
MolLogP, MolWt, HeavyAtomCount,
NumHeteroatoms, NumRotatableBonds,
NumValenceElectrons, RingCount, Frac-
tionCSP3, TPSA, LabuteASA31

14

Hb Descriptors related to H-Bond formation:
NHOHCount, NOCount, NumHAcceptors,
NumHDonors

4

CKP κ-form Kier and Hall indices32 15
PEOE VSA MOE-type descriptors using partial charges

and surface area contributions
14

SMR VSA MOE-type descriptors using Molar Refractiv-
ity and surface area contributions

10

SLopP VSA MOE-type descriptors using LogP and surface
area contributions

12

Estate VSA MOE-type descriptors using Kier and Hall’s
Estate indices and surface area contributions

11

AC2D 2-dimensional autocorrelation functions31 192
BCUT2D Perlman’s BCUT metrics33 8

FG Counting of functional group fragments 85
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split between the training and the testing data.157

All models were created as a data pipeline, where all numerical fields were first scaled to158

zero mean and unit standard deviation and all non-numerical variables were codified using159

one-hot encoding, prior to being fed onto the main algorithm. The logistic regression and160

decision tree models were trained on the transformed data using the default hyper-parameters161

defined in their implementation. On the other hand, the random forest and AdaBoost models162

required optimization of some of their hyper-parameters. For the random forest models, the163

number of estimators (trees) (nest), as well as the fraction of samples (ns) and features164

(nf ) considered by each estimator, were optimized using a 5-fold cross-validation strategy,165

scanning 100 random combinations of nest, ns, and nf . A similar cross-validation scheme166

was also used in the case of the AdaBoost models, optimizing the number of estimators167

(trees) (nest), the depth of the base estimators ( dest), and the learning rate ( rL). Further168

analysis of each model was carried out using in-house developed Python scripts for accessing169

the importance of individual features, partial dependence of each model’s response to the170

most important features, as well as response of the best-performing models to systematic171

mutations of the PM-B structure. These scripts are also provided in the ESI.172

3 Results and Discussion173

3.1 Characterization of the Dataset174

Of the 399 data points collected, 366 were related to antibacterial activity, of which 287 were175

for Gram-negative bacteria and 79 for Gram-positive bacteria. In addition, 33 entries were176

related to antifungal activity. Among bacteria, the most represented genera were Escherichia177

(109 entries), Pseudomonas (81 entries), Salmonella (58 entries), and Staphylococcus (54 en-178

tries). These four genera make up about 82.5% of the bacterial data. The least represented179

genera of bacteria were Priestia, Yersinia, Enterobacter, Shigella, Vibrio, and Proteus, with180

only one entry per genus. With regard to fungi, about 76% of the reported values concerned181
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the genus Candida, with Cryptococcus being the least studied genus among fungi.182

Regarding the compounds, 86 entries (about 21% of the data) concerned PM-B1 in the183

neutral form, followed by PM-B1 sulfate, with 56 entries (13.5% of the data).184

As for the collected MIC values, these ranged between 0.006 µM and 256 µM, with185

an average of 26 ± 43 µM. These data are quite asymmetrical (as can be seen from the186

density distribution shown in Figure 1), with the boundary of the first quartile (Q1) located at187

1.25 µM and the upper limit of the third quartile (Q3) at 32.0 µM, with a median of 4.0 µM.188

As shown in Figure 1, MIC data are distributed in a rather asymmetric and multi-modal189

way, with the main modal peak close to the median, but a considerable distance between190

the median and Q3. This can be partially attributed to the MIC determined in assays with191

fungi. The MIC for Gram-positive bacteria appears to be spread over a wider region of the192

MIC spectrum (up to about 150 µM). The outlier values above 120 µM appear to be193

common to multiple assays and are likely to reflect the maximum concentration threshold194

used in various assays.195
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Figure 1: Boxplot representation of the collected MIC values in the full data, as well as for
the sub-categories regarding the type of microorganism. Outlier values above 150 µM (3
entries, all regarding Gram-negative bacteria) were omitted for clarity.

3.2 Variable Selection and Model Refinement196

All models were trained targeting the quartile position of each entry in the dataset, with197

the ultimate aim of understanding which modifications to the PM scaffold would yield more198

10



antimicrobial activity. For reference, the MIC collected for PM-B against P. aeruginosa is199

4.0 µM. Hence, a classification of Q1 or Q2 for a novel structure would signal such structure200

as a promising candidate for future synthesis and testing, with the most promising ones being201

those classified as Q1.202

Because of this, the evaluation of each model took into account not only the accuracy203

scores for the train and test sets, but also the true positive rate for Q1 (i.e. the fraction204

of cases were a compound was correctly predicted as Q1, or f(Q1|Q1)). Moreover, our205

evaluation also took into account the undesirable metrics f(Q1|Q4) and f(Q4|Q1), which206

translate to promoting a particularly inactive molecule (at least for the selected microbial207

target) and wasting a good proposed structure, respectively39.208

Upon optimization of the hyper-parameters, most random forest models required rela-209

tively small forests (nest between 10 and 25), which is adequate considering the number of210

points in the data set. Most models favoured the use of all available features for each tree211

(nf = 1.0), with the exception of the model using the Hb set, which showed the best cross-212

validation accuracy score for nf = 0.55. On the other hand, most random forest algorithms213

opted for each tree to consider only a fraction of the presented data, ns, between 0.16 and214

0.26.215

The AdaBoost models exhibited a similar preference for small values of nest, with the216

exception of the model using the SLopP VSA set of descriptors, which required nest = 50.217

Each of the trees in the AdaBoost model were usually limited to a maximum depth (dest) of218

10, with the exception of the AdaBoost models using the FG set (dest = 2), as well as that219

of the models using the SLopP VSA and AC2D sets, which attained maximum accuracy for220

dest = 100. The optimal hyper-parameters of the random forest and AdaBoost models are221

provided in the ESI.222

The results depicted in Figure 2 show the behaviour of the 40 models considered in this223

work through the metrics detailed above. It is noteworthy that f(Q4|Q1) is always very224

low for all models, and was thus excluded from further considerations. Overall, the logistic225
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regression models performed the worst (Figure 2a), with accuracies in the train set never226

exceeding 60% and considerable values of f(Q1|Q1). The decision tree models, despite227

performing better than the logistic regression ones, showed some considerable over-fitting228

behaviour, as well as relatively low scores of f(Q1|Q1) in the test data (Figure 2b). Indeed,229

the combination of multiple decision trees in either a bagging (random forest) or boosting230

(AdaBoost) configuration yielded models with some interesting characteristics.231
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Figure 2: Values of different scores (overall accuracy, f(Q1|Q1) and f(Q1|Q4)) for each
family of descriptors (see Table 1 ) and algorithms: a) logistic regression; b) decision tree;
c) random forest, and d) AdaBoost.

The overall performance of the random forest models showed some of the highest accuracy232

scores in the training data. Unfortunately, the over-fitting issues in these models were233

particularly pronounced when looking at the f(Q1|Q1) and f(Q1|Q4) scores (Figure 2c).234

These problems appear to be somewhat mitigated by the AdaBoost models, specially with235

respect to f(Q1|Q4) (Figure 2d).236
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Regarding the performance of each set of molecular descriptors, the fraction of functional237

groups (FG) standed out negatively. Despite its modest performance when in combination238

with the logistic regression algorithm, its use in decision tree or random forest models showed239

significant over-fitting, affecting the important f(Q1|Q1) score. Additionally, FG was the240

worst performing set of descriptors for the AdaBoost models. Likewise, the Hb set also241

yielded some of the weakest models, usually by increasing f(Q1|Q4) in both the train and242

test sets, irrespective of the algorithm used.243

The performance of the descriptor sets derived from surface area contributions (VSA-244

based descriptors) varied significantly between algorithms. They yielded logistic regression245

models with neglectable over-fitting, but with relatively low accuracy and f(Q1|Q1) scores,246

and always with relatively high f(Q1|Q4) scores, specially in the case of SLopP VSA (Figure247

2a). In combination with the decision tree algorithm, the accuracy of the resulting models248

appears to be linked to the f(Q1|Q1) score (Figure 2b). In general, these families of descrip-249

tors performed well, albeit with an overall tendency to significantly increase the f(Q1|Q4)250

score in the test phase.251

In turn, the topological-rooted sets of descriptors (CPK, AD2D, and BCUT2D) typically252

performed well, with overall accuracy and f(Q1|Q1) scores in par with those found when253

using the VSA-based descriptors. However, with the exception of the logistic regression254

models, these descriptor sets usually presented lower f(Q1|Q4) scores in the test data than255

models trained using the VSA-based descriptors. Two noteworthy cases are the random256

forest model trained using the AC2D set (Figure 2c) and the AdaBoost model trained using257

the CKP set. Both models show an acceptable overall accuracy (approximately 80% and258

65% in the train and test sets, respectively), high f(Q1|Q1) scores, and very low f(Q1|Q4)259

scores. This prompted the AdaBoost model devised using the CKP set of descriptors to be260

selected for further studying.261
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3.3 Analysis of the Model’s Response262

The Kier and Hall descriptors forming the CPK set describe the structural and geometric263

properties of a molecule, including its flexibility, polarity, and hydrophobicity. They are264

widely used for the analysis of the biological activity of compounds, mainly with respect265

to their lipophilic and hydrophilic affinity, proving to be efficient for the discrimination266

of compounds with different levels of affinity32,40. The good performance of this set of267

descriptors in the particular case of predicting the antimicrobial activity of PMs and their268

analogues is consistent with the established mode of action of these compounds.269

The relative importance of each feature considered in the selected AdaBoost model was270

evaluated using the Permutation Importance (PI) method, in which the weight of each271

feature is related to the change in the model’s outcome when said feature is replaced with272

randomly generated data41. The relative weights of each feature are represented in Figure 3273

and suggest that the model is particularly sensitive to 5 features: the two features describing274

the microorganism (TXG and MTyp) as well as three molecular descriptors (1χ, 0χ, and 3κ).275

These five features make up 71% of the total PI.276
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Figure 3: Average Permutation Importance (PI) of the features in the AdaBoost model using
the CPK set of molecular descriptors calculated using 10 noisy replicas of the data set for
each feature. The error bars represent the standard deviation of the PI over the 10 replicas
and the right y axis indicates the value of the average PI normalized to percentage.
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3.3.1 Influence of the Biological Target277

The most important feature was MTyp, with a PI weight of 17.7%. This result reflects278

the pre-modelling assessment of the data, in which the MIC values of the Gram-positive279

bacteria and (even more so) of the fungi was significantly larger than that of the Gram-280

negative bacteria (Cf. Figure 1). This is well illustrated in Figure 4a, which shows the281

model’s partial dependence with this feature. Indeed, assays using Gram-negative bacteria282

were more likely to be classified as Q1, whereas those targeting either Gram-positive bacteria283

or fungi were more likely to be classified as Q3 or Q4, respectively. This partial dependence284

behaviour reflects the distribution of the MIC shown in Figure 1, suggesting that this pattern285

was learned by the AdaBoost model.286
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Figure 4: Partial dependence graphs of the AdaBoost model using CPK molecular descrip-
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The other feature relating to the microorganism used in each entry, TxG, ranked in forth287

place, with a PI of 12.8%. According to these results, the model appears to be using MTyp288
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as a first sieve to classify the incoming data, and TxG as a secondary sieve. This reflects the289

zeitgeist that PMs are particularly active towards all genera of Gram-negative bacteria.290

Indeed, the partial dependence data plotted in Figure 4a suggests that, despite the291

model’s tendency to classify assays carried out using Gram-negative bacteria as Q1, the292

ones targeting the Escherichia, Salmonella, and specially the Acinetobacter genus have a293

boost towards a Q3 classification, hinting at these genera being more resistant to the PM294

analogues found in the data.295

3.3.2 Influence of the Molecular Descriptors296

From the point of view of the molecular descriptors, the model’s response is dominated by 1χ,297

0χ, and, to a lesser extent, 3κ. These three molecular descriptors gather about 40% of the PI.298

When combining these weights with those describing the target, the five most preponderant299

features collected 71% of the PI. The model’s partial dependence plots of these three features300

are depicted in Figure 5, showing the likelihood of a given classification outcome (Q1, Q2,301

Q3, or Q4) with varying values of the feature at hand, when all other features are random.302

In all cases, the partial dependence plots appear to be divided into a “low-value” regime and303

a “high-value” one, with a somewhat chaotic partial response when transitioning between304

the two states.305

Both 0χ and 1χ are atomic connectivity indexes derived from the molecule’s connectivity306

matrix, with307

0χ =
∑
i

1√
di

(1)

and308

1χ =
∑
i

∑
j<i

1√
didj

(2)

where dii is the number of heavy (non-hydrogen) atoms connected to atom i and the sums309

cover all heavy atoms31. Thus, an increase in the number of heavy atoms connected to few310

heavy atoms (small 0χ) favours a classification as Q1, whereas an increase of 0χ (either by311
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Figure 5: Partial dependence graphs of the AdaBoost model using CPK molecular descrip-
tors: a) with respect to 1χ, b) with respect to 0χ, and c) with respect to 3κ.
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removal of heavy atoms or by greatly increasing ramification) makes a classification as Q2312

more likely, as shown in Figure 5b.313

The effect of ramification can also be observed when considering the partial dependence314

with respect to 1χ, shown in Figure 5a. Highly ramified structures usually obtain a lower315

value of 1χ, and have an increased probability of being labelled as Q2, while less ramified ones316

hold a greater chance of being classified as Q3. This aspect of the model’s response appears317

to contradict the above discussion centred in 0χ. Because both features hold approximately318

the same weights (Cf. Figure 3), one would argue that the penalty shown in Figure 5b for319

0χ > 65 identifies compounds with lower molecular weight (more properly, with less heavy320

atoms), with the sensitivity towards ramification being handled mostly by 1χ. That being321

said, it is worthy to highlight that the model’s partial dependence with respect to 1χ points322

towards an optimal region that maximizes the probability of achieving a Q1 classification at323

about 1χ ≈ 40, suggesting an optimal value for the number of ramification motifs.324

The third Kier’s kappa shape index (3κ) is defined as325

3κ =


(n−1)(n−3)2

p23
if n is odd,

(n−3)(n−2)2

p23
if n is even.

(3)

where n is the number of non-hydrogen atoms, and p3 is the number of paths of length 3326

(i.e. groups of atoms connected using three bonds). Contrary to 0χ and 1χ, 3κ increases327

with increasing number of heavy atoms, but decreases with increasing number of possible328

length 3 paths allowed by the molecular topology, which can be achieved either by increasing329

ramification (specially when occurring in the middle of longer chains), or via introduction330

of cyclic groups32. As shown in Figure 5, the model’s response with respect to 3κ suggests331

that this feature is mostly used to distinguish between Q1 and Q2 classifications, with the332

probability of the former being at a minimum when the probably of the latter is at its333

maximum.334
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3.3.3 Systematic Mutations of the Polymixin B Scaffold335

In order to have a more immediate sense of the model’s response, the structure of PM-B was336

systematically mutated in positions 1 to 3 and 5 to 10 using glycine (Gly), leucine (Leu),337

lysine (Lys), and glutamic acid (Glu). These mutations reflect the change in the model’s338

outcome when varying the steric hindrance at a particular position (Gly versus Leu), or339

upon introduction of a basic or acid amino acid residue (Lys versus Glu). In all predictive340

runs of the model, the microbial target was fixed at the Gram-negative bacterial species341

P. aeruginosa. The results from these so-called “mutations” on the PM-B structure are342

shown in Figure 6. Along these systematic mutations, the distance (in feature space) of the343

proposed structures to the centre (average) of the available data was monitored in order to344

estimate whether the new molecular structures would generate a set of descriptors within the345

range for which the model was trained. The largest average distance from the data average346

was observed in the case of Gly substitution. In this set of molecules, the average distance347

to the data centre was 2.16 ± 0.17 in the adimensional feature space, which compares very348

favourably with the average distance to the centre of 3.1 ± 2.8 found in the data set. All349

other series of PM-B mutations fell even closer to the data centre, with average distances of350

1.55± 0.15, 1.46± 0.15, and 1.60± 0.16 for exchanges with Leu, Lys, and Glu, respectively.351

Regarding the systematic exchange of each of the constituent amino acids by Gly, the352

general trend is for conserving the Q2 classification (the combination PM/P. aeruginosa353

itself being ranked Q2 in the data). Nevertheless, substitution of Leu7 by Gly appears to354

improve the antimicrobial activityi, as shown in Figure 6a. On the other hand, the model355

suggests a negative impact on the predicted antimicrobial activity when replacing Phe6 by356

Gly.357

The previous observations are in sharp contrast to what is observed when replacing358

each aminoacid residue by Leu, which usually results in a more optimistic prediction of359

antimicrobial activity, as shown in Figure 6b. Again, the major exception is the introduction360

of Leu in position 6 for which the model predicts a value for the MIC between 1.5 µM and361
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Figure 6: Most probable classification regarding the antimicrobial activity towards P. aerug-
inosa of mutated variants of PM-B upon systematically changing each amino acid residue
for: a) Gly, b) Leu, c) Lys, and d) Glu.
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4.0 µM (Q2). It should be noted that the position 7 of PM-B is already occupied by Leu,362

and the corresponding Q2 prediction is coherent with the collected data. It is likely that the363

more lipophilic character of Leu promped the model to predict an enhanced antimicrobial364

activity when one (and only one) of the constituent aminoacids is replaced by Leu.365

As shown in Figures 6c and 6d, the systematic exchange of each amino acid residue by366

either Lys or Glu, respectively, resulted in an improvement over the predicted antimicrobial367

activity of PM-B. The major exception to this trend was, again, Leu7, for which the model’s368

predictions suggested that its substitution for either an acidic or basic amino acid does not369

bring a distinct advantage over the original PM-B struture. Furthermore, the exchange370

of Phe6 by Glu also appeared to maintain the predicted antimicrobial activity within the371

boundaries of Q2. The results depicted in Figure 6c for Lys replacement are particularly372

interesting, as they suggest that the substitution of Dab by Lys may increase the antimi-373

crobial activity. As in the case of the Leu substitutions, these predictions may be linked to374

an increase in lipophilicity, perceived by the model by the increase in the amino acid side375

chains.376

4 Conclusions377

In this work, we applied the AdaBoost algorithm to generate a semi-quantitative model378

of the antimicrobial activity of PM-B analogs using well established molecular descriptors.379

The present model resulted from a systematic exploration of different combinations of ML380

algorithms and sets of molecular descriptors, and can adequately predict the MIC (by ranges)381

of a given compound/target combination. This allows the use of the model for rapidly382

accessing whether a proposed structure can be considered as a viable candidate for novel PM-383

derived antibiotics. Analysis of this model confirmed insights previously obtained from the384

available data, such as the greater activity of PM derivatives towards Gram-negative bacteria,385

and its relatively small antimycotic activity. More interestingly, preliminary exploration of386
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the model’s response to systematic changes to the PM-B structure revealed a trend for387

increased antimicrobial activity when exchanging some of its constituent amino acids by388

more lipophilic ones.389
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