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ABSTRACT

Many techniques have contributed to the advancement of auto-

mated program repair, such as: generate and validate approaches,

constraint-based solvers and even neural machine translation. Si-

multaneously, artificial intelligence has allowed the creation of

general-purpose pre-trained models that support several down-

stream tasks. In this paper, we describe a technique that takes

advantage of a generative model — CodeGPT — to automatically

repair buggy programs by making use of its code completion capa-

bilities. We also elaborate on where to perform code completion in

a buggy line and howwe circumvent the open-ended nature of code

generation to appropriately fit the new code in the original pro-

gram. Furthermore, we validate our approach on theManySStuBs4J

dataset containing real-world open-source projects and show that

our tool is able to fix 1739 programs out of 6415 — a 27% repair rate.

The repaired programs range from single-line changes to multiple

line modifications. In fact, our technique is able to fix programs

which were missing relatively complex expressions prior to being

analyzed. In the end, we present case studies that showcase different

scenarios our technique was able to handle.
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• Software and its engineering→ Software evolution; Software
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1 INTRODUCTION

Automated Program Repair (APR) is a prominent field of software

engineering. The continuing increase in complexity and size of

software systems urges the community to invest its efforts on de-

veloping techniques that automatically identify patches that are
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able to fix faults arising from the implementation of new function-

alities and code maintenance [11]. These patches are generated

based on the original buggy program and take advantage of the

fact that the developers’ efforts result in almost accurate programs

or, as DeMillo et al. [6] put it: "they create programs that are close

to being correct!". Many approaches have been developed that suc-

cessfully achieve this repair task. Early works [1, 16] utilize genetic

programming by considering a buggy program as seed which is

then continuously evolved at each generation by producing differ-

ent programs through mutation and crossover. Other approaches

[9, 21, 30] are constraint-based and analyze information from test

executions to create constraints which are then fed to a solver to

generate a patch.

More recently, APR techniques have taken advantage of machine

learning advancements to build deep learningmodels. Some of these

techniques [5, 8, 17, 19] employ Neural Machine Translation (NMT)

to translate buggy code into fixed code. Likewise, general-purpose

tools and models [10, 18, 27] supporting code understanding and

code generation tasks have been developed.

In this paper, we argue that the code generation capabilities of

pre-trained models like CodeGPT can be leveraged to specifically

target program repair, effectively treating it as a code completion

task. Let us consider an example from a real-world open-source

software project.

171c171

< ... keyValueSequence = new ArrayList<Data>(
�
�);

---

> ... keyValueSequence = new ArrayList<Data>(
�
�entries.size());

271c271

< ... int mapLoadChunkSize =
�
�nodeEngine.getGroupProperties().

MAP_LOAD_CHUNK_SIZE.getInteger();
---

> ... int mapLoadChunkSize =
�
�getLoadBatchSize();

The previous code shows two buggy lines and their correspond-

ing fixes underlined. The expressions that repair this program —

entries.size() and getLoadBatchSize()— are not trivial to fig-

ure out, even if we know that lines 171 and 271 are responsible for

this bug. More precisely, repairing this bug implies the developer

not only determines the incorrect expressions but also how to ex-

pand them. However, the complexity of this task can be reduced

to simply performing code completion on the spot highlighted by

the vertical bar to replace the leading code. We assume faulty line

numbers are identified beforehand by well-established and accurate

fault localization techniques [4, 14, 22, 23, 29].

This paper presents a repair technique that, given a file and

buggy line numbers, seeks to fix a program by computing the most

appropriate columns to perform code completion and incorporating

the generated code in the original program.
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The contributions of this paper are: (1) a technique that repairs

buggy programs based on code completion; (2) a publicly available

implementation of such technique; (3) a validation on a dataset of

real-world projects with results showing our technique is able to

fix 1739 programs out of 6415, representing a 27% repair rate; (4) a

case study investigation highlighting some capabilities of our work.

The original aim of code completion is to assist the developer

while writing code. Throughout the paper, we use annotations like

the vertical bar representing the cursor position in a text editor

and color highlights showing intended or generated completions.

However, these serve to better visualize our approach’s behavior.

The primary goal of this work is to develop a technique and tool

that uses code completion to produce patches without developer

intervention.

2 BACKGROUND

Research in Natural Language Processing (NLP) focuses on how

natural language can be processed, analyzed and manipulated by

computers. Although its roots are based on symbolic rules and

statistical modeling, the more recent adoption of machine learning

models has allowed this field to flourish as one of the most preva-

lent areas of study in computer science. The continued work by the

community has led to the specialization of certain subtasks within

NLP into well-defined processes. Natural Language Understand-

ing (NLU) analyzes natural text and appropriately encodes it into

more low-level representations, while Natural Language Genera-

tion (NLG) transforms these machine representations into natural

language text. NLP has benefited immensely from the application

of neural networks, which allowed for the development of complex

but highly effective models like BERT [7] and GPT [24] that have

achieved tremendous success in language understanding and lan-

guage generation tasks, respectively. These state-of-the-art models

are based on the Transformer [28] neural architecture, which has

shown to be more advantageous than previously used RNN-based

architectures for analyzing longer and deeply-rooted dependencies.

This is, in most part, thanks to a self-attention mechanism which

allows the model to create connections between every token in a se-

quence no matter the distance between them. As a consequence, the

representation of each token will be affected by its relationship with

other ones, creating a more meaningful aggregate representation.

More recently, inspired by the significant advances in this area,

the community has also directed its focus to the application of NLP

principles regarding programing languages. In fact, software devel-

opers have been incorporating these tools into their workflow as

they find them to have a positive effect in their productivity. One

of the most sought-after capabilities in these systems is code com-

pletion [3] and every IDE or code editor supports this key feature.

However, many of them provide this at a basic level, such as API

call and parameter completion, limiting their usage to scenarios

in which a developer needs to have a specific idea already typed

in. Because of the success of pre-trained models like BERT and

GPT, the architectures behind them have been used to create corre-

sponding adaptations directly suited for programming languages.

Thus, code understanding and code generation have allowed for

advancements regarding the previous limitations through models

such as IntelliCode Compose [27], CodeBERT [10] and CodeGPT

[18].

CodeGPT is able to generate long and complex code sequences

that are computed based on the context provided to the model.

This input context consists of code preceding the point from which

we wish the model to start generating more code. Essentially, the

produced code sequence acts as a continuation of the original code

piece. This way, CodeGPT can be used to perform code completion.

In this work, we do not use this capability to help developers fill

in the most suitable names for method calls or variable identifiers.

Instead, we leverage it to inject new segments of code into existing

buggy programs and modify their behavior. As a result, we show

that we can take advantage of a code completion mechanism to

conduct an entirely different task — automated program repair.

3 REPAIR TECHNIQUE

Our approach can be divided in four components, as shown in

Figure 1:

(1) Cutting: the two inputs are the buggy file and the buggy line

number. After the buggy file is parsed into its abstract syntax

tree, we extract the nodes located at the buggy line number. As

we mentioned, we assume the faulty line is already provided by

some fault localization technique. Then, based on the criteria

implemented in Algorithm 1 (described in Section 4), we com-

pute the column numbers representing the places for which

code completion is to be performed. Lastly, we truncate the

buggy file at those columns, creating a file for each alternative;

(2) Code Generation: we perform code completion for each trun-

cated file by providing an array of tokens as context to CodeGPT.

Through random sampling, the model generates several token

sequences, thus producing alternative ways of continuing the

input code. These sequences are decoded and output as strings.

(3) Bounding: the code completion step is open-ended. That is,

the model generates code without necessarily stopping at some

suitable character regarding the language’s syntax. As such, it

is very likely that the last generated token does not terminate a

well-formed expression or statement, as the output will finish

once themaximum context size is reached. Likewise, the essence

of the generated code may be sound except for the initial tokens.

For this reason, we limit the generated code sequences based on

relevant characters regarding the language’s syntax to extract

valid completions.

(4) Character Synchronization: the final step is to attach the

generated completions to the original buggy code. The way we

do this is by using characters that allow each completion to fall

into place in the original buggy line, combining both pieces of

code to produce a potential patch.

4 TRUNCATION ALGORITHM

As we have discussed before, in this work we leverage code genera-

tion by using the CodeGPT model to produce potential patches. We

can interpret this code generation step as code completion being

performed at a specific column in a line of code — similar to what

is normally seen in text editors and IDEs.

Let us consider the the introductory example again. Listing 1

represents the desired fixed lines.
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Figure 1: Architecture

> ... keyValueSequence = new ArrayList<Data>(
�
�entries.size());

> ... int mapLoadChunkSize =
�
�getLoadBatchSize();

Listing 1: Introductory example — desired completion

For this case, code completion would happen at the illustrated

cursor position and the code to be generated is highlighted in grey.

Therefore, we need to compute the places in that line for which we

want to perform code completion. As such, we devised an algorithm

that aims to compute suitable column numbers for the purpose of

generating code sequences. We implemented it as a tool and make

it available 1.

We targeted two scenarios when designing the algorithm. Code

completion is frequently useful when developers want to predict:

• Code to continue specific language constructs (e.g. methods

to invoke after ".");

• Candidate names for partially written identifiers (e.g. writing

a variable’s name halfway through).

As such, our algorithm computes column numbers based on:

• Textual boundaries of language constructs represented by

AST nodes;

• Camel-case and underscore separation of words according

to Java naming conventions.

Algorithm 1: Algorithm for computing column numbers

Data: An AST T 1
Result: The list of computed column numbers ColN rs

1 ColNrs← [];

2 foreach node ∈ T 1 do
3 start← node.firstColNr; end← node.lastColNr;

4 add(start, ColNrs);

5 add(end, ColNrs);

6 if node is Identifier then
7 name← node.name;

8 for i← 1,size(name) do
9 if (i � size(name) and
10 namei is lowerCase and namei+1 is upperCase)

11 then
12 add(start+i+1, ColNrs);

13 else if namei == ’_’ then
14 add(start+i, ColNrs); add(start+i+1, ColNrs);

15 end

16 end

17 end

18 end

1https://github.com/FranciscoRibeiro/code-truncater

This means that our algorithm would truncate Listing 1 at the

following columns:

> ... key
�
�Value

�
�Sequence

�
� =

�
�new

�
�Array

�
�List

�
�<
�
�Data

�
�>
�
�()

�
�;
�
�

> ... int
�
�
�
�map

�
�Load

�
�Chunk

�
�Size =

�
�node

�
�Engine

�
�.
�
�get

�
�Group

�
�Properties()

�
�.
�
�MAP

�
�_
�
�

LOAD
�
�_
�
�CHUNK

�
�_
�
�SIZE

�
�.
�
�get

�
�Integer()

�
�;
�
�

Code generation would then be performed at each computed

column. As executing the CodeGPT model is a time consuming task,

the aim of our algorithm is to minimize the amount of requested

predictions. A brute-force alternative would truncate the source

code lines at every column (i.e. every character). However, such an

approach would incur in a lot of computational effort as the number

of columns to perform code completion on would increase consid-

erably. As mentioned, the purpose of the truncation algorithm is to

save time and effort on the code generation step by reducing the

number of code sequences provided to the model, albeit with the

drawback that some columns will be missed. In the provided exam-

ple, the computed columns do not include the ideal one, as Listing 1

highlights. However, we shall see ahead that these occurrences are

not necessarily a problem and that this program can still be fixed.

5 CODE GENERATION

We use the CodeGPT-adapted model to perform open-ended code

generation. CodeGPT-adapted inherits the same model architecture

of GPT-2, which is a natural language model conceived to perform

multiple tasks such as text translation, question answering and text

summarization. These tasks imply text generation, which makes

GPT-2 a generative model. CodeGPT-adapted is based on GPT-2

as a starting point and is trained on code samples, making it a

language model pre-trained for programming language (PL). Two

separate versions of CodeGPT-adapted are provided for Python and

Java, with the latter being the focus of this work. These models are

made available through HuggingFace’s Transformers library which

provides a Python API.

One of the motivations of this work is to assess how program

repair can be seen as a code generation task, more specifically

code completion. As such, to perform code completion on buggy

programs, we first need to provide a sequence of input tokens to

the model. This will be the context to consider to continuously

generate new sequences of tokens. After establishing the column

to perform code completion on (as per the previous section), we

retrieve the previous 1000 tokens and feed them to the model in

order to generate the sequence to follow2. However, we do not

want to limit ourselves to a single prediction and wish to explore

several completion possibilities. Greedy search generates a sequence

of tokens by following the path with the highest probability and

beam search allows us to explore different hypothesis each time by

keeping track of multiple high probability paths. Although beam

search avoids restricting ourselves to only one completion, it is still

based on the tokens with highest probability, making the different

generations similar to each other [12]. To circumvent this, we use an

indeterministic scenario to produce several completion possibilities.

Instead of deciding the next token based on the highest probability,

2CodeGPT has a context size limit of 1024 tokens, so we have to leave some space
for the output tokens. However, the number of input and output tokens is easily
parameterizable in our tool and different values can be explored.
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we ask the model to make this selection based on a conditional

probability distribution through sampling. This way, we introduce

randomness in the generation task and have more diversification.

For each column, we consider a sequence of 20 newly generated

tokens and repeat this step 10 times in order to produce different

code completions for the same input as shown in Algorithm 2.

Algorithm 2: Algorithm for generating code sequences

Data: A truncated program T P , a code generation model CodeGPT
Result: The list of code completions Completions

1 Completions ← [];

2 tokens← lastTokens(T P , 1000);

3 foreach i ∈ 1..10 do
4 completion← complete(CodeGPT , tokens, length=20, sampling=true);

5 add(Completions , completion);

6 end

6 BOUNDING CODE GENERATION

Code completion is done by using CodeGPT to perform code gener-

ation. As this process is open-ended, we need to focus on portions

of the generated sequences before inserting them in the buggy

code. To do this, we defined criteria that bound code sequences at

various places, generating different sub-sequences of interest. The

boundaries are specified by combinations of characters that are

relevant regarding code syntax. Sometimes, the context provided

to the code generation model may produce slightly off but almost

correct results. As such, it is crucial that we discard elements in the

beginning and in the end of token sequences to remove such noise

from the nearly accurate predictions.

Skip. In order to reject incorrect tokens from the start of the

generated code sequences, we skip those characters. The code in

Listing 2 denotes an example in which the sub-token EXT should

be removed in order to fix the bug.

150c150

< GL.glGenTextures
�
�EXT(n, textures, Memory.getPosition(textures));

---
> GL.glGenTextures(n, textures, Memory.getPosition(textures));

Listing 2: Change method call — sub-token EXT removal

Asking CodeGPT for 10 different code completions on the cursor

position outputs the following predictions.

EXT(n, textures, Memory.getPosition(textures));}void glUniform3
EXT(n, textures);} public void glTexParameterf (int index, float fval
EXT(n, textures, Memory.getPosition(textures));} public void glSten
EXT(n, textures, memory.getPosition(textures));} public void glFramebuffer
EXT(n, textures, Memory.getPosition(textures));} @Override public void flush
EXT(n, textures, Memory.getPosition(textures));} public void glVertex
EXT(n, textures, Memory.getPosition(new Integer(n)));}public void
EXT(n, textures, Memory.getPosition(textures));} public int nGLObject
EXT(n, textures, Memory.getPosition(textures));}void glGetA0
EXT(n, textures);}} public void glVertexBegin (int x, int y

Listing 3: Generated completions for Listing 2

Every alternative begins with the undesired EXT word. However,

the subsequent generated tokens of some completions are able to

build the expected code until the character ending the statement:

’;’ (semi-colon). The character ’(’ (left parenthesis) has special sig-

nificance in the language — in this case, establishing the beginning

of the parameters. As such, we can use this knowledge and skip the

starting tokens in the predictions until we find the left parenthesis.

Stop.As generated sequences can be potentially unlimited, there

is still the problem of determining at what point we stop consid-

ering the output tokens. Similarly to the previous situation, code

generation is performed without considering any syntactic aspects.

As such, we again resort to specific characters in order to decide

the locations after which we stop incorporating tokens for patch

production.

The completions in Listing 3 have multiple characters that can be

considered for the stopping criteria and that will lead to the creation

of successful fixes. Taking the first completion line from Listing

3, considering the left parenthesis as a skip criteria and comma,

space, left parenthesis and semi-colon as stop criteria would trim

the sequence and produce the following possibilities:

EXT(n, textures, Memory.getPosition(textures));}void glUniform3
EXT(n,␣textures, Memory.getPosition(textures));}void glUniform3
EXT(n, textures, Memory.getPosition(textures));}void glUniform3
EXT(n, textures, Memory.getPosition(textures));}void glUniform3

Listing 4: Trimmed sequences from the previous completions

Although it may seem the first three alternatives stop earlier

than intended, there is still a step to perform in order to fit the

trimmed sequences in the buggy code. This last synchronization

step will ensure these slices are applied correctly to the buggy code.

7 CHARACTER SYNCHRONIZATION

The last step to produce a candidate patch consists of fitting the

trimmed completions in the buggy code. As explained, completions

were altered regarding different criteria to produce adequate alter-

natives. The final step to correctly incorporate these pieces of code

is to synchronize the sequences with the line of code from the origi-

nal program. Similary to the previous section, this synchronization

process is also achieved by coordinating the occurrence of relevant

characters of the language’s syntax.

Considering the example in the previous section, the first trimmed

completion from Listing 4 (second line in Listing 5) can be incorpo-

rated in the buggy program (first line in Listing 5) by synchronizing

both code sequences on the first occurrence of the comma character,

thus producing the desired fix (third line in Listing 5).

bug: GL.glGenTextures
�
�EXT(n, textures, Memory.getPosition(textures));

completion:
�
�EXT(n, textures, Memory.getPosition(textures));}void...

patch: GL.glGenTextures(n, textures, Memory.getPosition(textures));

Listing 5: Produced fix for Listing 2

As we can see, the completion is successfully integrated in the

original program and we are able to maintain the rest of the code

accordingly.

8 EXPERIMENTS

To validate our approach we used theManySStuBs4J dataset [15] to

conduct a large scale experiment 3. The dataset version mined from

100 open source Java projects, containing 11624 bugs, was filtered

and bugs that did not fit the following criteria were removed:

• line numbers reported in the dataset match the ones obtained

through our automated analysis;

• the bug can be repaired only through line changes, i.e. line addi-

tions and deletions are not necessary;

3https://gitlab.com/FranciscoRibeiro/manysstubs4j-experiments
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• fixes are not produced by changing string literals;

• our truncation algorithm computes at least one column number.

After this filtering step, 6415 bugs remained. For all these bugs,

we applied a similar procedure to what was described in Section

3. However, there is a difference in the way column numbers were

computed. Although our algorithm computes less column numbers

than a brute-force approach, applying it to a dataset with such an

amount of bugs would make the experiments impractical by taking

considerable time to execute. Instead, for each line, we compared

the buggy and the fixed version and used the first differing character

(column) as the place to truncate the program. Considering Listing

2, the cursor position denotes the column used in that case, as that

is where characters start differing.

Out of the 6415 bugs, our technique was able to fix 1739 pro-

grams, representing a 27% effectiveness rate. Even though random

sampling introduces indeterminism during code completions done

by CodeGPT, the implementation of our work allows for repro-

ducibility as we fix the seeds for random number generation. This

implies that if one of the column numbers computed by the trunca-

tion algorithm matches the first differing character, our approach

will be able to fix it as the sequence of generated tokens will be the

same and the rest of the pipeline is deterministic. The truncation

algorithm is able to successfully compute the column numbers used

in these experiments for 5674 bugs, which means the algorithm

can infer the closest place to the bug 88% of times. Although this

step fails to calculate the nearest column number for some cases,

it does not mean that our technique is not able to repair them.

In fact, performing code completion at different column numbers

may still produce a fix. From the 1739 fixed programs, the trunca-

tion algorithm did not compute the nearest column for 97 of them.

Nonetheless, our technique was still able to fix these programs.

Figure 2: Bugs per range of computed column numbers

Even though code completion was not performed on every plau-

sible column, we still applied the algorithm to compute such column

numbers to all the bugs in the study. Figure 2 shows the number

of bugs per ranges of computed columns — size 10 buckets. The

algorithm computes between 10 and 20 column numbers for 2417

bugs, representing 38% of the analyzed programs, and we are able

to fix 777 of them, which results in a 32% repair rate.

Figure 3 shows the amount of bugs per number of lines. The

vast majority of the studied programs — 4610 — are single-line

Figure 3: Bugs per lines to modify

bugs, which consists of 72% of the total amount. Multi-line bugs

range from 2 to 231 lines with 1037 and 2 programs respectively. As

single-line bugs are the most predominant, it is relevant to focus

on this sizable segment of programs to understand how values are

distributed.

Figure 4: Single line bugs per computed column numbers —

top 20

Figure 4 shows the top 20 computed column numbers for single-

line bugs. This data does not present a discrepancy when compared

to the distribution illustrated in Figure 2 for all the bugs, as the most

frequent number of columns are contained within the top-3 buckets.

Furthermore, our approach is able to fix 1502 of these programs,

resulting in a repair rate of 33% for this set of bugs. The fact that

this segment represents a significant portion of the dataset is also

reflected in the number of repaired programs, with 86% of all 1739

fixed programs being part of this group of bugs.

The largest cluster of bugs in the dataset — single-line — has its

top-20 most frequent numbers of computed columns in line with

the global top-20 — Figure 5 — with only the last two places, 23 and

5, missing from it.

9 CASE STUDIES

In this Section we present specific examples of programs to explore

relevant scenarios that showcase the advantages of our approach.

Case Study 1. Listing 6 shows a bug and its corresponding fix.

404c404

< } else if (itemActionLayout >
�
�= 0) {

---
> } else if (itemActionLayout > 0) {

Listing 6: Case study 1 — bug and fix
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Figure 5: Bugs per computed column numbers — top 20

In the buggy line, we can see the column for which code comple-

tion should be performed. However, the algorithm defined in this

work does not compute that column number because splitting a

binary operator does not fit the defined criteria, as Listing 7 shows.

} else if (
�
�item

�
�Action

�
�Layout

�
� >=

�
�0
�
�) {

Listing 7: Case study 1 — computed columns

Nonetheless, we are still able to produce a fix in this situation

by making use of a completion after itemActionLayout.

bug: } else if (itemActionLayout
�
� >= 0) {

completion:
�
�!= null) {if (itemShowAsAction > 0) {item...

patch:} else if (itemActionLayout> 0) {

Listing 8: Case study 1 — produced fix

Even though CodeGPT does not complete the condition with

the intended binary operator (>) and operand (0) straightaway, as

a result of outlining the generated sequence (Section 6), we are

able to skip (highlighted in grey) undesired tokens and make use

of a subsequent comparison from the initial completion. By then

stopping at the closing parenthesis and discarding tokens coming

afterwards, we can synchronize (Section 7) the extracted portion

of the completion (highlighted in green) with the buggy line and

produce the patch shown in Listing 8.

Case Study 2. Listing 9 illustrates a scenario for which our

technique was able to expand an existing condition.

78c78

< return mModelClasses
�
�.size() > 0;

---
> return mModelClasses != null && mModelClasses.size() > 0;

Listing 9: Case study 2 — bug and fix

Aswe can see from Listing 10, the truncation algorithm computes

the closest column to the bug. Therefore, our approach is able to

successfully produce a repair for this program.

�
�return

�
�m
�
�Model

�
�Classes

�
�.
�
�size

�
�()

�
� >

�
�0
�
�;
�
�

Listing 10: Case study 2 — computed columns

As results are replicable, we can safely infer CodeGPT would

generate the same code sequences for that column without incur-

ring in the overhead of applying our approach to every computed

column.

bug: return mModelClasses
�
�.size() > 0;

completion:
�
�!=null && mModelClasses.size()>0;} public...

patch: return mModelClasses!=null && mModelClasses.size()>0;

Listing 11: Case study 2 — produced fix

For this example, code completion was able to generate useful

tokens right from the beginning. As a consequence of using variable

mModelClasses to produce the first comparison (mModelClasses!=null),

the original expression, which constitutes the second part of the

condition, is lost. Nonetheless, the continuation of the token se-

quence generates the desired code (mModelClasses.size()>0),

eliminating the problem. After discarding tokens to the right of

the semi-colon (grey color) and using the same character to syn-

chronize the resulting sequence with the buggy code, we produce

a patch that fixes this program as shown in Listing 11.

Case Study 3. The example in Listing 12 illustrates a multi-line

bug that we are able to fix by performing the procedure on three

separate lines.

176c176

< if(request.get
�
�TaskDefinitionKey() != null) {

---
> if(request.getDueDate() != null) {
179c179

< if(request.get
�
�TaskDefinitionKey() != null) {

---
> if(request.getDueBefore() != null) {
182c182

< if(request.get
�
�TaskDefinitionKey() != null) {

---
> if(request.getDueAfter() != null) {

Listing 12: Case study 3 — bug and fix

For every buggy line, the column closest to the bug’s location is

computed as can be seen in Listing 13.

if(
�
�request

�
�.
�
�get

�
�Task

�
�Definition

�
�Key

�
�()

�
� !=

�
�null

�
�) {

Listing 13: Case study 3 — computed columns

Similarly to the previous case study, as the experiments are

reproducible, our pipeline will always produce the same results for

this column, which assures us this bug is fixable.

bug: if(request.get
�
�TaskDefinitionKey() != null) {

completion:
�
�DueDate()!= null) {taskQuery.dueDate(request.get...

patch: if(request.getDueDate()!= null) {

bug: if(request.get
�
�TaskDefinitionKey() != null) {

completion:
�
�DueBefore()!= null) {taskQuery.dueBefore(request.get...

patch: if(request.getDueBefore()!= null) {

bug: if(request.get
�
�TaskDefinitionKey() != null) {

completion:
�
�DueAfter()!= null) {taskQuery.dueAfter(request.get...

patch: if(request.getDueAfter()!= null) {

Listing 14: Case study 3 — produced fix

All three lines are fixed in a similar way. However, the method

names that need to be generated are different from each other. Code

completion is able to produce the necessary tokens from the start

and we only need to stop considering the sequence after the first

opening parenthesis. Both the buggy line and the code sequence are
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synchronized also using the opening parenthesis, thus creating the

patches seen in Listing 14. On the other hand, some of the discarded

tokens (!= null){) could also be utilized for patch production

as they would correctly complete the buggy code. As such, this

program could be fixed by using different characters for bounding

the generated code sequence, like the closing parenthesis or the

opening curly bracket.

Case Study 4. Listing 15 represents a bug for which a method

call needs to be replaced with a constant.

272c272

< buf.get(bulk,
�
�buf.position(), len);

---
> buf.get(bulk, 0, len);

Listing 15: Case study 4 — bug and fix

Again, the truncation algorithm correctly computes the column

nearest to the bug as Listing 16 illustrates.
�
�buf

�
�.
�
�get

�
�(
�
�bulk

�
�,

�
�buf

�
�.
�
�position

�
�()

�
�,

�
�len

�
�)
�
�;
�
�

Listing 16: Case study 4 — computed columns

As a result of reproducibility, the circumstances certify this bug

is fixable under our approach.

bug: buf.get(bulk,
�
�buf.position(), len);

completion:
�
�0, len); os.write(bulk); } dos.write(buf.array(),

patch: buf.get(bulk, 0, len);

Listing 17: Case study 4 — produced fix

Listing 17 shows the produced fix. In this case, the line is trun-

cated at the beginning of the expression that needs to be replaced.

However, the necessary expression (0) is much different from the

original one (buf.position()). Nevertheless, the code completion

step is able to infer the next tokens correctly from the provided

context and the relevant part is extracted accordingly. There is no

need to skip any unnecessary tokens. Additionally, we can simply

stop considering the generated token sequence after the comma

character and also use it to synchronize with the original code. As

in the previous case study, this bug may be fixed in different ways.

The remainder of the code sequence (len);) can be safely inserted

in the original program as it corresponds to an already correct part.

For this to happen, the closing parenthesis or the semi-colon need

to be used for limiting token generation and synchronization.

10 THREATS TO VALIDITY

The main objective of our work is to assess whether program repair

can be tackled as a code completion task. More precisely, can we use

code generated by deep learning models such as CodeGPT to evolve

faulty programs in order to correct their behavior? We believe our

work shows the answer to this question to be yes. Nonetheless,

we recognize that there are some elements to consider that may

challenge our work’s rationale.

Internal Validity: Some programs need larger and more complex

changes in order to be repaired. That is, not all pairs of bugs and

corresponding fixes are equivalent in kind. Essentially, this means

that different programs need to meet different demands to be clas-

sified as correct. However, we consider that the results show our

approach was successfully applied to programs of different kinds

going from needing small adjustments to multiple intricate changes.

External Validity: The reported results are obtained by analyzing

programs from a dataset aiming to provide a collection of single

statement bugs. As such, these simple bugs may not be representa-

tive of the real-world complexity of software and its needed changes.

However, the dataset used in our work was created by extracting

actual occurrences from real-world open-source projects, showing

that such instances typically arise. In addition, some multi-line

changes may be seen as aggregates of multiple single-line mod-

ifications. Aside from that, our work targets Java programs and,

thus, does not encompass a lot of other languages. Nonetheless,

many of the language’s features and constructs are common to

other languages and Java is one of the most used by developers.

Construct Validity: Some typical NLP practices were put into

place in our work. For text generation, maximizing the probability

of the decoded segments leads to poor quality outputs, contrasting

with the training objective used to build suchmodels. Higher quality

text can be obtained by employing a decoding strategy that uses

sampling [12]. Even though these sampling techniques have their

roots in NLP, we are convinced we successfully applied them to a PL

setting as we were able to fix more programs by not only producing

multiple alternatives but also making them more reliable.

11 RELATEDWORK

Barr et al. [2] implement a technique for software transplantation

that allows for transfering behavior from a donor to a host program.

The part of the first program that is of interest is called the organ

and the intention is to recreate the feature it represents in a po-

tentially unrelated target program. This methodology has several

applications in software development, with the authors using as an

example the transfer of a video encoding implementation from the

x264 utility to the VLC media player to emphasize the transport of

functionalities between different programs.

Similarly, Shariffdeen et al. [26] use an equivalent reasoning but

focus on transfering patches from a donor to a host. The authors

highlight the technique’s usefulness for scenarios in which differing

implementations may benefit from patch adaptation.

Transplantation considers a host benefits from having a donor’s

feature transferred to it. Likewise, the training process in code

generation models like CodeGPT enhances output quality, showing

the utility of learning from other programs. Thus, we consider other

works’ [2, 26] analogous methods as a validation of our solution.

APR techniques based on neural networks are a clear advance in

software reliability. However, some of these [5, 8, 17, 19] focus on

partial code snippets and do not acknowledge the entire source code,

therefore missing the entire perspective and making learning the

code syntax restrictive. Jiang et al. [13] point these limitations out

and build a pre-trained model from a large code repository before

perfoming any APR task. By using CodeGPT, our work shares the

same logic as we leverage the capabilities of a pre-trained model

that first understands the language it is trained onwithout influence

from a specific task beforehand.

Ribeiro et al. [25] perform fault localization by identifying the

semantics behind faults. This is done by translating the AST differ-

ence between two program versions — before and after the bug —

into mutation operators. The authors are able to infer mutations

78% of times. They demonstrate how real-world programs can be
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automatically repaired by applying mutation operators that revert

the faulty modifications at the inferred places while leaving new but

unrelated code unchanged. Likewise, we compute column numbers

and consider them the most appropriate spots to generate new code

and integrate it.

Pre-trained models like CodeBERT have been fine-tuned on the

ManySStuBs4J dataset in order to automatically repair programs

and shown to be able to produce patches of variable length and

complexity while reporting accuracies between 19% and 72% [20].

12 CONCLUSION

This work presents an automated repair technique that, given a

buggy file and line number, produces candidate patch lines in an

attempt to fix the program. We devised a truncation algorithm that

computes column numbers for which we use CodeGPT to perform

code completion on. After that, we explained our implementation

to limit the generated code sequences and how we fit the resulting

string based on the language’s syntax. Our approach was validated

by analyzing theManySStuBs4J dataset. The results show that 1739

programswere fixed out of 6415, which reflects a 27% repair rate and

corroborates our work’s soundness. As future work, we would like

to minimize the number of patches created by taking into account

structural aspects of the program to better restrict the generated

code sequences. To do this, we want to examine the AST node types

of the generated code to appropriately fit the expressions inside

the original program, this way filtering out syntactically incorrect

patches. Although out of this work’s focus, we wish to explore how

different sampling techniques impact code generation, like top-k

and nucleus sampling. In some instances, the distribution of proba-

bilities in decoded text has been shown to be very different from

human-written text [12]. As such, we would also like to investigate

if these findings generalize to programming languages.

Replication Package

All the necessary resources to replicate this study are publicly available:

• Code Truncater: https://github.com/FranciscoRibeiro/ code-truncater
• Experiments: https://gitlab.com/FranciscoRibeiro/manysstubs4j-experiments
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