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Abstract. This paper sets the basis for a compositional and struc-
tured approach to the specification of paraconsistent transitions systems,
framed as an institution. The latter and theirs logics were previously
introduced in [CMB22] to deal with scenarios of inconsistency in which
several requirements are on stake, either reinforcing or contradicting each
other.

1 Introduction

In Software Engineering it is often a challenge to cope with modelling contexts in
which the classical bivalent logic distinction is not enough. Several modal logics
have been proposed [BEGR09] to address such a challenge, namely to capture
vagueness or uncertainty. Typically, their semantics is based on residuated lat-
tices, i.e. complete lattices equipped with a commutative monoidal structure
such that the monoid composition has a right adjoint, the residue. The lattice
carrier stands for the set of truth values, a typical example being the real [0, 1]
interval.

Often, however, there is also a need to go further and equip the under-
lying Kripke structure with both positive and negative accessibility relations,
one weighting the possibility of a transition to be present, the other weighting
the possibility of being absent. Moreover, in a number of real situations, such
weights are not complementary, and thus both relations should be formally taken
into consideration. For this purpose, in a previous work [CMB22] we introduced
paraconsistent transition systems, abbreviated to PLTS, and the corresponding
modal logic, which generalises Belnap-Dunn four-valued logic [RJJ15] in a very
generic way. Actually, all the relevant constructions are parametric in a class of
residuated lattices, thus admitting different instances according to the structure
of the truth values domain that better suits each modelling problem at hands.
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Fig. 1. The vagueness-inconsistency square [CMB22].

To exemplify suppose, for example, that weights for both transitions come
from a residuated lattice over the real [0, 1] interval.
Then, the two accessibility relations jointly express a scenario of

– inconsistency, when the positive and negative weights are contradictory, i.e.
they sum to some value greater than 1 (cf, the upper triangle in Fig. 1 filled
in grey). Exploring this area of the square

– vagueness, when the sum is less than 1 (cf, the lower, periwinkle triangle in
Fig. 1);

– strict consistency, when the sum is exactly 1, which means that the mea-
sures of the factors enforcing or preventing a transition are complementary,
corresponding to the red line in the figure.

Exploring the upper triangle calls for paraconsistent logics [Jas69,CCM07], in
which inconsistent information is considered as potentially informative. Intro-
duced more than half a century ago, through the pioneering work of F. Asenjo
and Newton da Costa, such logics are becoming increasingly popular (see, for
example, reference [Aka16], a recent book on engineering applications). This
paper goes a step ahead. First the modal logic associated to PLTS is extended
to the multi-modal case. Then it is prepared to act as a structured specification
logic [ST12] equipped with specific versions of the standard structured speci-
fication operators à la CASL [MHST03]. This offers to the working software
engineer the (formal) tools to specify, in a compositional way, paraconsistent
transition systems. The approach builds on previous work documented in ref-
erence [JGMB21] where a similar agenda is proposed for the specification of
fuzzy transition systems. Technically, the price to be paid to support this move
consists of framing the logic as an institution [GB92].

The rest of the paper is divided in two sections. Section 2 characterizes an
institution for paraconsistent transition systems L(A). The formalism is para-
metric to the truth space A, formalised as a metric twisted structure. Then, in
Sect. 3, the usual structured specification operators [ST12] are re-built on top of
this institution. These are the basic (technical) results for supporting a specifica-
tion framework for this sort of systems, within the well-established tradition of
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algebraic specification. Going a step further into the specification methodology
and engineering practices will be discussed in a twin publication.

2 An Institution for Paraconsistent Transitions Systems

We start by recalling the notion of an institution, followed, in Sect. 2.2, by a char-
acterization of metric twisted algebras which continue the semantic domain upon
which the logic is parametrised, as mentioned in the introduction. Such struc-
tures amount to a particular class of residuated lattices in which the lattice meet
and the monoidal composition coincide, equipped with a metric which entails a
concrete meaning to the vagueness-inconsistency square informally described in
the introduction. Finally, in sub-sect. 2.3, the relevant institution(s) for L(A) is
built in a step by step way and suitably illustrated.

2.1 Institutions

An institution abstractly defines a logic system by describing the kind of sig-
natures in the system, the kind of models and a satisfaction relation between
models and sentences.

Definition 1 ([GB92]). An institution I is a tuple

I = (SignI ,SenI ,ModI , |=I)

consisting of
– a category SignI of signatures
– a functor SenI : SignI Ñ Set giving a set of Σ ´ sentences for each signature

Σ P |SignI |. For each signature morphism σ : Σ Ñ Σ′ the function

SenI(σ) : SenI(Σ) Ñ SenI(Σ′)

translates Σ ´ sentences to Σ′ ´ sentences
– a functor ModI : Signop

I Ñ Cat assigns to each signature Σ the category of
Σ ´ models. For each signature morphism σ : Σ Ñ Σ′ the functor

ModI(σ) : ModI(Σ′) Ñ ModI(Σ)

translates Σ′ ´ models to Σ ´ models
– a satisfaction relation |=Σ

I Ď |ModI(Σ)|ˆSenI(Σ) determines the satisfaction
of Σ ´ sentences by Σ ´ models for each signature Σ P |SignI |.

Satisfaction must be preserved under change of signature that is for any signature
morphism σ : Σ Ñ Σ′, for any ϕ P SenI(Σ) and M ′ P |ModI(Σ′)|(

M ′ |=Σ′
I SenI(σ)(ϕ)

)
⇔ (

ModI(σ)(M ′) |=Σ
I ϕ

)
(1)

Actually, when formalising multi-valued logics as institutions, the equivalence on
the satisfaction condition (1) can be replaced by an equality (c.f. [ACEGG91]):(

M ′ |=Σ′
I SenI(σ)(ϕ)

)
=

(
ModI(σ)(M ′) |=Σ

I ϕ
)

(2)

The institution formalisation several logics, including Propositional, Equa-
tional, First-order, High-Order, etc., can be found in reference [ST12].
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2.2 (Metric) Twisted Algebras

A residuated lattice xA, [, \, 1, 0, d, á, ey over a set A is a complete lattice
xA, [, \, 1, 0y, equipped with a monoid xA, d, ey such that d has a right adjoint,
á, called the residuum. We will, however, focus on a particular class of residu-
ated lattices in which the lattice meet ([) and monoidal composition (d) coin-
cide. Thus the adjunction is stated as a [ b ď c iff b ď a á c. Additionally, we
will enforce a pre-linearity condition

(a á b) \ (b á a) = 1 (3)

A residuated lattice obeying prelinearity is known as a MTL-algebra [EG01].
With a slight abuse of nomenclature, the designation iMTL-algebra, from integral
MTL-algebra, will be used in the sequel for the class of semantic structures
considered, i.e. prelinear, residuated lattices such that [ and d coincide.
Examples of iMTL-algebras are:

– the Boolean algebra 222 = x{0, 1}, ^, _, 1, 0, Ñy

– 333 = x{J, u, K}, ^3, _3, J, K, Ñ3y, where

^3 K u J
K K K K
u K u u
J K u J

_3 K u J
K K u J
u u u J
J J J J

Ñ3 K u J
K J J J
u K J J
J K u J

– G̈̈G̈G = x[0, 1],min,max, 0, 1, Ñy, with implication defined as

a Ñ b =

{
1 ifa ď b

b otherwise

We focus on iMTL-algebras AAA whose carrier A supports a metric space (A, d),
with suitable choice of d. Where d : A ˆ A Ñ R

` such that d(x, y) = 0 iff x = y
and d(x, y) ď d(x, z) ` d(z, y).

In order to operate with pairs of truth weights, it was introduced in [CMB22]
the notion of AAA-twisted algebra. This algebraic structure will play a crucial role
in the semantics of our institution, consists of an enrichment of a twist-structure
[Kra98] with a metric. The latter is relevant to interpret the consistency operator
of the logic:

Definition 2 ([CMB22]). Given a iMTL-algebra AAA enriched with a metric d, a
AAA-twisted algebra A = xA ˆ A, ^, _,=⇒,�,Dy is defined as:

– (a, b) ^ (c, d) = (a [ c, b \ d)
– (a, b) _ (c, d) = (a \ c, b [ d)
– (a, b) =⇒ (c, d) = (a á c, a [ d)
– �(a, b) = (b, a)
– D((a, b), (c, d)) =

√
d(a, c)2 ` d(b, d)2

The order in AAA is lifted to A as (a, b) ĺ (c, d) iff a ď c and b ě d.

2.3 Institutional Framing of L(A)

Let us fix a given twisted algebra A. In the following subsections we will introduce
the ingredients for an institution L(A) = (Sign,Sen,Mod, |=).
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Signatures

Definition 3. A signature Σ is a pair (Prop,Act) where Prop is a set of propo-
sitions and Act is a set of action symbols. A signature morphism σ : Σ Ñ Σ′ is
a pair of functions σProp : Prop Ñ Prop′ and σAct : Act Ñ Act′.

The category of signatures and their morphisms will be called signature cat-
egory and will be denoted by Sign.

The Models

Definition 4. Let (Prop,Act) be a signature. A (Prop,Act)-L(A) paraconsis-
tent labelled transition system, is a tuple M = (W,R, V ) such that,

– W is a non-empty set of states,
– R = (Ra : W ˆW Ñ AˆA)a P Act is an Act-indexed family of partial functions,

given any pair of states (w1, w2) P W ˆ W and an action a P Act, relation
R assigns a pair (tt, ff) P A ˆ A such that tt represents the evidence degree of
the transition from w1 to w2 occurring through action a and ff represents the
evidence degree of the transition being prevented from occurring.

– V : W ˆ Prop Ñ A ˆ A is a valuation function, that assigns to a proposition
p P Prop at a given state w a pair (tt, ff) P A ˆ A such that tt is the evidence
degree of p holding in w and ff the evidence degree of not holding

The images of a state through an action a is the set of states for which the tran-
sition is defined, i.e. the set Ra[w] = {w′ P W |Ra(w,w′) = (tt, ff) for some P
tt, ff P A}. For any pair (tt, ff) P A ˆ A, (tt, ff)` denotes tt and (tt, ff)´ denotes
ff .

Definition 5. Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two (Prop,Act)-
PLTS. A morphism between M and M ′ is a function h : W Ñ W ′ compatible
with the source valuation and transition functions, i.e.

– for each a P Act, Ra(w1, w2) � R′
a(h(w1), h(w2)), and

– for any p P Prop, w P W , V (w, p) � V ′(h(w), p).

We say that M and M ′ are isomorphic, in symbols M ∼= M ′, whenever there
are morphisms h : M → M ′ and h´1 : M ′ → M such that h′ ˝ h = idW ′

h ˝ h′ = idW .
(Prop,Act)-PLTSs and the corresponding morphisms form a category

denoted by Mod, which acts as the model category for our L(A) logic.

Definition 6. Let σ : (Prop,Act) Ñ (Prop′,Act′) be a signature morphism and
M ′ = (W ′, R′, V ′) a (Prop′,Act′)-PLTS. The σ-reduct of M ′ is the (Prop,Act)-
PLTS M |σ = (W,R, V ) where

– W = W ′,
– for p P Prop, w P W , V (w, p) = V ′(w, σ(p)), and
– for w, v P W and a P Act, Ra(w, v) = R′

σ(a)(w, v).
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Reducts preserve morphism. Hence, each signature morphism σ : (Prop,Act) Ñ
(Prop′,Act′) defines a functor Mod(σ) : Mod(Prop′,Act′) Ñ Mod(Prop,Act)
that maps systems and morphisms to the corresponding reducts. This lifts to a
functor, Mod : (Sign)op Ñ CAT, mapping each signature to the category of its
models, and each signature morphism to its reduct functor.

The Sentences. Once characterised models for L(A). Let us define its syntax
and the satisfaction relation.

Definition 7. Given a signature (Prop,Act) the set Sen(Prop,Act) of sen-
tences is given by the following grammar

ϕ :: = p | K | ¬ϕ |ϕ Ñ ϕ |ϕ _ ϕ |ϕ ^ ϕ | [a]ϕ | xayϕ |��[a]ϕ |��xayϕ | ˝ ϕ

with p P Prop and a P Act. Note that J = ¬K and ϕ1 ↔ ϕ2 = (ϕ1 Ñ
ϕ2) ^ (ϕ2 Ñ ϕ1).

Each signature morphism σ : (Prop,Act) Ñ (Prop′,Act′) induces a sen-
tence translation scheme Sen(σ) : Sen(Prop,Act) Ñ Sen(Prop′,Act′) recursively
defined as follows:

‚ Sen(σ)(p) = σProp(p)
‚ Sen(σ)(K) = K
‚ Sen(σ)(¬ϕ) = ¬Sen(σ)(ϕ)
‚ Sen(σ)(ϕ d ϕ′) = Sen(σ)(ϕ) d Sen(σ)(ϕ′), d P {_, ^,→}
‚ Sen(σ)([a]ϕ) = [σAct(a)]Sen(σ)(ϕ)
‚ Sen(σ)(xayϕ) = xσAct(a)ySen(σ)(ϕ)
‚ Sen(σ)(��[a] ϕ) = ����[σAct(a)] Sen(σ)(ϕ)
‚ Sen(σ)(��xayϕ) = �����xσAct(a)y Sen(σ)(ϕ)
‚ Sen(σ)(˝ϕ) = ˝Sen(σ)(ϕ)

which entails a functor Sen : Sign Ñ Set mapping each signature to the set of
its sentences, and each signature morphism to the corresponding translation of
sentences.

The Satisfaction Relation

Definition 8. Given a signature (Prop,Act), and a (Prop,Act)-PLTS M =
(W,R, V ), the satisfaction relation

|= : Mod(Prop,Act) ˆ Sen(Prop,Act) Ñ A ˆ A

is defined by
(M |= ϕ) = ^

wPW
(M,w |= ϕ)
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where the relation |= is recursively defined as follows:

‚ (M,w |= p) = V (w, p)
‚ (M,w |= K) = (0, 1)
‚ (M,w |= ¬ϕ) = �(M,w |= ϕ)
‚ (M,w |= ϕ Ñ ϕ′) = (M,w |= ϕ) =⇒ (M,w |= ϕ′)
‚ (M,w |= ϕ _ ϕ′) = (M,w |= ϕ) _ (M,w |= ϕ′)
‚ (M,w |= ϕ ^ ϕ′) = (M,w |= ϕ) ^ (M,w |= ϕ′)
‚ (M,w |= [a]ϕ) = ( [a`](M,w,ϕ`), xa`y(M,w,ϕ´) )
‚ (M,w |= xayϕ) = ( xa`y(M,w,ϕ`), [a`](M,w,ϕ´) )
‚ (M,w |= ��[a]ϕ) = ( xa´y(M,w,ϕ´), [a´](M,w,ϕ`) )
‚ (M,w |= ��xayϕ) = ( [a´](M,w,ϕ´), xa´y(M,w,ϕ`) )

‚ (M,w |= ˝ϕ) =

{
(1, 0) if (M,w |= ϕ) P ΔC

(0, 1) otherwise

where

– [a`](M,w,ϕ∗) =
�

w′PRa[w]

(Rà (w,w′) á (M,w′ |= ϕ)∗)

– [a´](M,w,ϕ∗) =
�

w′PRa[w]

(Rá (w,w′) á (M,w′ |= ϕ)∗)

– xa`y(M,w,ϕ∗) =
⊔

w′PRa[w]

(Rà (w,w′) [ (M,w′ |= ϕ)∗)

– xa´y(M,w,ϕ∗) =
⊔

w′PRa[w]

(Rá (w,w′) [ (M,w′ |= ϕ)∗)

– ΔC = {(a, b) |D((a, b), (0, 0)) ď D((a, b), (1, 1))}
with ∗ P {`,´ }. Hence ϕ is valid in M if for any w P W , (M,w |= ϕ) = (1, 0).

The following examples serve to illustrate the satisfaction relation in our
logic.

Example 1. Consider 222 the underlying iMTL-algebra, a signature ({p, q}, {a})
and a PLTS M = ({s0, s1}, R, V ) depicted in the figure below:

a|(J, K)

a|(J, J) s0 s1
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where V (s0, p) = (J, K), V (s0, q) = (K, J), V (s1, p) = (J, J) and V (s1, q) =
(K, K).

M, s0 |= ��xay p _ q

=(M, s0 |= ��xay p) _ (M, s0 |= q)
=([a´](M, s0, p

´), xa´y(M, s0, p
`)) _ V (s0, q)

=
(

(R´
a (s0, s0) á (M, s0 |= p)´) [ (R´

a (s0, s1) á (M, s1 |= p)´),

(R´
a (s0, s0) [ (M, s0 |= p)`) \ (R´

a (s0, s1) [ (M, s1 |= p)`)
)

_ (K, J)

=
(

(J á K) [ (K á J), (J [ J) \ (K [ J)
)

_ (K, J)

=(K [ J, J \ K) _ (K, J) = (K, J) _ (K, J) = (K \ K, J [ J) = (K, J)

At state s0 the sentence ��xay p _ q holds with evidence degree K and doesn’t
hold with evidence degree J so we are in a case where the pair of weights are
consistent!

Example 2. Let 333 be the underlying iMTL-algebra and M = ({s0, s1}, R, V )
be a ({p, q, r}, {a, b})-PLTS depicted in the figure below. Where V (s0, p) =
(J, J), V (s0, q) = V (s1, p) = (K, u), V (s0, r) = V (s1, r) = (u, u), V (s1, q) =
(K, K)

a|(J, K)

b|(J, J)

b|(J, u) b|(u, J)s0 s1

(M, s0 |= r Ñ (p _ q)) =(M, s0 |= r) ⇒ (M, s0 |= (p _ q))
=V (s0, r) ⇒ ((M, s0 |= p) _ (M, s0 |= q))
=V (s0, r) ⇒ (V (s0, p) _ V (s0, q))
=(u, u) ⇒ ((J, J) _ (K, u))
=(u, u) ⇒ (J \ K, J [ u)
=(u, u) ⇒ (J, u)
=(u á J, u [ u) = (J, u)

At state s0 the sentence r Ñ (p _ q) has an evidence degree J of holding and
it’s unknown, u, the evidence degree in which it doesn’t hold.
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Notice that,

xb`y(M, s1, p
`) =

⊔
sPRb[s1]

(R`
b (s1, s) [ (M, s |= p)´)

=(R`
b (s1, s1) [ (M, s1 |= p)´) \ (R`

b (s1, s0) [ (M, s0 |= p)´)

=
(

(u, J)` [ (J, u)´
)

\
(

(J, J)` [ (J, J)´
)

=(u [ u) \ (J [ J) = J
Analogously, we can see that ([b`](M, s1, p

´)) = J. Therefore, (M, s1 |= xby p) =
(xb`y(M, s1, p

`) , [b`](M, s1, p
´)) = (J, J). That is, in state s1 the sentence xbyp

has evidence degree J of holding and evidence degree J of not holding.

Proposition 1. Let σ : (Prop,Act) Ñ (Prop′,Act′) be a signature morphism,
M ′ a (Prop′,Act′)-PLTS, and ϕ P Sen(Prop,Act) a formula. Then, for any
w P W , (

M ′|σ, w |= ϕ
)

=
(
M ′, w |= Sen(σ)(ϕ)

)
(4)

Proof. The proof, given by induction on the structure of sentences, is in the
appendix.

Theorem 1. For a given metric twisted structure A, L(A) is an institution.

Such abstraction is necessary to get away from the particular syntax of the logic
and to focus on building larger specifications in a structured manner.

3 Structured Specification with L(A)

Usually one starts with flat specifications, that consist of a signature and a set
of sentences in a logic, new specifications are then built through a composition
of operators. These specification building operators are defined in an arbitrary
but fixed institution which allows this theory to be applicable to a wide range
of logics that can be framed as institutions.

Definition 9. A specification is a pair

SP = (Sig(SP ),Mod(SP ))

where Sig(SP ) is a signature in Sign and the models of SP is a function

Mod(SP ) : Mod(Sig(SP )) Ñ A ˆ A.

For some model M P Mod(Sig(SP )) we have that Mod(SP )(M) = (tt, ff), with
tt representing the evidence degree of M being a model of SP and the value ff
representing the evidence degree of M not being a model of SP .

Specifications are built in a structured way as follows:
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Flat Specifications If Σ P |Sign| is a signature and Φ Ď Sen(Σ) is a set of
Σ-sentences, often called axioms, then SP =

(
Σ,Φ

)
is a flat specification

consequently
– Sig(SP ) = Σ

– Mod(SP )(M) =
(

ϕ̂PΦ
(M |= ϕ)

)
=

(
ϕ̂PΦ

^
wPW

(M,w |= ϕ)
)

Flat specifications are a basic tool to build small specifications.
Union Let SP and SP ′ be two specifications over the same signature, Σ. Then

SP Y SP ′ is
– Sig(SP Y SP ′) = Σ
– Mod(SP Y SP ′)(M) = Mod(SP )(M) ^ Mod(SP ′)(M)
If SP1 = xΣ,Φ1y and SP2 = xΣ,Φ2y are flat specifications then:

Mod(xΣ,Φ1y Y xΣ,Φ2y)(M) = Mod(xΣ,Φ1 Y Φ2y)(M)

Translation If SP is a Σ-specification and σ : Σ Ñ (Prop′,Act′) a signature
morphism. Then,
– Sig(SP with σ) = (Prop′,Act′)
– Mod(SP with σ)(M ′) = Mod(SP )(M ′|σ)
Note that M ′ is a (Prop′,Act′) ´ model.

Hiding If SP ′ is a Σ′-specification and σ : (Prop,Act) Ñ Σ′ is a signature
morphism then,
– Sig(SP ′ hide via σ) = (Prop,Act)
– Mod(SP ′ hide via σ)(M) =

(
_

NPMσ
Mod(SP ′)(N)

)

where Mσ is the class of all σ-expansions of M , i.e. Mσ = {N P
Mod(SP ′) | N |σ = M}.

The following examples illustrate some of the structured specifications oper-
ators defined above.

Example 3. Consider 222 the underlying iMTL-algebra. Given the signature Σ =
({p, q}, {b, c}), the specification SP = xΣ,Φy where Φ = {[c]��xby J, ¬(p_q), q Ñ
xcy q} and the inclusion morphism σ : ({p, q}, {b, c}) Ñ ({p, q}, {a, b, c}). Let
M ′ = ({s0, s1, s2}, R′, V ′) be a ({p, q}, {a, b, c})-transition model depicted below.

s0

s1

s2

b|(J, J) c|(J, K)
a|(J, K)

a|(K, J),
c|(J, J)

c|(K, J) c|(J, K)

where V ′(s0, p) = V ′(s0, q) = V ′(s1, q) = (J, J), V ′(s1, p) = (K, K), V ′(s2, p) =
(J, K) and V ′(s2, q) = (K, J).

The following Σ-model M ′|σ = (W,R, V ) is the σ-reduct of M ′:
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s0

s1

s2

b|(J, J) c|(J, K)

c|(J, J)
c|(K, J) c|(J, K)

By the definition of σ-reduct: W = W ′ and V (s, r) = V ′(s, r) for any s P W and
r P {p, q}.
Then,

– Sig(SP with σ) = ({p, q}, {a, b, c})

– Mod(SP with σ)(M ′) = Mod(SP )(M ′|σ) =

⎛
⎝

ϕ̂PΦ
sPW

(M ′|σ, s |= ϕ)

⎞
⎠

Notice that,

M ′|σ, s0 |= ��xby J
= ([b´](M ′|σ, s0, J´), xb´y(M ′|σ, s0, J`))
= (R´

b (s0, s1) Ñ (M ′|σ, s1 |= J)´, R´
b (s0, s1) ^ (M ′|σ, |= J)`)

= (J Ñ K, J ^ J) = (K, J)

Similarly, we find that (M ′|σ, s1 |= ��xby J) = (J, K) = (M ′|σ, s2 |= ��xby J).
Hence,

M ′|σ, s0 |= [c]��xby J
= ([c`](M ′|σ, s0, (��xby J)`), xc`y(M ′|σ, s0, (��xby J)´))
= (R`

c (s0, s2) Ñ (M ′|σ, s2 |= ��xby J)`, R`
c (s0, s2) ^ (M ′|σ, s2 |= ��xby J)´)

= (J Ñ J, J ^ K) = (J, K)

Similarly, we can check that (M ′|σ, s1 |= [c]��xby J) = (K, J) and that (M ′|σ, s2 |=
[c]��xby J) = (J, K). Therefore, there is K evidence of sentence [c]��xby J being true
in model M ′|σ and evidence J of being false:

(M ′|σ |= [c]��xby J) = ^
sPW

(M ′|σ, s |= [c]��xby J) = (J^K^J, K_J_K) = (K, J)
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For sentence ¬(p _ q):

(M ′|σ |= ¬(p _ q))

=
(

^
sPW

(M ′|σ, s |= ¬(p _ q))
)

=
(

^
sPW

� (M ′|σ, s |= p _ q)
)

=
(

^
sPW

� ((M ′|σ, s |= p) _ (M ′|σ, s |= q))
)

= (�(J ^ J, J _ J)) ^ (�(K ^ J, K _ J)) ^ (�(J ^ K, K _ J))
= (�(J, J)) ^ (�(K, J)) ^ (�(K, J))
= (J, J) ^ (J, K) ^ (J, K) = (J ^ J ^ J, J _ K _ K) = (J, J)

For sentence q Ñ xcyq:
M ′|σ, s0 |= q Ñ xcyq

= (M ′|σ, s0 |= q) =⇒ (M ′|σ, s0 |= xcyq)
= (J, J) =⇒ (xc`y(M, s0, q

`), [c`](M, s0, q
´))

= (J, J) =⇒( ∨
sPW

(R`
c (s0, s) ^ (M ′|σ, s |= q)`),

∧
sPW

(R`
c (s0, s) Ñ (M ′|σ, s |= q)´)

)

= (J, J) =⇒ ((K ^ J) _ (K ^ J) _ (J ^ K), (K Ñ J) ^ (K Ñ J) ^ (J Ñ J))
= (J, J) =⇒ (K, J) = (J Ñ K, J ^ J) = (K, J)

Similarly, we have that (M ′|σ, s1 |= q Ñ xcyq) = (J, J) and (M ′|σ, s2 |= q Ñ
xcyq) = (J, K). Therefore, (M ′|σ |= q Ñ xcyq) = (K, J) ^ (J, J) ^ (J, K) =
(K, J). In conclusion,

Mod(SP )(M ′|σ)
= (M ′|σ |= [c]��xby J) ^ (M ′|σ |= ¬(p _ q)) ^ (M ′|σ |= q Ñ xcyq)
= (J ^ K ^ K, J _ J _ J) = (K, J)
= Mod(SP with σ)(M ′)

The degree of which there is evidence that model M ′ is a model of SP with σ,
i.e. specification SP translated via the morphism σ, is K and the degree to which
there is evidence of M ′ not being a model of the specification is J.
Notice that in this case we have consistency, we are completely certain that M ′

is not a model of SP with σ, that is, model M ′ doesn’t satisfy the require-
ments/axioms demanded by SP with σ.

The following example is adapted from [MBHM18] to suit paraconsistent
systems and specifications.
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Example 4. Let 333 be the underlying iMTL-algebra and xAct, Hy a signature
where the set of propositions is empty and the set of actions is Act = {in, out}
with {in} standing for the input of a text file and {out} standing for the output
of a zip-file.
This example considers a file compressing service working only with text files.
Starting with a loose specification SP0 whose requirements are that at any state:

0.1 [in]xoutyJ, whenever a text file is received for compression there has to exist
an action where there is an output of a zip-file

0.2 xayJ, for some a P {in, out}, that is, the system should never terminate

Let M0 be the following model such that the information regarding the input
action is inconsistent and the information regarding the output action is vague.

in|(J, J) out|(u, u)w

It’s possible to check that (M0, w |= xinyJ) = (J, K) and (M0, w |=
[in]xoutyJ) = (u, K). Hence,

Mod(SP0)(M0) = (u, K) ^ (J, K) = (u ^ J, K _ K) = (u, K)

As stated, SP0 is a very loose specification that doesn’t demand, for example,
that immediately after an output action must come an input action. Because of
that we will now consider a new specification. Let SP1 be a specification over Σ
whose requirement is that at any state:

1.1 [out](xinyJ ^ [out]K), whenever there is an output action the system must
go on with an input

Let SP = SP0 Y SP1 be the union of both specifications. Then,

Mod(SP )(M0) =Mod(SP0 Y SP1)(M0)
=Mod(SP0)(M0) ^ Mod(SP1)(M0)
=(u, K) ^ (K, u) = (K, u)

If we now consider the following PLTS, M1:
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in|(J, K)

in|(J, K)

out|(u, u)out|(J, K)

v0 v1

v2v3

For model M1 we have that:

Mod(SP0 Y SP1)(M1) =Mod(SP0)(M1) ^ Mod(SP1)(M1)
=(u, K) ^ (J, K) = (u, K)

Since SP results from the union of SP0 and SP1, both flat specifications. SP0

axioms consists of the union of the axioms of SP0 and SP1, (0.1)+(0.2)+(1.1).
Note that Mod(SP )(M0) � Mod(SP )(M1), thus there is a higher evidence
degree that M1 is a model of SP and a lower evidence degree that M1 isn’t a
model of SP , compared to M0.

4 Conclusions

Paraconsistent transition systems [CMB22] were revisited in an institutional
framework in order to develop a compositional, structured specification approach
for engineering their composition.

Current work includes the study of horizontal and vertical refinement in this
institution, as well as normalization structured specifications. Another impor-
tant extension goes into the domain of observational abstraction: behavioural
specifications resort to a notion of observational satisfaction for the axioms of
a specification, whereas abstractor specifications define an abstraction from the
standard semantics of a specification w.r.t. an observational equivalence relation
between algebras.

Adding abstractor and behavioural operators [HMW18] and investigating a
proper notion of observational equivalence for these systems is in order.

Appendix

Proposition 1 Let σ : (Prop,Act) Ñ (Prop′,Act′) be a signature morphism, M ′

a (Prop′,Act′)-PLTS, and ϕ P Sen(Prop,Act) a formula. Then, for any w P W ,
(
M ′|σ, w |= ϕ

)
=

(
M ′, w |= Sen(σ)(ϕ)

)
(5)
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Proof. The proof is by induction over the structure of sentences. To simplify
notation we will write σ(p) instead of σProp(p) for any p P Prop and σ(a) instead
of σAct(a) for any a P Act. The case of K is trivial, by the definition of |= and
Sen we have that (M ′|σ, w |= K) = (0, 1) = (M ′, w |= Sen(σ)(K)). For sentences
p P Prop, one observes that by defn of Sen, of |= and of reducts, (M ′, w |=
Sen(σ)(p)) = (M ′, w |= σ(p)) = V ′(w, σ(p)) = V (w, p) = (M ′|σ, w |= p). For
sentences ¬ϕ we observe that, by definition of Sen and of |=, we have that
(M ′, w |= Sen(σ)(¬ϕ)) = M ′, w |= ¬Sen(σ)(ϕ) = (�(M ′, w |= Sen(σ)(ϕ))). By
induction hypothesis (�(M ′, w |= Sen(σ)(ϕ))) = �(M ′|σ, w |= ϕ) and, again, by
definition of Sen and of |=, we have �(M ′|σ, w |= ϕ) = (M ′|σ, w |= ¬ϕ).

Let us consider now formulas composed by Boolean operators. Firstly, we can
observe that, by definition of Sen and of |=, (M ′, w |= Sen(σ)(ϕ^ϕ′)) = (M ′, w |=
Sen(σ)(ϕ)^Sen(σ)(ϕ′)) = (M ′, w |= Sen(σ)(ϕ))^(M ′, w |= Sen(σ)(ϕ′)). By I.H.
we have that (M ′, w |= Sen(σ)(ϕ′)) = (M ′|σ, w |= ϕ) ^ (M ′|σ, w |= ϕ′) and by
definition of |=, it is equal to M ′|σ, w |= (ϕ ^ ϕ′). The proof for sentences ϕ _ ϕ′

and ϕ → ϕ′ is analogous.

M ′, w |= Sen(σ)([a]ϕ)

= {defn of Sen}
M ′, w |= [σ(a)] Sen(σ)(ϕ)

= {defn of |=}
([σ(a)`](M ′, w, Sen(σ)(ϕ)`) , xσ(a)`y(M ′, w, Sen(σ)(ϕ)´))

= {def. of [a`] and xa`y}( �

w′PR′
σ(a)[w]

(R
′`
σ(a)(w, w′) á (M ′, w′ |= Sen(σ)(ϕ))`),

⊔
w′PR′

σ(a)[w]

(R
′`
σ(a)(w, w′) [ (M ′, w′ |= Sen(σ)(ϕ))´)

)

= {(step ‹)}( �

w′PRa[w]

(R`
a (w, w′) á (M ′|σ, w |= ϕ)`),

⊔
w′PRa[w]

(R`
a (w, w′) [ (M ′|σ, w |= ϕ)´)

)

= {def. [a`] and xa`y}
([a`](M ′|σ, w, ϕ`) , xa`y(M ′|σ, w, ϕ´))

= {defn of |=}
M ′|σ, w |= [a]ϕ

(step ‹) We have by reduct that R′
σ(a)[w] = Ra[w]. Moreover, by I.H., it is true

that (M ′, w |= Sen(σ)(ϕ)) = (M ′|σ, w |= ϕ), and hence
(

(M ′, w |= Sen(σ)(ϕ))`, (M ′, w |= Sen(σ)(ϕ))´)
)

=
(

(M ′|σ, w |= ϕ)`, (M ′|σ, w |= ϕ)´
) (6)
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Therefore, M ′, w |= Sen(σ)(ϕ))` = (M ′|σ, w |= ϕ)` and
(M ′, w |= Sen(σ)(ϕ))´ = (M ′|σ, w |= ϕ)´.

M ′, w |= Sen(σ)(��[a] ϕ)
= {defn of Sen}

M ′, w |= ���[σ(a)]Sen(σ)(ϕ)
= {defn of |=}

(xσ(a)´y(M ′, w,Sen(σ)(ϕ)´), [σ(a)´](M ′, w,Sen(σ)(ϕ)`))
= {def. of [a´] and xa´y}( ⊔

w′PR′
σ(a)[w]

(R
′´
σ(a)(w,w′) [ (M ′, w′ |= Sen(σ)(ϕ))´),

�

w′PR′
σ(a)[w]

(R
′´
σ(a)(w,w′) á (M ′, w′ |= Sen(σ)(ϕ))`)

)

= {analogous to (step ‹)}
(xa´y(M ′|σ, w, ϕ´) , [a´](M ′|σ, w, ϕ`))

= {defn of |=}
M ′|σ, w |= ��[a] ϕ

The proofs for sentences xayϕ and ��xayϕ are analogous.
Finally, let us consider the proof for sentences ˝ ϕ. By definition of Sen, M ′, w |=
Sen(σ)(˝ ϕ) = (M ′, w |= ˝Sen(σ)(ϕ)). By definition of |=, this evaluates to (1, 0),
if (M ′, w |= Sen(σ)(ϕ)) P ΔC and to (0, 1) otherwise. Hence, by I.H, it evaluates
to (1, 0) when (M ′|σ, w |= ϕ) P ΔC and to (0, 1), i.e., we have (M ′|σ, w |= ˝ ϕ).
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