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Preferential sampling models have garnered significant attention in recent years.
Although the original model was developed for geostatistics, it founds applications in
other types of data, such as point processes in the form of presence-only data. While
this has been recognized in the Statistics literature, there is value in incorporating ideas
from both presence-only and preferential sampling literature. In this paper, we propose a
novel model that extends existing ideas to handle a continuous variable collected through
opportunistic sampling. To demonstrate the potential of our approach, we apply it to sar-
dine biomass data collected during commercial fishing trips. While the data is intuitively
understood, it poses challenges due to two types of preferential sampling: fishing events
(presence data) are non-random samples of the region, and fishermen tend to set their nets
in areas with a high quality and value of catch (i.e., bigger schools of the target species).
We discuss theoretical and practical aspects of the problem, and propose a well-defined
probabilistic approach. Our approach employs a data augmentation scheme that predicts
the number of unobserved fishing locations and corresponding biomass (in kg). This
allows for evaluation of the Poisson Process likelihood without the need for numerical
approximations. The results of our case study may serve as an incentive to use data
collected during commercial fishing trips for decision-making aimed at benefiting both
ecological and economic aspects. The proposed methodology has potential applications
in a variety of fields, including ecology and epidemiology, where marked point process
model are commonly used.

KeyWords: Inhomogeneous poisson process; Bayesian analysis; Preferential sampling;
Data augmentation; Spatial statistics.

1. INTRODUCTION

Quantitative ecology faces a significant challenge in the form of Species Distribution
Models (SDMs), which involve methodologies with a twofold objective. The first objective
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is to explain the occurrence of species in relation to geological, ecological, and climactic
factors. The second objective is to predict the occurrence of these species in a specified
region. SDMs have broad applications in fields, such as conservation and reserve planning,
evolution, epidemiology, and invasive-species management (Phillips et al. 2006).

Collecting ecological data scientifically is often costly, requiring meticulous planning,
consideration of study objectives, and the use of specialized equipment and personnel.
Consequently, researchers rely on other sources of information, particularly data that has not
been randomly or systematically collected. Such cases are known as opportunistic sampling
and can result in biased information. However, if the model accounts for the bias, it can
provide accurate estimates of scientifically relevant quantities.

Presence-only data arises fromopportunistic sampling,where only the observed locations
of the object of study are collected. A point process, as described by Cressie (1993), is
appropriate for analyzing this type of data, but sampling bias can result in higher intensity
in locations that are more easily accessible to observers. For instance, a group of biologists
studying a particular species may only record its presence in areas that are readily accessible
to them. This is a typical case of a presence-only point process for which the event locations
are acquired in a preferential manner.Moreira andGamerman (2022) addressed this issue by
incorporating suitable covariates into the intensity function to mitigate the bias associated
with data collection. These authors employed exact inference on an inhomogeneous Poisson
process (IPP) and tackled identifiability issues mentioned in Fithian and Hastie (2013) and
Dorazio (2014).

The problem becomes more complex when there is a measured variable associated with
the observed locations. For instance, in fishery-dependent data, the amount of fish caught (in
kg) is often recorded along with the fishing location. In such cases, the point process model
proposed by Moreira and Gamerman (2022) is inadequate. In this work, we present a novel
model by extending the approach in the aforementioned paper to a marked point process
model. Additionally, fishing trips are likely to favor locations with higher fish biomass,
leading to biased sampling. In such cases, the preferential sampling approach described by
Diggle et al. (2010) is appropriate, but requires an adjustment to the presence-only field. This
work combines these concepts to handle opportunistically sampled marked point processes.
Note that this implies preferentiality occurs in two ways: in the acquisition of presence-only
data and in the biased collection of the marks.

There have been previous attempts to deal with presence-only data in the context of
preferential sampling, such as the approach taken by Gelfand and Shirota (2019) to model
the sampling bias of presence-only data. However, the literature lacks methods that consider
the case where preferential sampling of a continuous measurement occurs in addition to
presence-only sampling. This is often the case in fishery data collected during fishing trips.

Fishermen often select areas associated with high quality and value of catch (e.g., larger
schools of the target species), although they may occasionally prefer smaller catches if there
are strict catch limits imposed by conservation laws. It is also assumed that fish abundance
is a variable that exhibits spatial smoothness, which is modeled using a Gaussian Process
as described in Cressie (1993). Therefore, it is reasonable to assume that this process can
also be used to measure the sampling bias derived from the measured variable abundance.
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The inclusion of aGaussian Process in the intensity function extendsMoreira andGamer-
man (2022) presence-only model. This idea draws inspiration from the doubly stochastic
process of Gonçalves and Gamerman (2018). To enhance computational efficiency, the
recent nearest neighbor approach of Datta et al. (2016b) has been adapted for the point
process context and discussed in the work of Shirota and Banerjee (2019). The proposed
model aims to probabilistically define the spatially biased sampling of fish locations, along
with their preferentially collected biomass, while avoiding approximations that are typical
of Poisson process models.

This manuscript is divided into five main sections. Section2 presents the motivating
dataset and proposes a method to accurately estimate the point process intensity and marks
while accounting for preferential sampling. In Sect. 3, we present a brief study using an
artificial dataset. In Sect. 4, we apply the model to real-world data from a fishery case study
in the south of Portugal. Lastly, Sect. 5 provides a discussion of the results, their implications,
and limitations.

2. PROPOSAL

2.1. MOTIVATION

The motivation for the development proposed in this manuscript is supported by data
from the sardine purse-seine fishery on the Portuguese south coast for the years 2011–2013.
During this period, restrictions on sardine fishing were similar between years and lower than
in subsequent years (ICES 2018). To obtain the data, vessel monitoring system (VMS) and
logbook data from purse-seine vessels (>15m) were merged based on the date-time of the
start and end of a fishing trip and fishing vessel. Fishing sets were identified by analyzing
vessel speed patterns. The start of a set was indicated by a rapid drop in velocity, followed
by a 30–60min period of low speed while the net was set and hauled. The end of a set was
signaled by a rapid increase in velocity. Consecutive drops and increases in speed were used
to identify the beginning and end of fishing sets (Katara and Silva 2017). To avoid bias,
fishing trips with only one fishing set were selected since there is no information on how
total catches are distributed by fishing set when a fishing trip has more than one fishing
set. The final dataset consisted of N = 1211 fishing sets and included information, such as
vessel ID, landing harbor, year, month, fishing set location (latitude, longitude), and sardine
catch (in kg). It is important to note that the data on fishing set location and respective
catches/biomass may be considered presence-only data since there are no records of fishing
sets with zero catches.

The left-hand side of Fig. 1 shows the locations of all fishing sets. As fishermen are likely
to favor areas with higher abundance, this illustrates an example of preferential sampling.
To accurately model this case study, a model parameter is required to quantify the degree
of preferentiality, which should have a positive estimate significantly different from zero.
Depth is a significant driver of sardine occurrence, as shown in Fig. 1. This species prefers
coastal shelf waters, particularly at depths above 150m, where it forms dense schools during
the day. Purse seine daily fishing trips are typically short, lasting between 2 and 18h. The
duration of trips and the distances traveled to fishing grounds vary across the country. In the
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Figure 1. Water depth and fishing sets locations for sardine catches in the southern coast of Portugal during the
period between 2011 and 2013. Portugal is identified with the letter ‘P’ and Spain with ‘S’. Left-hand side: Wider
region. Right-hand side: Zoom on the studied region, south coast of Portugal .

south, fishing trips extend into the morning, and usually involve one or two fishing sets in
the evening. The number of sets per trip is directly related to the abundance and volume of
the target species. Fishermen prefer to fish near the port and within the shallower half of the
continental shelf to reduce fuel use and travel time. In Portugal’s south coast, water depth
can be used as a proxy for the distance from the coast. Therefore, the proposed method must
be able to handle correlated explanatory variables that explain both the occurrence of fish
and the volume caught by fishermen.

Figure1 indicates that the points are more concentrated near shallow areas, as expected.
However, without a model, it is nearly impossible to determine the extent to which this
phenomenon is due to sardines preferring shallow waters or fishermen preferring proximity
to ports. The proposed model takes into account the sampling issues illustrated in this case
study, which we believe are representative of many other case studies.

2.2. MODEL AND NOTATION

The proposed model uses a data augmentation scheme to achieve exact computation of
the Inhomogeneous Poisson Process likelihood, similarly to Adams et al. (2009), Gonçalves
and Gamerman (2018) and Moreira and Gamerman (2022).

The available data is composedof an unordered set of paired variables observed in a closed
regionD and denoted (X, Z) = {(x1, z1), . . . , (xnx , znx )}. The component xi represents the
i-th location of sardines fishing sets and zi represents its recorded catch (in biomass, kg).
Catch in each location is also denoted as a process in the form Z(s), s ∈ x .

The data are modeled as a marked point process based on the Inhomogeneous Point Pro-
cess (I P P). In addition, a data augmentation scheme is used to avoid performing approxi-
mations of the likelihood function.
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X ∼ I P P(q(·)p(·)λ∗)
X ′ ∼ I P P(q(·)(1 − p(·))λ∗)
U ∼ I P P((1 − q(·))λ∗)

Z(s) | s ∈ x ∪ x ′ ∼ logNormal(Wz(s)βz + S(s), τ 2), s ∈ D
logi t q(s) = Wint (s)βint , s ∈ D
logi t p(s) = Wobs(s)βobs + γ S(s), s ∈ D

S(·) ∼ NNGP
(
0, σ 2ρ(·)

)
,

(1)

where Wz(·),Wint (·) and Wobs(·) are sets of covariates, needed to correctly model the
distribution of the marks, the probability of occurrence and the probability of observation,
respectively.

Similarly to Moreira and Gamerman (2022), the process X ′ represents the unobserved
occurrences of the species. Process U does not have a direct physical interpretation. It
is included purely to achieve the result which allows exact analytical computation of the
likelihood function, as initially proposed by Adams et al. (2009). Note that the data aug-
mentation is done not only with regards to point processes, in the form of X ′ and U , but
also for Z(s), s ∈ x ′. Also note that the inclusion of the S(s) process extends the work of
Moreira and Gamerman (2022). The adjustment not only adds further spatial dependence
to the process, but also computational complexity which must be addressed.

Process NNGP(·, ·) stands for Nearest Neighbor Gaussian Process, initially proposed
in Datta et al. (2016b). It is also discussed by Datta et al. (2016a), Banerjee (2017), Finley
et al. (2019) and is used in the context of exact inference of Poisson Processes by Shirota
and Banerjee (2019). The set of parameters which index this distribution is collected under
the notation of θ .

Parameter γ measures the preferentiality of the biomass sampling procedure. The com-
plete infinite-dimensional vector of unknown quantities is 	

= (
βz, βint , βobs, γ, λ∗, X ′, Z(·),U, S(·), θ)

. Note that, although Z(·) is mathematically
defined in the whole region D, it only makes physical sense to exist in the respective
observed and latent locations of X and X ′.

An intuitive visualization of the modeled intensities can be done. For simplicity and
without loss of generality, suppose that D has only one dimension. Then the intensity
functions can be plotted in a simple manner, as illustrated in Fig. 2.

Notice that the intensities of X , X ′ and U , when added together, conveniently yield the
constant λ∗. This is what permits the proposal to avoid approximations of the likelihood,
as the integral of the joint intensity is the integral of a constant in the region. This simply
equals the constant times the area of the region, that is, λ∗|D|. Additionally, X and X ′ sum
up to acquire the occurrences intensity. This way, it is intuitive to separate the observed and
unobserved occurrences.
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Figure 2. Simplified visualization of an example of one-dimensional intensity functions under the proposed
model. The process of observations X , when superposed with the unobserved occurrences X ′, yields the process of
all occurrences in the region. Process U is necessary to complete the occurrences to achieve a total homogeneous
process.

2.3. INFERENCE

The inference is done under the Bayesian paradigm on the posterior distribution (see
Gelman et al. 2013) π(	 | x, z) ∝ Lx (	)π(	), where Lx (	) is the likelihood function
andπ(	) is the prior distribution. A prior distribution has been chosen so that the parameters
are assumed to be independent. Equation (2) displays the prior distribution choices for the
model parameters.

λ∗ ∼ Gamma(aλ, bλ)

β(k) ∼ N (0, �(k)), k = z, int, obs

γ ∼ N (0, σ 2
γ )

τ 2 ∼ I nvGamma(aτ , bτ )

σ 2 ∼ I nvGamma(aσ , bσ ).

(2)

These choices are based on sound reasoning. The Gamma prior for λ∗ is natural for a
positive parameter, and it also simplifies the sampling of its full conditional since it is also
Gamma-distributed. Similarly, the Normal prior for the regression effects β(k) induces L2
regularization, which is particularly useful in the Bayesian context, given the Pólya-Gamma
data augmentation technique described below. The same can be said for the preferentiability
parameter γ , which can be informally treated as a regression effect. Finally, the variances
τ 2 and σ 2 are assigned inverse Gamma priors, which again helps with the sampling of the
full conditional since they are also inverse Gamma-distributed.

Furthermore, the parameters in the correlation function ρ(·) are selected to match its
respective support, ensuring their appropriateness. Consequently, Equation (3) presents the
posterior distribution for the model.
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π(	 | x, z) ∝ e−(|D|+bλ)λ∗
λ∗aλ+nx+nx ′+nu−1

nx ′ !nu !
×

∏
s∈x

(1 + exp{−Wint (s)βint })−1(1 + exp{−Wobs(s)βobs − γ S(s)})−1

×
∏

s∈x ′
(1 + exp{−Wint (s)βint })−1(1 + exp{Wobs(s)βobs + γ S(s)})−1

×
∏
s∈u

(1 + exp{Wint (s)βint })−1

×τ2−
nx+nx ′

2 −aτ −1e
− bτ

τ2
∏

s∈x∪x ′

1

z(s)
exp

{
− 1

2τ2
(log(z(s)) − Wz(s)βz − S(s))2

}

×σ 2− nx+nx ′
2 −aσ −1e

− bσ
σ2 |�|− 1

2 exp

{
− 1

2σ 2 S
′�−1S

}

×π(βz)π(βint )π(βobs)π(θ),

(3)

where nx , nx ′ and nu are the number of points in their respective processes and � is the
NNGP correlation matrix.

The posterior is not known in closed form. An MCMC sampling scheme allows infer-
ence to be made. A Metropolis-within-Gibbs, see Gamerman and Lopes (2006), sampling
procedure using concepts from Moreira and Gamerman (2022) and Shirota and Banerjee
(2019) is employed to achieve the sampling.

The choice of the logNormal distribution for themarks in Eq. (1) simplifies the sampling
algorithm. The full conditional distributions of all parameters but θ are thus known in closed
form, which allows for a Gibbs sampler to be used for nearly the whole program.

Similarly to Moreira and Gamerman (2022), the sampling of βint and βobs is done via a
logistic regression analogy. Its Gibbs sampler is possible via the data augmentation scheme
proposed by Polson et al. (2012). Note that the respective Pólya-Gamma random variables
have been excluded from Eq. (3). In order for the analogy to happen, two logistic regressions
are considered, as in Moreira and Gamerman (2022).

The first analogy is for βint , for which the successes are the points in x and x ′ and failures
are u. The second is for βobs , for which the successes are x and the failures are x ′. Also note
that, conditional on S(·), parameter γ can also be considered a regression coefficient where
S(s), s ∈ x ∪ x ′ is its respective covariate.

Then, conditional on the Pólya-Gamma data augmentation vector ω described in Polson
et al. (2012), the full conditional for the regression coefficient, generically denominated β

in each analogy is

π(β|·) ∝π(β)
∏

s∈success
exp

{
−1

2
(0.5 − W (s)β)′(0.5 − W (s)β)

}

×
∏

s∈failure
exp

{
−1

2
(−0.5 − W (s)β)′(−0.5 − W (s)β)

}
,

(4)

where  is a diagonal matrix composed of ω.
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Equation (4) is useful to update the regression coefficientsβint andβobs , and consequently
γ as well.

It is also useful to update S(·) since its full conditional ends up being a normal distribution.
This is especially important as the added complexity from the marks can be addressed with
normality.

2.4. UPDATING THE SPATIAL SMOOTH PROCESS

Similarly to Gonçalves and Gamerman (2018) and Shirota and Banerjee (2019), process
S(·) is updated in two separate steps. First only the process values in X ′ are sampled in order
to actually have their locations. Then the whole process is updated, which implies a second
update of the values in X ′. The introduction of the marks can present some complication,
as detailed below. Note that the joint full conditional of S(·) and Z(s), s ∈ x ′ is detailed in
Eq. (5), also considering the Pólya-Gamma data augmentation.

π(S(·), Z(·)|·) ∝
∏
s∈x

exp

{
−γ 2

2

(
S −

(
0.5 − Wobs (s))βobs

γ

))′


(
S −

(
0.5 − Wobs (s))βobs

γ

))}

×
∏

s∈x ′
exp

{
−γ 2

2

(
S −

(−0.5 − Wobs (s))βobs
γ

))′


(
S −

(−0.5 − Wobs (s))βobs
γ

))}

×
∏

s∈x∪x ′

1

z(s)
exp

{
− 1

2τ2
(log(z(s)) − Wz(s)βz − S(s))2

}

× exp

{
− 1

2σ 2 S
′�−1S

}
.

(5)

The proposal of Gonçalves and Gamerman (2018) for the sampling of S(·) in X ′ is based
on a acceptance-rejection algorithm based on the marginal distribution of S(·). In this case,
due to the third line of Eq. (5), the values of S(·) are tied to the values of Z(·), which are
unknown in new unobserved locations. For the same logic to be applied, then, it is necessary
to sample jointly from a distribution whose density is proportional to

∏
s∈x∪x ′

exp

{
− 1

2τ 2
(log(z(s)) − Wz(s)βz − S(s))2

}
exp

{
− 1

2σ 2 S
′�−1S

}
.

The resulting values of S(·) are to be accepted or rejected similarly to Gonçalves and
Gamerman (2018).

This sampling can be achieved with a simple variable transformation. Sample the aux-
iliary variables as in Eq. (6). In its notation, consider m and V the conditional mean and
variance of S(s), s ∈ x ′ given S(s), s ∈ x .

T ∼ N
(
m

τ 2

τ 2 + V
,

τ 2V

τ 2 + V

)

R ∼ N
(

−m
τ 2

τ 2 + 2V
, (τ 2 + V )

τ 2

τ 2 + 2V

)
.

(6)
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Then the transformation S = T + V R
τ 2+V

and Z = exp{R + Wz(·)βz} achieves the desired
sampling, which is verified by the Jacobian method. Note that the acceptance-rejection
algorithm makes it so that the sampling of T and R is more efficient if done sequentially.
This is because otherwise the rejection of any given point would require the whole vector
to be discarded. Conveniently, the representation of the NNGP with the sparse precision
matrix is particularly useful in this instance. See Datta et al. (2016a) and Finley et al. (2019)
for more details.

The resampling step of S(s), s ∈ x ∪ x ′ can be achieved by resampling Z(s), s ∈ x ′ from
the logNormal distribution given known S(s), s ∈ x ′, then the S(s), s ∈ x ∪ x ′ themselves
from the Normal distribution in Eq. (5).

2.5. MCMC ALGORITHM

The procedure to acquire MCMC samples according to the details described in previous
sections is presented for convenience in Algorithm 1 found below. An implementation in
C++ with an associated wrapper in the form of an R (R Core Team 2022) package in CRAN
called pompp, see https://cran.r-project.org/package=pompp.

A few notes can be made about Algorithm 1. First, the procedure to sample from
U, X ′, S(·), Z(·) is done so that the uniform random variable U can be initially compared
with q(s), then with q(s)p(s) in the log-scale, to provide numerical stability. Additionally,
note that if a candidate point s is assigned to the setU , then there is no need to simulate from
the smooth process S(s). This improves computation time, especially if the studied occur-
rences occur seldom in the region or only happens often in a relatively small sub-region. This
happens since the majority of points from the superposed homogeneous Poisson Process,
namely X ∪ X ′ ∪U , belong to U in this scenario.

Another note is that the most computational intensive step in Algorithm 1 is sampling
S(s), Z(s) | {S(t), t ∈ T }, that is, finding the NNGP conditional distribution at each point.
This is why the choice of the NNGP is made. The conditional construction of Datta et al.
(2016b) is particularly useful in this case since the points sampling happens one point at a
time. To achieve optimum performance gain, an efficient choice for the neighborhood size
is recommended. A choice of 20 neighbors should be enough for a smooth process. See
Datta et al. (2016a) and Finley et al. (2019) for discussions about this.

Additionally, the sampling of the spatial correlation parameters in θ can further increase
the computational cost meaningfully. Since the most expensive step is the calculation of the
conditional distributions of S(s), Z(s) | {S(t), t ∈ T }, recalculating the precision matrix
for a potential Metropolis proposal of the correlation parameters can prove too expensive
for practice. In these cases, it may be worthwhile to estimate these parameters before the
MCMC procedure and perform the simulations conditionally to the estimated values.

Finally, an object of great interest in thismodel is the distribution of themarks, particularly
the ones in the unobserved presences. It can become very memory intensive to store all
unobserved marks at every iteration, as each iteration can contain hundreds or thousands of
values. It is recommended to store summaries of the sampled marks, such as sums and sums
of squares. This may be used to calculate means and variances, for example.

https://cran.r-project.org/package=pompp
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Algorithm 1MCMC procedure
Initialize λ∗, β, δ, S(·) as iteration t = 0. Process S(·) is only available at x at this moment.
for t from 1 to the chosen number of iterations do
Sample U , X ′ and S(s), Z(s), s ∈ x ′:
Sample Y ∼ Poisson(λ∗|D|).
Set T = x .
for i in 1:Y do
Sample a random point in D denoted s.
Calculate q(s) and sample U ∼ Uni f (0, 1).
if U > q(s) then
Assign s to U .

else
Sample S(s), Z(s) | {S(t), t ∈ T } using Eq. (6) auxiliary variables.
Calculate p(s).
if U > q(s)p(s) then
Assign s to X ′.
Update T := T ∪ s.

end if
end if

end for
Sample λ∗ ∼ Gamma(a + nx + nx ′ + nu , b + |D|).
Sample βint , and its Pólya-Gamma data augmentation ωint :
Define a (nx + nx ′)-dimensional vector filled with 1, associated with corresponding intensity
covariates from X and X ′.
Define a nu -dimensional vector filled with 0, associated with corresponding intensity covariates
from U .
Sample ωint | βint , · according to Polson et al. (2012).
Sample βint | ωint , · according to Polson et al. (2012).
Sample βobs , ωobs and γ :
Add S(s), s ∈ x ∪ x ′ as a covariate in the observability set.
Define a nx -dimensional vector filled with 1, associated with corresponding observability covari-
ates from X .
Define a nx ′ -dimensional vector filled with 0, associated with corresponding observability covari-
ates from X ′.
Sample ωobs | βobs , γ, · according to Polson et al. (2012) where γ is the respective effect of the
added S(·) covariate.
Sample βobs , γ | ωobs , · according to Polson et al. (2012) where γ is the respective effect of the
added S(·) covariate.
Resample Z(s) | ·, s ∈ x ′ then sample S(s) | ·, s ∈ x ∪ x ′.
Sample remaining parameters

(
βz, τ

2, θ
)
from each of their full conditionals.

Store parameters as iteration t .
end for

3. ARTIFICIAL DATA

In order to fully understand the capabilities and pitfalls of the proposal, a comprehensive
simulation study should be performed. To provide a wider range of scenarios for this study,
a case of model misspecification was considered. For this case, a complementary log-log
link was considered for the intensity of the species presences. That is, in (1), the equation
for q(·) is replaced by
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Table 1. Values used for the data simulation

Parameter β0 β1 β2 β3 δ0 δ1 δ2 γ μ τ2 σ 2 φ λ∗

True value −2 −1 2 −1.5 −1 −1 −2 2 5 0.5 2 0.3 6000

Table 2. Summary of number of observations generated in all simulated datasets

Minimum 1st quartile Median Mean 3rd quartile Maximum

Correctly specified 239 371 525 793 1017 2655
Misspecified 113 417 696 986.5 1216 3317

log(− log(1 − q(s))) = Wint (s)βint , s ∈ D, (7)

to simulate data and fit it with a misspecified model. This function was chosen since it is
very different from the logit link, being even asymmetric around zero.

Results are available using 30 datasets for a correctly specified model, and another 30
for misspecified ones. The [0, 1] square was chosen for the region D in all simulations.

The regression Wz(s)βz is reduced to only its intercept, which has been denoted μ. The
intensity regression Wint (s)β, that is, the one defining the probability of occurrence q(·),
has been generated with 3 covariates, each from a Gaussian Process independent from each
other. The observability regressionWobs(s)δ, needed to define the probability of observation
p(·), was generated with 2 covariates also with Gaussian Processes. For readability, βint

has been renamed β while βobs has been renamed δ. All generated Gaussian Processes,
including S(·), were generated with the exponential correlation function parameterized as
in Eq. (8).

ρ(s, s′) = ρ(||s − s′||) = exp

{
−||s − s′||

φ

}
, (8)

The values used for the simulations are displayed in Table 1. The resulting number of
observations in all datasets are summarized in Table 2.

The covariance parameters σ 2 and φ were estimated previously to the MCMC procedure
using the observations via maximum likelihood. This is done to minimize the times that the
MCMCprocedure must calculate the precisionmatrix from the NNGP and its determinant.
The resulting maximum likelihood estimates acquired for each run are shown in Fig. 3.

For prior information, all regression effects, including γ were considered independent
with mean 0 and variance 100. The same is true for parameterμ. For the Gamma and inverse
Gamma distributions, the values 0.001 were used for both parameters.

To summarize the information from all 30 simulations in each scenario (correctly speci-
fied and misspecified), the violin plot was chosen as it provides a detailed visualization of
the posterior’s distributions. Figures4 and 5 present an overview of the marginal posterior
densities for each dataset and parameter.
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Figure 3. Maximum likelihood estimates of the covariance function parameters using only the observed data for
the simulated datasets. The value used for data generation is highlighted with a horizontal line.
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Figure 4. Marginal posterior distributions for the correctly specified model simulated exercise. Horizontal lines
highlight the true values for the parameters. For visualization purposes, the βint vector is referred to as β and βobs
as δ.

In addition, the models produce certain generated parameters that vary randomly and
cannot be consistently replicated across different datasets. These parameters include the
number of points in the unobserved processes, denoted as nU and nX ′ . Moreover, it is
also valuable to consider summary statistics related to the unobserved marks, such as their
sum and variance. To ensure uniformity across all generated datasets, the bias is taken into
account, with the true value represented as zero. Figure6 shows the violin plots for the bias
of these generated parameters.

There are a few noteworthy observations tomention about these figures. Firstly, themodel
appears to accurately estimate its own parameters. Notably, there is less inconsistency in
estimating μ and δ0, which is equivalent to βobs,0.

Another significant observation is that the posterior distributions exhibit heavy tails for
all parameters. Although some effects may be slightly overestimated, the true values con-
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Figure 5. Marginal posterior distributions for the misspecified model simulated exercise. Horizontal lines high-
light the true values for the parameters. For visualization purposes, the βint vector is referred to as β and βobs as
δ.
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Figure 6. Marginal posterior distributions bias of each generated parameters. Horizontal lines highlight the true
values, that is, no bias. Left: Correctly specified model. Right: Misspecified model .

sistently fall within the posterior mass, indicating a close proximity. Furthermore, the pref-
erentiability parameter γ has been adequately estimated.

Even in the case of the misspecifiedmodel, it was able to recover the model’s parameters;
however, the results show even heavier tails compared to the correctly specified model. In
particular, λ∗ shows heavy tails for high values in both cases, which increases the compu-
tational burden of the procedure. This could be remedied with a more informative prior, as
discussed in Gonçalves and Gamerman (2018), but possibly also with smaller variance for
the intercept terms from βint and βobs .

Figure6 shows more interesting results from the scientific perspective. While model
parameters are relevant, they are more important to determine quantities of interest about
the unobserved species occurrences. One can see that both scenarios have very similar
posteriors for the number of points in processes X ′ and U . Additionally, it is important to
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highlight that accurately estimating the number of points in X ′ holds significant importance
as it reflects the correct estimation of species observability. This particular quantity carries
greater interest in the analysis. Regarding the summary statistics for the unobserved marks,
it is evident that heavy tails are present; however, the majority of the posterior distribution
is centered around the true values.

Finally, it is often of interest to correctly estimate the effect of different variables on
the species occurrence or observability. This is reflected in β1, β2, β3, δ1 and δ2. All these
parameters were correctly estimated with little uncertainty.

For the presented simulation study, the model adequately estimates its parameters. Even
under model misspecification, the proposal is useful to answer the relevant scientific ques-
tions.

4. APPLICATION

The model is applied to the data discussed in Sect. 2.1 and displayed in Fig. 1. Note
that depth is denoted in negative values, meaning the more negative, the deeper the water.
This means a positive effect is expected from the water depth in both the intensity and
observability regressions.

It is also worth noting that the covariate has been standardized for stability. Standardizing
is very important when dealingwith regressionmodels with nonlinear scale, such as the logit
or the log. This is also useful for setting prior information on its effects. A prior variance of
10 was set for each β.

No covariates are being used to model the biomass. That is to say, in Eq. (1), the linear
predictor Wz(s)βz reduces to its intercept which has been denoted μ. Note that μ is not
the marginal mean of the process Z , but rather of log Z . The spatial covariance parameters
were estimated through a variogram function in a former step to Algorithm 1, for reasons
of efficiency, as they are not of primary interest.

The dataset has 1,211 rows. The pre-processing involved removing rows with zero
biomass, being interpreted as an observed absence. One location has also been recorded
twice with different biomasses. This is a problem for the model since the smooth process
S(·) depends on a covariancematrix built on points distances.Having a null distance between
two points yields a non-invertible matrix, causing numerical instability. Thus the row with
larger biomass has been removed. The resulting dataset used by the model had 1,024 rows.

Small changes in the prior are considered in relation to the onesmentioned for the artificial
data. The prior variance for the regression parameters, including γ , is 10, following the
recommendation in Moreira and Gamerman (2022). The results of the model can be seen
in Fig. 7.

Several noteworthy observations emerge from the marginal distributions. Firstly, the
depth effect is positive for the intensity, as expected. However, the observability effect
shows no discernible mass away from zero, showing little impact of the depth on the fish-
ermen’s movement. The effects for the depth in the intensity and observability regressions
are not strongly correlated (estimated posterior correlation = −0.023). The intercept for the
observability regression is very low, indicating a very low probability of observing occur-
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Figure 7. Marginal distribution of all parameters of the application of Presence-only for Marked Point Process
under Preferential Sampling on fishery data. Biomass was recorded in each sampled location. Each graphic is
labeled with its respective parameter.

rences. These values are even more exceptional after comparing them with the prior, that is,
aN (0, 10) distribution, which has negligible mass in this region. Secondly, parameter γ is
strongly positive, showing a strong preference of the fishermen towards higher biomass.

Parameters μ and τ 2 have the most stable Markov chains and have been well estimated.
The chains for theβ parameters are slower to converge,which is an issue that is also observed
in the simpler model from Moreira and Gamerman (2022).

Of utmost significance is the posterior distribution derived for nx ′ . It predicts that there
are between 22,500 and 30,500 schools of sardines which have not been observed by the
fishermen during the study period. This could be a very large number, especially since the
observed data has only 1,024 points. On the other hand, it is viable that there are many
undetected sardine presences in an area as large as the southern Portuguese coast. Due to
this large amount of unobserved occurrences, the sum of the unobserved biomass is very
large, between 19,860 and 35,383 tonnes. The variance of the unobserved marks is also very
large, with occasional extremely large values.

5. DISCUSSION

Preferential sampling refers to a data collection method that, if the stochastic depen-
dence between points and marks processes is overlooked, can lead to potentially misleading
information. The pioneering work of Diggle et al. (2010) addresses this issue by providing
corrective measures for such data. Presence-only data is a type of preferential sampling,
which the method proposed in 2 deals with in two ways. Not only are the data collected as
presence-only, but the associated marks are also collected preferentially.
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The code to replicate the results in this paper can be found in https://github.com/
GuidoAMoreira/pompp_article. However, note that restrictions apply to the availability
of the data for the application in Sect. 4, which were used under license from Portuguese
fisheries authority “DGRM - Direcção Geral dos Recursos Marinhos, Segurança e Serviços
Marinhos” for the current study, and so are not publicly available. Data are available from
the third author upon reasonable request and with permission from the DGRM.

The complexity of the proposed model is reflected in the computation time, which can
be long due to the need to calculate the conditional distribution of each NNGP point.
Additionally, the model’s fitting procedure can have slow convergence rates. Thus the com-
putational cost can be pointed as the main drawback of the proposed model. One way to try
to reduce the computational time by brute force, similarly to Wu et al. (2022), is to calculate
the precision matrix �−1 for a fine lattice over the entire region and sample/resample the
process on the entire region. Then, the S necessary values in X and X ′ could just be taken
from the nearest point in this lattice. This approach still needs consideration in terms of
viability, as it might be very memory demanding.

Nevertheless, the method successfully fulfills its promises. It estimates both types of
preferential sampling and accurately estimates regression coefficients and unobserved fea-
tures. The likelihood function is evaluated exactly, and there is better identification between
intensity and observability effects than with a traditional log-linear intensity link. Themodel
is also equivalent to the traditional log-linear intensity link under limiting conditions of λ∗
and the intercept term of βint . Furthermore, the method estimates the number and loca-
tions of unobserved occurrences of the studied object. All of this is accomplished under a
partially Bayesian approach that provides a comprehensive assessment of uncertainty. Cur-
rently, sampling of the NNGP parameters θ has not yet been incorporated into the MCMC
procedure, which means that there is potentially reduced uncertainty for the results.

Our proposed method has broad applicability, as long as the marks can be expected
to affect the observability of the point occurrences. Our approach is also an extension of
previous works, since we consider presence-only data in conjunction with marks. This not
only increases the theoretical complexity of the model, but also its computational aspects
as mentioned earlier.

Despite the complexity of the proposed model, there are other features that could be
included in it. The most prominent one is regarding the time dimension. In the case study
presented, fishery observations are heavily influenced by legal and organizational limi-
tations, which can change over time due to various factors. This presents a challenging
problem, as it can be difficult to determine how to incorporate time into the model in a
meaningful way.

Another important feature to consider is expanding the range of possible values for the
marks. If themarks are not exclusively positive continuous values, a different distribution for
Z(·)may be more appropriate. Real-valued, count, and binomial/multinomial responses are
straightforward extensions, but appropriate treatments in theMCMCprocedure are required.

Lastly, it may beworthwhile to consider cases where information about the studied object
is available from multiple sources. For example, if a systematic survey has been done for
the studied fish species, this information could be used to insert unbiased data into the
model, potentially leading to more precise estimates. However, care should be taken when

https://github.com/GuidoAMoreira/pompp_article
https://github.com/GuidoAMoreira/pompp_article
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combining information from different sources, as it can be challenging to fuse data collected
under different and incompatible domains. For further discussion on the Presence-only and
Presence-absence cases, see Gelfand and Shirota (2019).
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