
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Mohammad Reza Tabrizi

Semantic Segmentation of Medical Images
with Deep Learning

Agosto 2023

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Mohammad Reza Tabrizi

Semantic Segmentation of Medical Images
with Deep Learning

Dissertação de Mestrado em Engenharia Informática

Dissertação supervisionada por
Professor António Joaquim André Esteves

Agosto 2023

D I R E I T O S D E AU T O R E C O N D I Ç Õ E S D E U T I L I Z A Ç Ã O D O
T R A B A L H O P O R T E R C E I R O S

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as
regras e boas práticas internacionalmente aceites, no que concerne aos direitos de autor e
direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo
indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em
condições não previstas no licenciamento indicado, deverá contactar o autor, através do
RepositóriUM da Universidade do Minho.

Atribuição-NãoComercial
CC BY-NC
https://creativecommons.org/licenses/by-nc/4.0/

1

https://creativecommons.org/licenses/by-nc/4.0/

A C K N O W L E D G E M E N T S

I would like to express my deepest gratitude to my family for their unwavering support and
patience throughout my master’s degree journey in computer engineering. This journey
took me to a new country and was filled with many challenges, but my family’s love and
encouragement kept me motivated. Their unwavering belief in me and my abilities inspired
me to push through the toughest times and ultimately achieve my goal. I am forever grateful
for their sacrifice and support.

I would also like to extend my sincere gratitude to my advisor, Professor António Joaquim
André Esteves, for his guidance, mentorship, and valuable insights that were instrumental in
shaping my academic and professional growth. His expertise, wisdom, and encouragement
have been a constant source of inspiration throughout this journey.

Finally, I would like to acknowledge the professors at the University of Minho, who
have made a tremendous impact on my academic growth through their lectures, guidance,
and knowledge sharing. Their dedication to teaching and helping students has been
truly inspiring, and I am grateful for the opportunity to learn from such knowledgeable
individuals.

In conclusion, I would like to express my heartfelt gratitude to all of those who have sup-
ported me and made this journey possible. Their unwavering support and encouragement
have been a constant source of strength, and I am proud to be a part of such a supportive
community.

Thank you all very much.

2

A B S T R A C T

The use of deep learning techniques in medical image analysis has been a subject of growing
interest in recent years. One of the most important applications of these techniques is the
detection and segmentation of tumors in histological images. This dissertation focused on
investigating the use of deep learning models to segment tumors, with the aim of providing
medical specialists with a tool that can help them make more precise diagnoses.

Tumor growth patterns are an important histological characteristic that can provide
information about the aggressiveness and degree of malignancy of a tumor. Specifically,
the epithelial-mesenchymal transition on the tumor front is a pattern that has been shown
to confer high aggressiveness and a great capacity to invade tissues and cause metastases,
leading to a poor prognosis regarding the evolution of the tumor. Therefore, detecting
and segmenting tumors in histological images can be a critical step in the diagnosis and
treatment of tumors.

The research process involved several steps, including preprocessing the images to prepare
them for deep learning models. This step involved developing methods to enhance the
quality of the images and make them suitable for training deep learning models. Two types
of deep learning architectures, the U-Net and Tiramisu, were trained in a supervised way,
and different types of loss functions were experimented with to measure their efficiency in
controlling the training process. Additionally, different types of hyperparameters were tried,
and the best value was chosen for each hyperparameter.

Finally, the effectiveness of the models was evaluated and compared both qualitatively
and quantitatively based on their performance in image segmentation. The results obtained
show that deep learning models surpassed the initially predicted values and reached a value
above 94% based on the training data. for the Interception over the Union metric. This result
demonstrates the potential of deep learning techniques to detect and segment tumors in
histological images and reinforces the importance of continuing to investigate this topic. The
best results of the present work were achieved with total loss, as explained on page 89.

Keywords: Medical image segmentation, brain tumor, deep learning, U-Net, Tiramisu,
loss function.

3

R E S U M O

A aplicação de técnicas de aprendizagem profunda na análise de imagens médicas tem sido
alvo de um interesse crescente nos últimos anos. Uma das aplicações mais importantes
destas técnicas é a deteção e segmentação de tumores em imagens histológicas. A presente
dissertação fucou-se na investigação sobre a utilização de modelos de aprendizagem pro-
funda para segmentar tumores, com o objetivo de fornecer aos especialistas médicos uma
ferramenta que ajude a efetuar diagnósticos mais corretos.

Os padrões de crescimento tumoral são uma característica histológica importante, que
pode fornecer informação sobre a agressividade e grau de malignidade dum tumor. Especifi-
camente, a transição epitelial-mesenquimal na frente do tumor é um padrão que confere alta
agressividade e grande capacidade de invadir tecidos e causar metástases, conduzindo a um
mau prognóstico sobre a evolução do tumor. Portanto, a detecção e segmentação de tumores
em imagens histológicas é um passo crítico no diagnóstico e tratamento dos tumores.

O trabalho desenvolvido decorreu em várias etapas, incluindo o pré-processamento das
imagens para prepará-las para treinar os modelos de aprendizagem profunda. Essa etapa
envolveu o desenvolvimento de métodos para melhorar a qualidade das imagens e torná-las
adequadas para o treino de modelos de aprendizagem profunda. Dois tipos de modelo de
aprendizagem profunda, U-Net e Tiramisu, foram treinados de forma supervisionada, e
experimentaram-se diferentes tipos de função de perda para medir a sua eficácia no controlo
do processo de treino. Adicionalmente, testaram-se diferentes tipos de hiperparâmetros e
escolheu-se o melhor valor para cada hiperparâmetro a utilizar em futuras experiências.

Finalmente, a eficácia dos modelos foi avaliada e comparada tanto qualitativamente como
quantitativamente com base no seu desempenho na segmentação de imagens. Os resultados
obtidos mostram que os modelos de aprendizagem profunda ultrapassaram os valores
inicialmente previstos e alcançaram um valor acima de 94% com base nos dados de treina-
mento para a métrica de Intercepção sobre União. Este resultado demonstra o potencial
das técnicas de aprendizagem profunda para detetar e segmentar tumores em imagens
histológicas e reforça a importância de continuar a investigar este tópico. Os melhores resul-
tados deste trabalho foram obtidos com a função de perda total, como se mostra na página 89.

Palavras-chave: Segmentação de imagens médicas, tumor cerebral, aprendizagem pro-
funda, U-Net, Tiramisu, função de perda.

4

C O N T E N T S

1 Introduction 15

1.1 Context 16

1.2 Objectives and Expected Results 17

1.3 Document Organization 18

2 Medical Images 20

2.1 Computer vision 20

2.2 Images 20

2.3 Digital Images 21

2.4 Digital Image Processing 23

2.5 Medical Images 23

2.6 The Evolution of Medical Imaging in Clinical Research 24

2.7 Particularities of Medical Images 25

2.7.1 X-rays 25

2.7.2 Ultrasounds 25

2.7.3 Computed Tomography 26

2.7.4 Medical Photography and Microscopy 26

2.7.5 Magnetic Resonance Imaging 27

2.8 Tumors and Particularities of Tumors 28

2.9 The Problem and Its Delimitation 29

3 Image Segmentation with Deep Neuronal Networks 31

3.1 Deep Learning Applied to Medical Images 31

3.2 Neural Networks 32

3.3 How and When to Adopt Deep Learning Models 34

3.4 Model Optimization 35

3.5 Loss Functions 39

3.6 Data Normalization 41

3.7 Data Preprocessing 41

3.8 Image Segmentation 42

3.9 Traditional Image Segmentation Methods 45

3.10 Image Segmentation with Deep Learning Models 47

3.10.1 Convolutional Neural Networks 47

3.10.2 Fully Convolutional Networks 49

3.10.3 DeepLab 49

5

contents 6

3.10.4 SegNet Neural Network 50

3.10.5 Tiramisu 52

3.10.6 Feature Pyramid Network 52

3.10.7 Mask R-CNN 53

4 Proposed Methodology 55

4.1 Related Work 55

4.2 Proposed Methodology 61

4.3 Dataset 62

4.4 Data Preprocessing 62

4.5 Selecting Models for Image Segmentation 65

4.5.1 U-Net Model 66

4.5.2 Tiramisu Model 67

4.6 Implementation of Image segmentation Models 68

5 Results 71

5.1 Evaluation Metric 72

5.2 Hyperparameter Optimization 72

5.3 Learning Rate 74

5.4 Loss Function 78

5.4.1 Binary Cross Entropy Loss 78

5.4.2 Focal Loss 80

5.4.3 Dice Loss 81

5.4.4 Jaccard Loss 83

5.4.5 Binary Cross Entropy-Dice Loss 84

5.4.6 Tversky Loss 85

5.4.7 Focal Tversky Loss 88

5.4.8 Total Loss 91

5.5 Model Training 94

5.6 Model Testing 96

6 Conclusions and Future Work 102

6.1 Conclusions 102

6.2 Future Work 103

7 Developed Python Code 110

L I S T O F F I G U R E S

Figure 1 Capturing a digital image. 21

Figure 2 Histogram of a digital image. 22

Figure 3 Histogram equalization. 22

Figure 4 Daily Mail Roentgen’s first human X-ray of his wife’s hand (1895). 25

Figure 5 Ultrasound image. 26

Figure 6 Computed tomography image. 27

Figure 7 Growth of malignant cells in the breast tissue. 28

Figure 8 The perceptron architecture. 33

Figure 9 Activation functions. 33

Figure 10 Classification, detection, and segmentation. 43

Figure 11 Semantic segmentation. 45

Figure 12 Instance segmentation. 46

Figure 13 Thresholding segmentation. 46

Figure 14 Segmentation with K-means clustering. 47

Figure 15 Convolutional neural tetwork. 49

Figure 16 Fully Convolution Networks (FCNs). 50

Figure 17 Regular convolution, up-sampling, and atrous convolution. 51

Figure 18 An encoder-decoder architecture for image segmentation. 51

Figure 19 Tiramisu semantic segmentation model. 53

Figure 20 Milestones in CNN evolution. 56

Figure 21 Labeling a scene at the pixel-level for semantic segmentation. 57

Figure 22 Samples of the LGG segmentation dataset. 63

Figure 23 Splitting the dataset. 64

Figure 24 U-Net during training. 65

Figure 25 U-Net during inference. 66

Figure 26 Tiramisu fully convolutional neural network. 67

Figure 27 A simple example of semantic segmentation. 68

Figure 28 Meaning of the Intersection over Union metric. 72

Figure 29 U-Net with total loss and fixed LR: loss and IoU metric. 77

Figure 30 U-Net with total loss and adjustable LR: loss and IoU metric. 78

Figure 31 Tiramisu with BCE loss: loss and IoU metric. 79

Figure 32 U-Net with BCE loss: loss and IoU metric. 80

Figure 33 Focal loss for different values of the focusing parameter γ. 81

7

list of figures 8

Figure 34 U-Net with focal loss: loss and IoU metric. 82

Figure 35 Meaning of the Dice coefficient. 82

Figure 36 Example of calculating the |Y ∩ Ŷ| term in the Dice coefficient. 83

Figure 37 Tiramisu with Jaccard loss: loss and IoU metric. 85

Figure 38 U-Net with Jaccard loss: loss and IoU metric. 86

Figure 39 Tiramisu with BCE-Dice loss: loss and IoU metric. 86

Figure 40 U-Net with BCE-Dice loss: loss and IoU metric. 87

Figure 41 U-Net with Tversky loss: loss and IoU metric. 89

Figure 42 The focal Tversky loss for different values of the parameter γ. 90

Figure 43 Tiramisu with focal Tversky loss: loss and IoU metric. 91

Figure 44 U-Net with focal Tversky loss: loss and IoU metric. 92

Figure 45 Tiramisu with total loss: loss and IoU metric. 93

Figure 46 U-Net with total loss: loss and IoU metric. 93

Figure 47 Training Tiramisu with different loss functions: IoU metric. 95

Figure 48 Training U-Net with different loss functions: IoU metric. 96

Figure 49 Time necessary to train the different models during 300 epochs. 97

Figure 50 U-Net with different loss functions: four examples of prediction. 99

Figure 51 Results from testing U-Net and Tiramisu using different losses. 100

Figure 52 Image inference time for different models. 101

Figure 53 Visualization of 3x3 images from the dataset. 112

Figure 54 Random image from the dataset and the respective mask. 135

Figure 55 IoU metric for the U-Net model trained with different losses. 136

Figure 56 Input 1 and the prediction by the U-Net model with Jaccard. 136

Figure 57 Input 1 and the prediction by the U-Net model with BCE-Dice. 136

Figure 58 Input 1 and the prediction by the U-Net model with BCE. 137

Figure 59 Input 1 and the prediction by the U-Net model with focal Tversky.137

Figure 60 Input 2 and the prediction by the Tiramisu model with BCE. 137

Figure 61 Input 2 and the prediction by the Tiramisu model with Dice. 137

Figure 62 Input 2 and the prediction by the Tiramisu model with BCE-Dice.138

Figure 63 Input 2 and the prediction by the Tiramisu with focal Tversky. 138

Figure 64 Input 3 and the prediction by the U-Net model with total loss. 138

Figure 65 Input 3 and the prediction by the U-Net model with Lovasz. 139

Figure 66 U-Net model architecture (part 1). 140

Figure 67 U-Net model architecture (part 2). 141

Figure 68 U-Net model architecture (part 3). 142

Figure 69 Tiramisu model architecture (part 1). 143

Figure 70 Tiramisu model architecture (part 2). 144

Figure 71 Tiramisu model architecture (part 3). 145

list of figures 9

Figure 72 Tiramisu model architecture (part 4). 146

Figure 73 Tiramisu model architecture (part 5). 147

Figure 74 Tiramisu model architecture (part 6). 148

Figure 75 Tiramisu model architecture (part 7). 149

Figure 76 Tiramisu model architecture (part 8). 150

Figure 77 Tiramisu model architecture (part 9). 151

Figure 78 Tiramisu model architecture (part 10). 152

Figure 79 Tiramisu model architecture (part 11). 153

Figure 80 Tiramisu model architecture (part 12). 154

Figure 81 Tiramisu model architecture (part 13). 155

Figure 82 Tiramisu model architecture (part 14). 156

Figure 83 Tiramisu model architecture (part 15). 157

Figure 84 Tiramisu model architecture (part 16). 158

Figure 85 Tiramisu model architecture (part 17). 159

Figure 86 Tiramisu model architecture (part 18). 160

Figure 87 Tiramisu model architecture (part 19). 161

Figure 88 Tiramisu model architecture (part 20). 162

Figure 89 Tiramisu model architecture (part 21). 163

Figure 90 Tiramisu model architecture (part 22). 164

Figure 91 Tiramisu model architecture (part 23). 165

Figure 92 Tiramisu model architecture (part 24). 166

Figure 93 Tiramisu model architecture (part 25). 167

L I S T O F TA B L E S

Table 1 Results of different architecture evaluated by Long et al. (2012). 59

Table 2 Symmetric surface errors on learning-based segmentation. 60

Table 3 Results of different approaches tried by Sobhaninia et al. (2017). 61

Table 4 Summary of the performed experiments. 71

Table 5 Parameters to reduce the learning rate with ReduceLROnPlateau. 76

Table 6 Comparison between U-Net with fixed vs. adjustable LR. 76

Table 7 Tiramisu with Binary Cross-Entropy loss: loss and IoU. 79

Table 8 U-Net with Binary Cross-Entropy loss: loss and IoU. 79

Table 9 U-Net with focal loss: loss and IoU. 81

Table 10 Tiramisu with Jaccard loss: loss and IoU. 84

Table 11 U-Net with Jaccard loss: loss and IoU. 84

Table 12 Tiramisu with BCE-Dice loss: loss and IoU. 85

Table 13 U-Net with BCE-Dice loss: loss and IoU. 85

Table 14 U-Net with Tversky loss: loss and IoU. 88

Table 15 Tiramisu with focal Tversky loss: loss and IoU. 90

Table 16 U-Net with focal Tversky loss: loss and IoU. 91

Table 17 Tiramisu with total loss: loss and IoU. 92

Table 18 U-Net with total loss: loss and IoU. 92

Table 19 Training results for Tiramisu with different losses. 92

Table 20 Training results for U-Net with different losses. 94

Table 21 Model training hyperparameters LR initial value. 94

Table 22 Time necessary to train the different models during 300 epochs. 95

Table 23 Size occupied by the U-Net model on disk. 96

Table 24 IoU metric achieved during the test of U-Net and Tiramisu models. 98

Table 25 Image inference time for the different models. 98

10

L I S T O F L I S T I N G S

4.1 Image resizing code. 63

4.2 Image normalization code. 64

4.3 Code to split the dataset into training and test sets. 64

4.4 Number of parameters in the U-Net model. 69

4.5 Number of parameters in the Tiramisu model. 69

4.6 Summary of the U-Net model. 70

5.1 Computing the IoU metric. 73

5.2 Search the best learning rate for training U-Net with KerasTuner (part 1). . . 74

5.3 Search the best learning rate for training U-Net with KerasTuner (part 2). . . 75

5.4 Exponential learning rate decay in Keras. 77

5.5 Import the Keras module to use binary cross-entropy. 78

5.6 Computing the Dice coefficient. 83

5.7 Code to calculate the Jaccard loss. 84

5.8 Python code that implements the Tversky index and the Tversky loss function. 88

5.9 Python code that implements the focal Tversky loss function. 90

7.1 Import the necessary libraries. 110

7.2 Python code for loading the dataset into memory. 111

7.3 Python code to visualize the effect of data normalization. 111

7.4 Print the dataset shape. 111

7.5 Python code to visualize a grid of 3x3 images and 3x3 masks from the dataset. 111

7.6 Python code to implement loss functions (part 1). 113

7.7 Python code to implement loss functions (part 2). 114

7.8 Python code that implements the U-Net model (part 1). 114

7.9 Python code that implements the U-Net model (part 2). 116

7.10 Summary of the U-Net model (part 1). 116

7.11 Summary of the U-Net model (part 2). 117

7.12 Summary of the Tiramisu model (part 1). 118

7.13 Summary of the Tiramisu model (part 2). 119

7.14 Summary of the Tiramisu model (part 3). 119

7.15 Summary of the Tiramisu model (part 4). 121

7.16 Summary of the Tiramisu model (part 5). 122

7.17 Summary of the Tiramisu model (part 6). 123

7.18 Summary of the Tiramisu model (part 7). 123

11

list of listings 12

7.19 Summary of the Tiramisu model (part 8). 125

7.20 Summary of the Tiramisu model (part 9). 126

7.21 Summary of the Tiramisu model (part 10). 127

7.22 Summary of the Tiramisu model (part 11). 128

7.23 Summary of the Tiramisu model (part 12). 129

7.24 Summary of the Tiramisu model (part 13). 130

7.25 Python code that implements the model training and the callback functions. 130

7.26 Python code for training U-Net with total loss. 131

7.27 Python code to plot the results from training U-Net. 132

7.28 Python code that implements the Tiramisu model (part 1). 133

7.29 Python code that implements the Tiramisu model (part 2). 134

7.30 Import the libraries necessary to implement the Tiramisu model. 134

A C R O N Y M S

AI Artificial Intelligence. 1, 17, 31, 32, 47

ANN Artificial Neural Network. 1

BCE Binary Cross Entropy. 1, 71, 84

CNN Convolutional Neural Network. 1, 47, 52, 55, 57, 58, 60

CNS Central Nervous System. 1, 17

CT Computed Tomography. 1, 17, 23, 24, 26

CV Computer Vision. 1, 31

DCNN Deep Convolutional Neural Network. 1, 49, 55

DIP Digital Image Processing. 1, 23

DL Deep Learning. 1, 16–18, 29, 31, 32, 34–36, 42, 47, 65, 76, 77

EDA Exploratory Data Analysis. 1

FCN Fully Convolutional Network. 1, 43, 49, 57, 59

FDA Food and Drug Administration. 1, 24

FLAIR Fluid-Attenuated Inversion Recovery. 1, 62

FPN Feature Pyramid Network. 1, 52

GPS Global Positioning System. 1

GPU Graphics Processing Unit. 1, 35, 47, 49

IoU Intersection over Union. 1, 17, 72, 83

LGG Lower Grade Glioma. 1, 62

LiDAR Light Detection And Ranging. 1

LR learning rate. 1, 74, 76, 77

MAE Mean Absolute Error. 1, 39

MBE Mean Bias Error. 1, 39

MEI Mestrado em Engenharia Informática. 1

ML Machine Learning. 1, 16, 31, 32, 36, 39, 40, 64

MLP Multi-Layer Perceptron. 1, 48

MRI Magnetic Resonance Imaging. 1, 17, 23, 24, 27–29, 42, 60, 62, 102

MSE Mean Square Error. 1, 39

13

Acronyms 14

NDA Non Disclosure Agreement. 1

NLL Negative Log Likelihood. 1

RADAR Radio Detection And Ranging. 1

ReLU Rectified Linear Unit. 1, 32

RMS Root Mean Squared. 1, 37

RMSE Root Mean Square Error. 1, 39

SGD Stochastic Gradient Descent. 1, 35–37, 75, 76

SPA Single Page Application. 1

SVM Support Vector Machine. 1, 40

TCGA The Cancer Genome Atlas. 1, 62

TCIA The Cancer Imaging Archive. 1, 62

TPU Tensor Processing Unit. 1

UM Universidade do Minho. 1

1

I N T R O D U C T I O N

According to the American Institute for Medical and Biological Engineering, the bioengi-
neers work with cutting-edge technologies to address the grand challenges that define the
human experience. They advance human health, develop better medicines, create tools for
innovation and scientific discovery, and harness the power of biological processes to benefit
our planet (AIMBE, Consulted in 2022). Biomedical engineering, or bioengineering, is the ap-
plication of engineering principles to the fields of biology and healthcare. Bioengineers work
with physicians, therapists, and researchers to develop systems, equipment, and devices to
solve clinical problems. Biomedical engineers have developed a range of life-enhancing and
life-saving technologies, including:

• Prosthetics, such as dentures and artificial limbs.

• Surgical devices and systems, such as robotic and laser surgery.

• Vital sign and blood chemistry monitoring systems.

• Implanted devices, such as insulin pumps, pacemakers, and artificial organs.

• Imaging techniques such as ultrasound, X-rays, particle beams, and magnetic reso-
nance.

• Diagnostics, such as laboratory-on-a-chip and expert systems.

• Therapeutic equipment and devices, such as renal dialysis and transcutaneous electrical
nerve stimulation (TENS).

The practice of biomedical engineering has a long history. One of the earliest examples
is a prosthetic toe made of wood and leather found on a 3,000-year-old Egyptian mummy.
Before that, even simple crutches and walking sticks were a form of engineering aid, and
the first person to make a splint for a broken bone could be considered an early biomedical
engineer (Lucas, 2014). In our health care society, there are many relationships that affect
the level of care a patient receives. None is perhaps more important than the relationship
between a patient and his doctor. As physicians strive to continuously improve the quality of

15

1.1. Context 16

their services, there is a growing need for more targeted and accurate patient data. Medical
informatics provides this data. Medical informatics is the subdiscipline of health informatics
that directly impacts the patient-doctor relationship. It focuses on information technology
that enables effective data collection using technological tools to develop medical knowledge
and facilitate medical care for patients. The goal of medical informatics is to ensure that
patients have access to important medical information at the exact time and place where
it is needed to make medical decisions. Medical informatics is also concerned with the
management of medical data for research and teaching (Selig, 2020).

1.1 context

Our lifestyles, global demographics, and needs as individuals are changing rapidly today,
and more people than ever need healthcare. The cost of healthcare is also becoming more
expensive, and with increasing demands and technological developments, major changes are
underway in the healthcare value chain and business models, which will turn the healthcare
system as we know it on its head.

It is time to stop seeing health and illness in static terms and to start seeing life as a
dynamic process, where the maintenance of health takes place long before the onset of
symptoms. Technological developments in data science have begun to impact healthcare,
but have yet to realize their full potential. The digitization of healthcare over the past decade
has led to a growing amount of data production. The amount of data produced is increasing
exponentially, and the collection of health data from various sources is growing rapidly.

Collecting, managing, and storing all this data is very costly and may not be valuable if it
is not transformed into insights that can be used by the healthcare ecosystem. For maximum
optimization and usefulness, the data must be analyzed, interpreted, and utilized. Machine
Learning (ML) and Deep Learning (DL) enable the generation of new knowledge from all
collected data and can help reduce the cost and time burden of all healthcare systems by
learning better predictions and diagnoses. These tools help to improve the entire clinical
workflow, from the preventive and diagnostic phase to the prescriptive and restorative phase
in healthcare management (Bohr and Memarzadeh, 2020).

Much of the cost reduction is due to the shift in the health model, from a reactive to
a proactive approach that focuses on managing health rather than treating disease. This
is expected to lead to fewer hospitalizations, fewer doctor visits, and fewer treatments.
AI-based technology will play an important role in helping people stay healthy through
continuous monitoring and coaching, and will ensure earlier diagnosis, tailored treatments,
and more efficient follow-up care (Bresnick, 2017).

1.2. Objectives and Expected Results 17

1.2 objectives and expected results

According to the American Cancer Society ACS, it was estimated that in 2021 and in the
United States of America, 83,570 people were diagnosed with brain and other Central
Nervous System (CNS) tumors, 24,530 malignant tumors, 59,040 nonmalignant tumors and
18,000 people will die from the disease. This data shows us the importance of this problem,
but to detect brain tumors there exist various methods. The diagnosis of a brain tumor
usually involves the following three steps.

• A neurological exam;

• Brain scans: (i) Computed Tomography (CT) or CT scan, (ii) Magnetic Resonance
Imaging (MRI), or (iii) occasionally, an angiogram or X-ray;

• A biopsy, which is a tissue sample analysis.

The doctor will examine the patient to determine the existence of a brain tumor. The
result of the examinations will determine:

• The type of brain tumor;

• Its severity, whether it is benign (non-aggressive) or malignant (aggressive).

One of the most important ways to detect tumors are images obtained by scans, but for
different reasons some tumors are not detected. For example, due to low quality images,
small tumor size, the tumor is in an early development stage, and finally, due to human
diagnosing error. To solve this problem, there are several image segmentation methods to
detect tumors, but this computer vision technique still has way to go.

Therefore, the present work will apply Artificial Intelligence (AI) to solve the problem of
tumor identification, using DL models to segment the tumors present in the images obtained
by scanning. The idea behind using DL models to perform semantic segmentation of images,
and consequently to detect tumors, is to have a dynamic, effective, more economical and
much faster method.

After reading the published literature and reviewing public projects, we expect to achieve
a 60% to 65% Intersection over Union (IoU) score during model testing on the tumor
segmentation task (Zheng and Guo, 18 November 2022). This will be the baseline score
for comparing future implementations. We aim for a much better result after applying
techniques such as hyperparameter optimization, training the models with several loss
functions, and trying different model architectures.

To reach the main goal, there are other secondary objectives. First, it is necessary to search
and select a suitable dataset to train and test the deep learning models.

1.3. Document Organization 18

We also intend to select and apply image preprocessing techniques. This task includes
improving image quality using various computer vision techniques, such as histogram
equalization.

Next, it is necessary to compare different deep neural network models and select a few
for implementation, among fully convolutional neural networks, U-Net, SegNet, Tiramisu,
and others.

The main outcome of the dissertation will be the implementation of the selected deep
neural networks to perform the image segmentation task.

In order to obtain the best results in medical image segmentation, the optimization of the
model hyperparameters is a critical step.

Different loss functions will be evaluated to find the alternative that drives the best
segmentation results.

Finally, the performance of the models must be evaluated through testing. This includes
the evaluation of segmentation quality, training time, model size, and inference time. The
results of these evaluations will also be visualized to provide a clear understanding of the
performance of each model.

1.3 document organization

In Chapter 2 we talk about images, including the types of images, the characteristics of
digital images, and the processing of digital images in computer vision. Medical imaging,
the evolution of medical imaging and types of medical images are also discussed. Finally,
tumors are addressed, whose images will be the subject of study in this dissertation.

The third chapter addresses automatic image segmentation with deep learning models.
We start by presenting neural networks, their optimization, the optimization algorithms
available in DL frameworks, and some of the loss functions that are used in the optimization
process. Then, some preprocessing techniques are summarized and the concept of feature
maps, in the context of neural networks, is explained. Classical segmentation techniques
and DL segmentation methods are presented here. To conclude, some of the neural network
architectures developed specifically for the image segmentation task are detailed.

In chapter 4, we start by presenting the related work and the rest of the chapter details
the methodology adopted during the development of deep learning models, to solve the
image segmentation problem. The dataset used in this work and the applied preprocessing
techniques are identified. Finally, the DL models that were selected for the segmentation task,
U-Net and Tiramisu, are detailed, as well as some details regarding their implementation.

1.3. Document Organization 19

Chapter 5 contains the results obtained from the various experiments carried out with
the U-Net and Tiramisu models. We start by identifying the models’ evaluation metrics and
hyperparameter optimization, with an emphasis on the learning rate. Afterward, all the
evaluated loss functions are detailed: binary cross-entropy, focal, dice, Jaccard, Tversky, and
functions that combine several of these losses. Finally, the results of the training and testing
of the models are presented: the quality of segmentation (IOU), the training time, the size of
the models, and the inference time.

Chapter 6 contains the main conclusions drawn from the dissertation and points out ideas
to continue the developed work.

Finally, the appendix contains the code developed during the dissertation, as well as a
compilation of the achieved results, and graphs of the architecture of the developed models.

2

M E D I C A L I M A G E S

In this chapter we will discuss the concepts of image, the different types of images, the char-
acteristics of digital images, and digital image processing. Medical imaging, the evolution of
medical imaging, and diverse types of medical images are also presented. Tumors, whose
images will be the subject of study in this dissertation, are addressed.

2.1 computer vision

Computer vision is the automated extraction of information from images. Information can
be any feature from a 3D model, the camera position, the detection of an object, the details
necessary for grouping and searching image content. In this dissertation we consider a wide
definition of computer vision, to include things like image warping, image de-noising, and
augmented reality. Sometimes computer vision tries to mimic human vision, sometimes uses
a data and statistical approach, sometimes geometry is the key to solve problems. Practical
computer vision contains a mixture of programming, modeling, and mathematics, and is
sometimes difficult to grasp (Solem, 2012).

2.2 images

According to Aumont (1994), the image is always made up of deep structures related to the
exercise of a language, as well as belonging to a symbolic organization (a culture, a society).
The image is also a means of communication and representation of the world that has its
place in all human societies. Belting (2007) says that an image is more than a product of
perception, it manifests itself as the result of a personal or collective symbolization. Many of
the events of the past, present, and future are known to us through images. Today, more
than ever, the information we process, analyze, and synthesize at different levels, is received
through images.

20

2.3. Digital Images 21

2.3 digital images

A digital image, or digital graphic, is a two- or multi-dimensional representation of a
numerical matrix. Depending on the resolution of the image, it is static or dynamic, it can
be a raster pattern (a bitmap represented by pixels) or a vector graphic (an image formed by
the product of independent geometric objects like dots, lines, or polygons). Bitmap is the
most commonly used image format in computing (Gómez, 2013).

An image can be defined as a two-dimensional function f(X,Y), where X and Y define a
spatial coordinate, and the value of f is called the intensity, or gray level, of the image at
that coordinate. When X, Y and the amplitude values of f are all finite and discrete values,
we are facing a digital image.

The digital image can be obtained from digital analog conversion devices, such as scanners
and digital cameras (figure 1). It should be noted that it is absolutely possible to modify
digital images, using filters to add or eliminate certain elements that are not available or, on
the contrary, to remove those that are not desired, in the same way, the possibility to modify
the size of an image and if necessary, even save it to a storage device, such as a CD or the
computer’s or hard drive.

Figure 1: Capturing a digital image.

An image histogram is a type of histogram that acts as a graphical representation of the
tonal frequency and distribution in a digital image (figure 2). Digital image processing is the
set of techniques applied to digital images to improve their quality or facilitate the search
for information. One of these techniques is histogram equalization. Histogram equalization
is a nonlinear normalization transformation that extends the histogram area containing

2.3. Digital Images 22

the highest frequent intensities and compresses the area containing the lowest frequent
intensities (figure 3).

Figure 2: Histogram of a digital image.

Figure 3: Histogram equalization.

Equalization of an image histogram can be expressed by the equation 1 (Sánchez, 2009).

Sk = T(rk) =
k

∑
j=1

pr(rj) =
k

∑
j=1

nj

n
(1)

where

• k is a value in the intensity range, for example, in the [0:255] interval.

• rk is the input intensity.

• Sk is the output intensity, for example, a value in the range [0:1].

• nj is the frequency of intensity j.

• n is the sum of all frequencies.

• T is the transformation applied to the pixel intensities.

2.4. Digital Image Processing 23

2.4 digital image processing

Digital Image Processing (DIP) means the act, or discipline that studies it, of altering digital
images through a digital computer and according to a certain algorithm. Unlike humans,
who are limited to the visual band of the electromagnetic spectrum, machines can process
virtually the entire electromagnetic spectrum, from gamma rays to radio waves. Machines
can work with images generated by sources that humans are not used to, such as ultrasonic
images, images from electron microscopy, and computer generated images.

There is no unanimous agreement on what topics digital image processing covers and what
are its interrelationships with the close disciplines of computer vision and computer graphics.
Since the 1960s, digital image processing has gradually become one of the most important
areas of scientific research. However, some image processing algorithms require large
processing power, and their development was limited to a few specialists and companies.
But with the rapid development of computers, many people showed an enormous interest
in image processing. The development of image processing is being further accelerated
with the rapid advancement of technology. Computing and image acquisition systems
are available with ever more storage capacity, and display devices with ever more spatial
resolution and color depth.

In a broad sense, digital image processing involves 2D/3D image recognition, image
analysis, image manipulation, image transmission, and other related topics. Examples of
image manipulations are intensity transformation, filtering, frequency domain processing,
restoration, compression, morphological processing, segmentation, describing the content,
pattern and object recognition, and interpretation.

2.5 medical images

Imaging, or medical images, is used to reveal, diagnose, and examine diseases or to study the
anatomy and functions of the body. Radiology, thermography, endoscopy, microscopy, and
medical photography are techniques that allow images of the human body to be obtained
for clinical or scientific purposes. Other procedures that allow us to obtain data that can be
represented as maps or diagrams, such as electroencephalography, can also be included in
imaging. Images play an important role in modern medicine. Modern imaging techniques,
including X-rays, ultrasound, CT scans, and MRI, can show the internal structures of the
human body in great detail.

Imaging is a range of tests used to create images of parts of the body. They can help
identify possible health conditions before symptoms appear, diagnose the probable cause
of existing symptoms, monitor health conditions that have been diagnosed, or follow the

2.6. The Evolution of Medical Imaging in Clinical Research 24

effects of ongoing treatments. Imaging is also called radiology, and imaging specialists are
called radiologists.

There are many different types of imaging, such as X-rays, CT scans, MRI, and ultrasound.
Each type uses a different technology to create images. The growing range of image types
provides health professionals with many options to examine what is happening inside the
patient’s body. Radiology technicians, or imaging technologists, are health professionals who
are trained to work with a specific type of image. For example, radiographers were trained
to work with X-rays and sonographers were trained to work with ultrasound imaging.

2.6 the evolution of medical imaging in clinical research

Medical imaging plays an instrumental role in the clinical development of new life science
products. Although the medical imaging industry is in constant flux, due to increased
investment in medical imaging companies and mergers and acquisitions, the adoption of
novel imaging technologies to support clinical trials for the pharmaceutical, biotech, and
medical device industries continues to increase. In fact, centralized imaging data is now
used as a primary endpoint in many clinical research studies (Khaleel, 2017). The Food
and Drug Administration Modernization Act (FDAMA) opened the door to the use of
imaging modalities as a product development tool in clinical trials with medical device or
pharmaceuticals, by allowing data generated through imaging modalities to be included in
regulatory presentations (Food and Drug, 2017).

In March 2004, the Food and Drug Administration (FDA) launched the Critical Path
Initiative (CPI), which launched the use of modern scientific and technological tools to
predict the safety, efficacy, and manufacturing capacity of medical products, and to improve
the accuracy of results during the investigation and testing phases (Food and Drug, 2017).
In view of this, in August 2011 the FDA published the Manual of Process Standards and
Parameters for Diagnostic Imaging Tests (for Drug Evaluation et al., 2020). This document
describes the standards that sponsors can adopt to ensure that clinical imaging data is
obtained in a way that:

• Complies with the protocol and test standards;

• Maintains the quality of the image data;

• Provides a verifiable record of the imaging process.

The support of this agency has increased the adoption of images in clinical trials and
therefore has contributed to the growth of the market for basic laboratory imaging services.
According to Markets and Markets, in 2016 the size of the global clinical imaging testing
market was 773.4 million dollars annually, with a 6 to 8 % growth between 2016 and
2020 (Market and Market, 2016).

2.7. Particularities of Medical Images 25

2.7 particularities of medical images

"Sometimes a picture is worth more than a thousand words”. Diagnostic images are the
set of studies that, through technology, collect and process images of the human body. The
main role of imaging studies in medicine is to provide the information the doctor needs to
make a diagnosis of the patient’s disease (Díaz, 2014). Next, we present a short overview of
the most widely used medical image types.

2.7.1 X-rays

On November 8, 1895, the German physicist Wilhelm Conrad Roentgen discovered X-rays
(figure 4). X-rays are a type of electromagnetic radiation, ionizing due to their short wave-
length (0.01 to 10 nanometers) that has the ability to interact with the body tissues (Díaz,
2014).

Figure 4: Daily Mail Roentgen’s first human X-ray of his wife’s hand (1895).

2.7.2 Ultrasounds

Ultrasonic signals applied to industrial and medical applications are rooted in nature. In
1779, the biologist Lazzaro Spallanzani discovered a class of waves associated with bat
hunting activity. Ultrasounds are sound waves with a frequency higher than the upper
audible limit of human hearing. Ultrasounds are used in many different fields, for example,

2.7. Particularities of Medical Images 26

to detect objects and to measure distances. Ultrasound imaging, or sonography, is often
used in medicine (figure 5) (Rodríguez et al., 2007).

Figure 5: Ultrasound image.

2.7.3 Computed Tomography

Undoubtedly, CT is one of the radiological modalities that since its creation has evolved
more and established more quickly in daily clinical practice. Current medicine does not
tolerate diagnostic uncertainty, and doctors of any specialty aim to make a reliable diagnosis
of the diseases of patients who come to the consultation. In most cases, CT allows for a
reliable diagnosis. In 1973, Godfrey Hounsfield described CT, and six years later he received
the Nobel Prize for Medicine. Through CT it is possible to study almost any organ of the
body and its pathology in great detail (figure 6) (Bastarrika, 2007).

2.7.4 Medical Photography and Microscopy

Since medicine is a multidisciplinary subject, medical photography is also multidisciplinary.
Medical photography can be used in diagnosis, communication between peers, and teaching.
On the other hand, we can speak of portraying medical processes, patients, parts of the
human body, or organs (figure 7). It is also possible to speak of medical photography,
having as object of study the very actors, doctors, and other health technicians, as well as
institutions.

From a very early age, photography was applied in the field of psychiatry. In 1852

the French neuron physiologist Guillaume Duchenne (1806-1875) began his studies by
photographically documenting experiences that related physiognomic expression to the

2.7. Particularities of Medical Images 27

Figure 6: Computed tomography image.

stimulation of muscles made by Faradic currents. He published the result of these experi-
ences illustrated with photographs in the monography Mécanisme de la Physionomie Humaine.
This publication is considered one of the first scientific publications with photographic
illustrations (Duchenne, 1862) (Peres, 2014).

Since the end of the twentieth century, microscopy has evolved, including new features
that improve its practice. Among them, the virtual microscope highlights the synergy
between disciplines such as pathology, histology, medical informatics, and image analysis.
This technology has changed many paradigms in research, diagnosis, education, and medical
training. Several decades ago, cameras were incorporated into microscopes to record images
of sporadic experiments. Today, the use of digital cameras, coupled with microscopes, is a
common situation.

2.7.5 Magnetic Resonance Imaging

MRI is one of the main medical diagnostic tools. MRI makes it possible to view and analyze
a variety of characteristics of the organism, such as blood flow, blood distribution, and
various physiological and metabolic functions. Think of it as a multipurpose image and
analytical procedure that can be configured and optimized to answer a wide range of clinical
questions for virtually all parts and systems of the body. It is a medical imaging process
that uses a magnetic field and radio frequency (RF) signals to produce images of anatomical
structures. MRI produces images that are clearly different from images produced by any

2.8. Tumors and Particularities of Tumors 28

Figure 7: Growth of malignant cells in the breast tissue.

other imaging modality. A major difference is that the MRI process can obtain selective
images of various parts of the body (Sprawls, 2000).

2.8 tumors and particularities of tumors

Tumor is an abnormal mass of tissue that forms when cells grow and divide more than
they should or don’t die when they should. Tumors can be benign (not cancerous) or
malignant (cancerous). Benign tumors can grow very large but do not spread or invade
nearby tissues or other parts of the body. Malignant tumors can spread or invade nearby
tissues. They can also spread to other parts of the body through the blood and lymph
systems. They are also called a neoplasm. Willis (1960) proposed a workable definition
to distinguish true tumors from inflammatory and reparative proliferations, hyperplasias,
and malformations with excessive tissue. According to this pathologist, a tumor is "an
abnormal mass of tissue, the growth of which exceeds and is uncoordinated with that of
the normal tissues, and persists in the same excessive manner after cessation of the stimuli
which evoked the change". Every pathologist can think of exceptions, but these do not
invalidate the general applicability of the definition. The commonly used and most useful
classification of tumors is histogenetic, i.e., the tumors are named according to the tissues
from which they arise and of which they consist. In most tumors, the neoplastic tissue
consists of cells of a single type, and with experience, one can readily classify them. The
types of histological differentiation found in tumors appear to be inherent in the parent
tissues. Foulds (1940) concluded that most adult normal cells have a greater capacity for
divergent differentiation than was previously supposed and that tumor cells are unlikely
to acquire new capacities. The few types of tumors in which there is uncertainty about the

2.9. The Problem and Its Delimitation 29

precise tissue of origin require further histopathological research. Meanwhile, in these cases
we must settle for non-committal identifying names (Murphy, 2007).

2.9 the problem and its delimitation

The focus of the present work is the semantic segmentation of brain tumors in medical
images. Brain tumors include the most threatening types of tumors. Glioma, the most
common primary brain tumor, occurs due to the carcinogenesis of glial cells in the spinal
cord and brain. Glioma is characterized by several histological and malignancy grades,
and an average survival time of fewer than 14 months after diagnosis for patients with
glioblastoma.

MRI is a popular noninvasive imaging technique that produces a large and diverse number
of tissue contrasts and has been widely used by medical specialists to diagnose brain tumors.
However, the manual segmentation and analysis of structural MRI images of brain tumors is
an arduous and time-consuming task which, so far, can only be accomplished by professional
neuroradiologists. Therefore, an automatic and robust brain tumor segmentation will have a
significant impact on brain tumor diagnosis and treatment. Furthermore, it can also lead
to a timely diagnosis and treatment of neurological disorders such as Alzheimer’s disease
(AD), schizophrenia, and dementia.

An automatic technique for lesion segmentation can help radiologists deliver key infor-
mation about tumor volume, location, and shape, including enhancing tumor core regions
and whole tumor regions, to make therapy progress more effective and meaningful. There
are several differences between the tumor and its normal adjacent tissue, which hinder the
effectiveness of segmentation in medical imaging analysis, e.g., size, bias (an undesirable
artifact due to improper image acquisition), location, and shape. Several models that try to
find accurate and efficient boundary curves of brain tumors in medical images have been
implemented in the literature. In spite of tireless efforts of researchers, as a key challenge,
accurate brain tumor segmentation still remains to be solved, due to various challenges such
as location uncertainty, morphological uncertainty, low contrast imaging, annotation bias,
and data imbalance.

Given the high time that a specialist needs to analyze a magnetic resonance image, the
automatic segmentation of these images constitutes a good challenge. To develop the present
work, a reliable data source will be selected, which includes magnetic resonance images and
the respective masks, and which allows training neural networks to perform the semantic
segmentation task.

The project will be developed in Python, using a few libraries of the Python ecosystem,
namely TensorFlow, Keras and scikit-learn. Training and evaluation of DL models will
be carried out mainly on the Google Collaboratory platform. The DL models that will be

2.9. The Problem and Its Delimitation 30

selected to solve the image segmentation problem are those that are considered the most
capable of performing the medical image segmentation task, namely U-Net and Tiramisu.
Throughout the work, different neural network architectures and different loss functions
will be experimented, and the hyperparameters of the models will be fine-tuned, in order to
select the best solution.

3

I M A G E S E G M E N TAT I O N W I T H D E E P N E U R O N A L N E T W O R K S

How to process images with machine learning for object recognition and classification? The
identification of objects in images has multiple applications: from something as prosaic
as identifying cats or dogs in photographs to the detection of tumors in medical exams.
This chapter will review in detail all aspects and techniques to perform automatic image
segmentation.

3.1 deep learning applied to medical images

With the rapid development of AI technology, using AI technology in clinical data mining has
become a major trend in the medical industry. The use of advanced AI models for medical
image analysis, one of the critical parts of clinical diagnosis and decision-making, has become
an active research area in both industry and academia. Recent applications of DL in medical
image analysis involve various computer vision-related tasks such as classification, detection,
segmentation, and registration. Among them, classification, detection, and segmentation are
the most fundamental and widely used tasks.

Although there exist a number of reviews on DL methods on medical image analysis, most
of them emphasize either general deep learning techniques or specific clinical applications.
Deep learning is a rapidly evolving research field, with numerous state-of-the-art works
proposed every year. In this chapter, we review the latest developments in the field of
medical image analysis. Applications of medical imaging to different types of disease are
also presented, current problems are discussed, and possible solutions and future research
directions are provided (Liu et al., 2021).

Deep learning is a class of machine learning algorithms characterized by the use of neural
networks with several layers of artificial neurons capable of processing data, understanding
human speech, and visually recognizing objects. DL provides state of the art solutions
for Computer Vision (CV) problems, including classification, object detection, and image
segmentation.

Medical image analysis is an invaluable tool in medicine as it is a critical component in
diagnosis and treatment planning. Recent results of applying DL and ML models in the

31

3.2. Neural Networks 32

field of healthcare have surprised even the most experienced physicians, as they can help in
early detection of diseases, allowing patients to have better treatments and even cure. The
biggest current challenges in healthcare are:

• Identify and target diseases;

• Classify tumors according to their malignancy;

• Augment available datasets dedicated to medical imaging to enable effective training
of increasingly capable ML and DL models;

• Train DL models on large datasets for disease prediction;

• Predict diseases with high accuracy.

3.2 neural networks

Perceptron is the simplest unit that can be learned in a biologic or artificial neural network.
In AI, the perceptron is a mathematical model inspired by the behavior of biologic neurons,
which are cells of the nervous system responsible for transmitting information in the form
of electrical signals. The perceptron architecture is illustrated in figure 8 and its operation
can be described by the following steps:

• The perceptron receives a set of input signals (dendrites) and produces an output
signal.

• The input signals are multiplied by the weights and combined to produce an activation
signal.

• The activation signal also depends on an additional input, the bias, which shifts the
activation level.

• The activation signal is passed through the activation function to yield the output
signal. The activation function can be simply modeled by a step curve that enables or
disables the activation signal to pass through.

In neural networks, activation function decides how the output of the weighted sum of
the inputs is converted to the output signal of the neuron. This function is activated if the
value of the neuron’s activation signal is large enough to be passed to the next neuron. There
are several activation functions, illustrated in figure 9, and the ones most commonly used
in neural networks are the sigmoid, SoftMax, Rectified Linear Unit (ReLU), and hyperbolic
tangent (tanh). Next, we summarize these functions.

3.2. Neural Networks 33

Figure 8: The perceptron architecture.

Figure 9: Activation functions.

3.3. How and When to Adopt Deep Learning Models 34

• The linear activation function is modeled by a straight line (equation 2). Therefore, the
output of the function will not be restricted to any range. The linear function does not
help to learn the complexity of the data that neural networks usually receive.

y = w.x + b (2)

• The sigmoid activation function is a real, differentiable, bounded function that is
defined for all real input values and has a non-negative derivative at each point and
exactly one inflection point (equation 3). The sigmoid function and the sigmoid curve
refer to the same entity.

y =
1

1 + e−(w.x + b)
(3)

• The softmax function, also known as softargmax or normalized exponential function, is
a generalization of the logistic function to multiple dimensions (equation 4). It is used
in multinomial logistic regression, and it is often used as the last activation function on
a neural network, to normalize the output to a probability distribution over predicted
output classes, based on Luce’s choice axiom.

so f tmax(xi) =
exi

∑j exj
(4)

• The hyperbolic tangent activation function produces an output in the range [-1, 1]
(equation 5). The hyperbolic tangent has the same advantages as sigmoid, and it solves
one of its problems, being centered at zero. Its derivative also converges to zero and
more quickly.

y = tanh(w.x + b) (5)

• The rectified linear unit is the most widely used activation function in deep learning
models. This function returns 0 if it receives a negative input and returns the input
value if it is positive (equation 6).

y = max(0, w.x + b) (6)

3.3 how and when to adopt deep learning models

DL models have been applied in several fields with great results, including image classi-
fication, object detection, image segmentation, natural language translation, handwritten

3.4. Model Optimization 35

text recognition, digital assistants, playing games such as Go, chemical retrosynthesis, or
classification of protein and DNA sequences. Naturally, DL is not the best choice to solve all
problems. The factors that most influence the success of DL are:

• In most cases, data on a large scale is necessary to train DL models effectively. When
we have little data, other models can give more consistent results than DL models,
with less computational cost.

• The availability of computational resources, namely Graphics Processing Units (GPUs),
is necessary to accelerate the training of very deep neural networks.

• Choosing the correct activation functions.

• Adopting a better method to initialize the weights can improve the model’s capabilities
and accelerate training.

• Try different optimization algorithms such as RMSprop, Stochastic Gradient Descent
(SGD), or Adam, to find the one that leads to the best results.

• Apply methods to address the models’ overfitting and underfitting.

• Whenever possible, adopt transfer learning, using pre-trained models on large datasets.

3.4 model optimization

There are several algorithms that can be used to train/optimize neural networks, all based on
gradient descent methods and the original idea of backpropagation (or chain rule). Over the
past few years, several improvements have been made to the initial algorithm, resulting in
new and more efficient algorithms, including RMSProp, Adam, and Adadelta. Optimization
algorithms include a set of parameters that can be optimized like any other hyperparameter,
among which learning rate α stands out:

• Batch size is the term used in machine learning to refer to the number of training
examples used in an iteration. The batch size can assume one of three options:

– In batch mode the batch size is equal to the size of the dataset, making an iteration
and an epoch equivalent.

– In mini-batch mode the batch size is greater than one, but less than the size of the
dataset. Typically, it is a power of 2 by which the size of the data set is divisible.

– In stochastic mode the batch size is one. Therefore, the gradient and neural
network parameters are updated after forwarding each sample.

3.4. Model Optimization 36

• Stochastic gradient descent and its variants are probably the most commonly used
optimization algorithms in machine learning. It is possible to get one unbiased gradient
estimation taking the mean gradient in a mini-batch of the data generation distribution.
The parameters of the model, θ, are updated in each iteration of the training process
with the rule defined by equation 7.

θt = θt−1 − α.∇θ L(θt, X, y) (7)

Where θ denotes the parameters of the model, L is the loss function, and ∇θ L() is the
gradient that gives us the direction that decreases the loss function L, and α is the
learning rate.

• Although the optimization algorithm SGD is widely used in ML/DL, it is slow to
converge to the minimum of the loss function. Momentum, or stochastic gradient
descent with momentum, is an extension of the SGD algorithm thought to accelerate
learning, especially when faced with a loss function with high curvature. The main
idea behind momentum is to compute an exponentially weighted moving average of
the gradients and use this average to update the model’s weights, instead of using a
single gradient. When past gradients are taken into account, the optimization trajectory
becomes more smooth since the oscillations on the loss function are reduced.

In each time step t of the training process, the exponentially weighted moving average
of the gradients (υt) is calculated by equation 8, and the parameters of the model (θt)
are updated with the rule defined by equation 9. The variable υt plays the role of a
velocity and determines the direction and speed with which the parameters θ move on
the parameter’s space.

υt = β.υt−1 + (1 − β).∇θ L(θt, X, y) (8)

θt = θt−1 − α.υt (9)

Where β is a hyperparameter that denotes the momentum constant, θ are the model
parameters, L is the loss function, ∇θ L() is the loss function gradient L, and α is the
learning rate.

The name momentum derives from a physical analogy in which the negative gradient
is a force that moves a particle through the parameter’s space according to Newton’s
laws of motion. In the momentum algorithm, we assume a unitary mass, so the velocity
υ can also be thought of as the particle’s momentum. The momentum constant β

lies at the interval [0, 1). The larger the momentum constant, the more past gradients

3.4. Model Optimization 37

are taken into account when computing the exponentially weighted moving average,
resulting in smoother updates. However, choosing a value for β that is too close to 1

results in over-smoothing. A common value for β is 0.9.

• Instead of blindly updating the model parameters, using the direction given by the loss
function gradient, the Nesterov accelerated gradient algorithm incorporates future
information into the current update of the model parameters (Nesterov, 1983). We
know that in step t we will use the momentum term β.υt−1 to update the parameters θt.
Thus, θt − β.υt−1 is an approximation of the next value of the parameters. We can now
effectively look ahead and calculate the loss gradient, not with respect to the current
parameters θt but with respect to the approximate future position of the parameters
(equation 10). Again, the momentum constant β is defined with a value around 0.9.

υt = β.υt−1 + (1 − β).∇θ L(θt − β.υt−1, X, y) (10)

θt = θt−1 − α.υt (11)

• Adagrad is an algorithm that optimizes the learning rate of SGD (Ruder, 2016). It does
this by adapting the learning rate to the parameters, making larger updates to the
less frequent parameters, and smaller updates to the more frequent ones. Thus, it is
suitable for dealing with sparse data. Adagrad increases the robustness of SGD, and
improves its performance in large neural networks. This optimizer avoids manually
adjusting the learning rate. Adagrad applies a different learning rate to each parameter
θi, at every time step t. The Adagrad update rule is given by equation 12.

θt+1,i = θt,i −
α√

Gt,ii + ϵ
.∇θt L(θt,i, X, y)) (12)

Where Gt ∈ Rdxd is a diagonal matrix where each element (i, i) is the sum of the
squared gradients of L with respect to θi, with the sum calculated for all times up to t.

• Adadelta is an extension of Adagrad that aims to moderate its aggressive reduction in
learning rate. Instead of accumulating all the previous squared gradients, Adadelta
accumulates only the previous gradients that lie within a fixed window w. In practice,
instead of storing w previous squared gradients, the algorithm stores a sum of all
squared gradients that is recursively defined by a decaying average.

The Root Mean Squared (RMS) error of parameter updates is given by equation 13.

RMS[∆θ]t =
√

E[∆θ2]t + ϵ (13)

3.4. Model Optimization 38

Since RMS[∆θ]t is unknown, it is approximated by the RMS of the parameter updates
until the previous time step. Changing the learning rate by RMS[∆θ]t−1, the Adadelta
update rule is given by equations 14 and 15.

∆θt = −RMS[∆θ]t−1

RMS[g]t
.gt (14)

θt+1 = θt + ∆θt (15)

To simplify the notation, the gradient of the loss function with respect to the parameters
θ at the time step t, ∇θt L(θt, X, y), was replaced by gt.

With Adadelta, it is not necessary to define the default learning rate, since it was
eliminated from the update rule.

• Adam, or Adaptive Moment Estimates, is another algorithm that computes a learning
rate for each parameter θi. It computes an exponentially decaying average of past
squared gradients (υt in equation 17), like Adadelta and RMSprop do, but it also
calculates an exponentially decaying average of past gradients (mt in equation 16),
similar to momentum.

mt = β1.mt−1 + (1 − β1).∇θt L(θt, X, y) (16)

υt = β2.υt−1 + (1 − β2).∇2
θt

L(θt, X, y) (17)

Where mt and υt are estimates of the first and second moments of the gradients,
respectively. Since both terms are biased towards zero, it is convenient to correct them
using equations 18 and 19.

m̂t =
mt

1 − βt
1

(18)

υ̂t =
υt

1 − βt
2

(19)

With these two estimates we can update the weights using the rule expressed by
equation 20. The recommended value for β1 is 0.9, for β2 is 0.999, and for ϵ is 10−8.

θt+1 = θt −
α√

υ̂t + ϵ
.m̂t (20)

3.5. Loss Functions 39

3.5 loss functions

Machine learning learns through a loss function. It is a method that calculates how well
the algorithm models the data. If the predictions deviate too far from the expected outputs,
the optimization algorithm adjusts the weights to minimize the error. Gradually, with the
help of a loss function. There is no unique loss function suitable for all machine learning
algorithms. Several factors influence the selection of a loss function for a specific problem,
such as the type of ML problem to solve, the optimization algorithm being used, how easy
it is to calculate the derivatives (gradients) and, to some extent, the percentage of outliers
present in the dataset.

Broadly speaking, the loss functions can be classified into two main categories depending
on the type of learning task we are addressing: loss functions for classification and loss
functions for regression. In classification, we try to predict an output among a set of finite
categorical values. On the other hand, in regression, the model predicts a continuous value.

Loss functions for regression:

• As the name suggests, Root Mean Square Error (RMSE) / Square Loss / L2 loss is
defined as the mean of the square difference between the actual observations yi and
the predictions ŷi.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (21)

RMSE is concerned only with the average magnitude of the error, regardless of its
direction. However, due to the square, predictions that are far from the actual values
are heavily penalized compared to less deviated predictions. Mean Square Error (MSE)
also has interesting mathematical properties; for example, it is easier to calculate
gradients.

• On the other hand, the Mean Absolute Error (MAE) / L1 loss is measured as the
average of the absolute differences between the actual observations and the predictions.
Like MSE, it calculates the magnitude of the error without considering its direction.
Unlike MSE, calculating the gradient of MAE is more complex, and requires a method
such as linear programming. On the other hand, MAE is more robust to outliers, as it
does not square the errors.

• Compared to previous losses, Mean Bias Error (MBE) is much less common in the ML
field. MBE is similar to MAE, with the only difference that MBE does not consider
absolute values. Care must be taken, as positive and negative errors can cancel each

3.5. Loss Functions 40

other out. Although less accurate in practice, it can determine whether the model has
a positive or negative bias.

MBE =
1
n

n

∑
i=1

(yi − ŷi) (22)

Loss functions for classification:

• Hinge loss: The score associated with the correct class must be greater than the sum
of the scores of all incorrect classes by some margin of safety (usually one). Hinge loss
is used on the maximum-margin rating, most notably on Support Vector Machines
(SVMs). Although it is not smooth, it is a convex function that facilitates working with
the common convex optimizers used in ML. The hinge loss is defined by equation 23,
where y is the actual output (either 1 or -1), and ŷ is the output of the classifier.

l(ŷ) = max(0, 1 − y · ŷ) (23)

The objective of optimizing an SVM classifier is to minimize the term w, which is a
vector orthogonal to the hyperplane that separates our data (equation 24). The vector
w is used to project the data points.

min
w

1
2

n

∑
i=1

w2
i (24)

The minimization objective expressed by equation 24 corresponds to the primal form
of the hard margin SVM, which does not accept classification errors. In soft-margin
SVM, the loss function combines the minimization objective with a loss function such
as hinge loss (equation 25).

min
w

1
2

n

∑
i=1

w2
i +

m

∑
j=1

max(0, 1 − ŷj · yj) (25)

The first term in equation 25 is a sum over the number of features (n), while the second
term is a sum over the number of samples in the dataset (m). ŷ is the output predicted
by the model, and is calculated as the product of the weight parameter w and the input
x: ŷi = wTxj.

• Cross-entropy loss, or log loss, measures the performance of a binary classifier whose
output is a probability value between 0 and 1. The cross entropy loss increases as the
predicted probability diverges from the actual class (equation 26). This loss heavily
penalizes predictions that are confident but wrong.

3.6. Data Normalization 41

CrossEntropyLoss(y, ŷ) = −(yi. log(ŷi) + (1 − yi). log(1 − ŷi)) (26)

When the true output class is 1 (yi = 1), the second term of the loss is zero. If the true
output class is 0 (yi = 0), the first term of the loss is zero.

3.6 data normalization

Normalizing means compressing or expanding the variable values so that they fall within
a defined range. Among the possible normalization methods, we summarize two of them
next.

• In variable scaler, each input xi is normalized to fit the [0 : 1] interval, as specified by
equation 27.

Xnormalized =
X − Xmin

Xmax − Xmin
(27)

The problem with this normalization is that it compresses the input data to fit a fixed
[0 : 1] interval. This means that when data has a few strong outliers, most of the data
values will be compressed to a very narrow interval.

• Standard scaler is an alternative to variable scaling that applies another technique,
known as the standard scaler. The mean µ of each input variable is subtracted from
the variable’s value and the resulting difference is divided by the variable standard
deviation σ (equation 28).

Xnormalized =
X − µx

σx
(28)

3.7 data preprocessing

According to Techopedia, data preprocessing is a data mining technique that involves
transforming raw data into an understandable format. Real-world data is often incomplete,
inconsistent, and/or lacks certain behaviors or trends, and it is likely to contain errors. Data
preprocessing is a proven method to solve these problems. Data preprocessing is one of the
most important steps of data mining that deals with fetching, preparing, and transforming
data from the dataset. Data preprocessing provides operations that can reorganize the data in
a form that is more understandable, and that makes it easier to apply data mining techniques.
There are mainly four data preprocessing methods: data cleaning, data integration, data
transformation, and data reduction.

3.8. Image Segmentation 42

Data cleaning is the process of identifying and correcting, or removing, errors, inconsis-
tencies and inaccuracies in data. This is done to ensure that data is accurate, consistent and
useful for analysis and decision-making purposes. The goal of data cleaning is to improve
the quality of the data and make it ready for use in various applications.

Data integration is the process of combining data from multiple sources into a single and
unified view. This can include combining data from different databases, spreadsheets, or
other systems into a single data repository, or mapping data from different sources to a
common schema to enable cross-source analysis. The goal of data integration is to provide a
single version of the truth that can be used for business intelligence and decision making.

Data transformation refers to the process of converting data from one format, or structure,
to another in order to make it more suitable for analysis, modeling or further processing.
This can involve mapping data from multiple sources into a common format, aggregating
or summarizing data, or transforming data into a different format, or structure, to support
specific use cases. The goal of data transformation is to prepare data for analysis and
reporting, and to make it easier to work with in a variety of applications.

Data reduction refers to the process of reducing the size and complexity of a dataset, by
removing or aggregating redundant or irrelevant information. This can be achieved through
techniques such as data compression, feature selection, and dimensionality reduction. The
goal of data reduction is to simplify the data and make it easier to analyze and process,
while still retaining its important features and characteristics.

3.8 image segmentation

Image ranking, or classification, is a task that assigns a unique label to an input image. It
was one of the first areas in which DL made an important contribution to medical image
analysis. The difficulty of image classification results from image variation, which in turn
can result from different lighting conditions, different scales, from object deformation,
intra-class variation, and some objects being partially hidden. In the case of MRI of the
brain, images usually do not suffer from most of the aforementioned problems. Problems
such as occlusion, deformation, and background disorder do not occur in MRI, since the
acquisition task is very controlled and the images are very similar. Variations can occur in
(i) light conditions, due to different acquisition parameters, (ii) scale variations, due to a
great difference in the age of the patients (a baby brain is smaller than an adult brain), or
(iii) intraclass nuances (Fontainhas, 2018).

Image segmentation is usually defined as identifying the set of pixels that belong to a
specific substructure, tissue, or other material of interest. It is the most popular and common
task addressed in papers that apply DL to medical images. Some examples of DL models

3.8. Image Segmentation 43

that were successfully applied to image segmentation are Fully Convolutional Networks
(FCNs), VGG, SegNet, DeepLab, and U-NET (Fontainhas, 2018).

Image segmentation is a crucial task in computer vision that aims to divide an image
into smaller, meaningful parts for easier analysis. The segmented components are typically
objects or parts of objects, represented by groups of pixels or superpixels. By classifying
pixels into larger segments, image segmentation reduces the complexity of image analysis
by eliminating the need to analyze individual pixels. There are three levels of image analysis
that benefit from image segmentation:

• Classification categorizes an entire image into a class, such as "people", "animal",
"outdoor".

• Object detection aims to locate objects in an image, for example, by drawing a rectangle
around each object.

• Segmentation identifies parts of the image and understand what object they belong to.
Segmentation goes a step further in identifying content in images, than object detection
and classification.

Figure 10: Classification, detection, and segmentation.

Image classification, image segmentation, object detection, and instance segmentation
are all tasks in computer vision, but they differ in their goals and output.

• Image classification is the task of assigning a label to an entire image, indicating what
object or class of objects is present in the image.

• Image segmentation involves dividing an image into segments or regions, each
corresponding to a different object or part of an object.

• Object detection is the task of locating objects within an image and drawing a bound-
ing box around each object. It combines both image classification and image segmenta-
tion.

3.8. Image Segmentation 44

• Instance segmentation is a more advanced version of object detection, where not only
the bounding boxes of objects are predicted, but also the segmentation masks for each
individual object within the image.

In summary, image classification focuses on categorizing an image into one or multiple
classes, image segmentation separates an image into regions, object detection identifies
objects and draws bounding boxes around them, and instance segmentation extends object
detection by also generating segmentation masks for individual objects. Image segmentation
can be divided into two main variants: semantic segmentation and instance segmentation.
There is a third variant, called panoptic segmentation, that is not detailed here.

• Semantic segmentation classifies each pixel in an image into a class, among a pre-
defined set of classes. The classes are semantically interpretable and correspond to
real-world categories. For example, we can isolate all the pixels associated with cats
and assign them a single color, for example, green. This is also known as dense
classification because we predict the meaning of each pixel.

In the example given in figure 11, pixels are classified into three classes: "person",
“bike”, and "background". Usually, in an image with various entities, we want to know
which pixel belongs to which entity. Semantic segmentation is different from object
detection, as it does not predict any bounding boxes around the objects. In semantic
segmentation, we do not isolate the different instances of the same class of objects. For
example, there are multiple bikes in figure 11 and we assign the same label to all of
them (Hack, 2019).

• In instance segmentation we want to identify each instance of every class of objects
present in the image. In figure 12 there are three sheep. Semantic segmentation would
classify all pixels belonging to the class "sheep" with the same label, while instance
segmentation identifies each individual sheep and assigns a different label (blue, cyan,
green in this case) to the pixels that belong to different instances of the class sheep.

Segmentation techniques can also be classified based on the domain in which they operate,
namely the measurement space, spatial domain, and frequency domain. Segmentation
techniques in the measurement space operate on the raw data values of the image, such as
intensity, color, or texture. These techniques include thresholding, region growing, and clus-
tering. Segmentation techniques in the spatial domain operate on the spatial arrangement
of the image pixels, using information such as gradient, edge, or boundary information.
These techniques include edge detection, region splitting, and region merging. Finally,
segmentation techniques in the frequency domain operate on the frequency representation
of the image, using the Fourier Transform or other frequency-domain representations. These
techniques include wavelet analysis, singular value decomposition, and principal component

3.9. Traditional Image Segmentation Methods 45

Figure 11: Semantic segmentation.

analysis. Each of these domains offers different advantages and disadvantages and different
techniques may be better suited for different types of images or applications.

3.9 traditional image segmentation methods

Naturally, before the emergence of deep learning techniques, image segmentation was
already performed using more traditional techniques. The segmentation techniques that
were commonly used in the past are less efficient than their deep learning counterparts,
because they use rigid algorithms and require human intervention and experience. We next
summarize a few of these traditional segmentation techniques.

• Thresholding splits an image into foreground and background. A specified threshold
value separates the pixels into one of two levels to isolate objects. Thresholding
converts a grayscale image to a binary one, or it distinguishes the lightest pixels from
the darkest ones in a color image (figure 13).

• K-means clustering is an algorithm that identifies K groups in the data. The algorithm
assigns each data point, or pixel, to one group. The group is selected according to the

3.9. Traditional Image Segmentation Methods 46

Figure 12: Instance segmentation.

Figure 13: Thresholding segmentation.

highest similarity between the pixel and the members of every group. Instead of using
predefined groups, groups are created dynamically (figure 14).

• Histogram-based image segmentation uses a histogram to group pixels. The histogram
can represent the frequency of gray levels in an grayscale image. Simple images consist
of an object and the background. The background has usually the same color and so
there will be a large peak associated to the background color on the histogram. There
will be smaller peak(s) associated with color(s) of the foreground object. This way, it is
possible to separate background and object by using a threshold that lies between the
stronger peaks of the histogram.

3.10. Image Segmentation with Deep Learning Models 47

Figure 14: Segmentation with K-means clustering.

• Edge detection identifies abrupt changes, or discontinuities, in brightness in the image.
The detected edges can be refined by connecting the discontinuity points with lines or
curves. From these improved edges it is possible to delimit, i.e. segment, parts of the
image.

3.10 image segmentation with deep learning models

Modern computer vision, based on AI and deep learning methods, has evolved dramatically
in the past decade. Today, it is used in applications such as image classification, face
recognition, object detection, human pose estimation, video analysis, video classification,
image processing in robotics, and autonomous driving. Many computer vision tasks require
intelligent segmentation of images in order to understand what is in the image and allow
for an easier analysis of each part of the image. Current image segmentation techniques use
DL models to understand, at an unimaginable level just a decade ago, what type of object
each pixel in the image belongs to.

Deep learning can learn visual patterns in input to predict the classes of objects that make
up an image. Since 2012, and until the arise of vision transformers, most deep learning
models used in computer vision were based on Convolutional Neural Networks (CNNs).
Some popular architectures are AlexNet, VGG, Inception, and ResNet. Deep learning models
are typically trained on specialized hardware, namely graphics processing units (GPUs), to
reduce the computation time. Next, we present an overview of DL architectures that have
been applied in image segmentation (Minaee et al., 2020).

3.10.1 Convolutional Neural Networks

A convolutional neural network is a type of artificial neural network in which neurons have
a delimited receptive field, analogously to what happens in neurons of the primary visual

3.10. Image Segmentation with Deep Learning Models 48

cortex of the human brain. This type of network is a variation of the Multi-Layer Perceptron
(MLP). However, because they are applied to two-dimensional arrays, they are very effective
in computer vision tasks, such as classification and segmentation of images.

Convolutional neural networks consist of multiple layers in which convolution filters, of
one or more dimensions, are applied to the input of the layer. After each layer, a function
is usually added to introduce a nonlinearity. The initial layers of the classification network
carry out the feature extraction phase, usually accompanied by a reduction in the size of the
feature maps. At the end of the network are commonly placed a few dense layers, to perform
the final classification of the extracted features. The feature extraction phase is similar to the
stimulating process in the cells of the visual cortex. This phase consists of alternating layers
of convolution and feature size reduction (pooling). The output of a convolution neuron is
calculated by the equation 29.

Yi,j = g

(
b +

F

∑
r=1

F

∑
s=1

Kr,s ∗ Xi−F/2+r,j−F/2+s

)
(29)

Where Yi,j is the output of the neuron (i, j), X is the input of the present layer (which
is equal to the output of the previous layer), the summation carries out the convolution
between a window of the input X (centered in the neuron i, j) and the filter K, b is the layer
bias, and g is the nonlinear activation function. The size of the filters and the depth of the
network determine its receptive field, which in simple terms may be defined as the parcel
of the input image that contributes to the value of a given point on the output feature map.

The convolution operation has the effect of filtering the input "image" with a kernel that is
trained together with the entire neural network. These kernels extract low-level features,
such as vertical edges, horizontal edges, or rounded shapes.

After several convolutional layers, each one formed by a pair convolution-pooling, the
model learns higher level features. The final dense layers, also called fully-connected layers,
play the role of classifying the highest-level feature map in one class among the possible
ones. Neurons in dense layers work in the same way as a multi-layer perceptron, and the
output of each one is calculated as described by the equation 30.

yj = g

(
b + ∑

i
wi,j · xi

)
(30)

Where yj is the output of neuron j, a value that is a weighted sum of all/many inputs xi

of the neuron, wi,j is the learned weight that multiplies the input xi to produce the output of
neuron j, b is the layer bias, and g is the non-linear activation function that depends on the
type of classification task we are trying to solve.

3.10. Image Segmentation with Deep Learning Models 49

Figure 15: Convolutional neural tetwork.

3.10.2 Fully Convolutional Networks

Fully convolutional networks (FCNs) are used for computer vision tasks, such as semantic
segmentation or super-resolution (Long et al., 2015b). One of its best properties is that
they are applicable to entries of any size, for example, images of different sizes. However,
when running these networks on a large-sized input, such as a high-resolution image or a
video, they probably exhaust the available GPU memory. A fully convolutional network is
a network composed only of convolutional layers (figure 16). In several image processing
tasks, it is desired that input and output images have the same size. This can be achieved
with FCNs using the appropriate padding to extend the images and recover the size that
would be lost due to the edge effects associated with applying convolutions (Zuckerman,
2019). This type of architecture is useful in image processing tasks where it is important to
maintain the size of the input and output images.

3.10.3 DeepLab

DeepLab is a state-of-the-art semantic segmentation model proposed by Google (Chen
et al., 2017). The dense prediction is achieved by simply up-sampling the output of the last
convolutional layer and computing a pixel-wise loss. DeepLab uses atrous convolutions
on up-sampling. The repeated combination of max-pooling and striding, at consecutive
layers in Deep Convolutional Neural Networks (DCNNs), significantly reduces the spatial
resolution of the resulting feature maps. One solution to revert this situation is to use atrous
convolutions layers to up-sample the resulting feature map. However, these layers implicate
more memory and time to train the model. Atrous convolutions offer a simple yet powerful

3.10. Image Segmentation with Deep Learning Models 50

Figure 16: Fully Convolution Networks (FCNs).

alternative to regular convolutions. Atrous convolutions allow us to effectively enlarge the
field of view of the filters without increasing the number of parameters or the training
time (figure 17). An atrous convolution is equivalent to applying a regular convolution
with a kernel that has holes (‘trous’ in French) between non-zero kernel values (Sahu, 2019).
Mathematically, the output yi of an atrous convolution between a one-dimensional signal xi

and a filter w of size K and stride rate r, is defined by equation 31.

yi =
K

∑
k=1

xi+r.k ∗ wk (31)

3.10.4 SegNet Neural Network

The SegNet neural network is a convolutional neural network developed for semantic pixel-
level segmentation (Badrinarayanan et al., 2017). The architecture consists of an encoder,
the corresponding decoder, and a softmax classification layer. The role of the decoder is to
generate a low-resolution feature map suitable for pixel-level classification.

The encoder adopts the same topology as the 13 convolutional layers of the VGG16 model.
Both encoder and decoder are organized in a sequence of five blocks, each with similar
structure. Each decoder block uses the pooling indices, generated by the max-pooling layer
of the corresponding encoder block, to perform a non-linear upsampling. In this way, it
is not necessary to learn parameters for the upsampling layers. The upsampled feature
maps have low resolution and so they are convolved with trainable filters to generate denser
feature maps (figure 18).

3.10. Image Segmentation with Deep Learning Models 51

Figure 17: Regular convolution followed by up-sampling (top); atrous convolution generates a denser
feature map (bottom) (Chen et al., 2017).

Each block of the encoder includes convolutional, batch normalization, ReLU activation,
and max pooling layers. The decoder blocks include upsampling, convolutional, and batch
normalization layers. The softmax classification layer outputs an image with K channels,
which contain probabilities, and where K is the number of considered classes. For each pixel,
the predicted class corresponds to the channel that contains the highest probability.

SegNet was primarily designed to carry out scene understanding; hence, it is efficient
both in terms of memory and computational time during inference. It also has significantly
fewer parameters than other segmentation models.

Figure 18: A deep convolution encoder-decoder architecture for image segmentation.

3.10. Image Segmentation with Deep Learning Models 52

3.10.5 Tiramisu

A significant number of semantic segmentation models are based on CNNs and adopt
an architecture composed of (i) a downsampling path (encoder) responsible for extracting
low resolution feature maps, (ii) a upsampling path (decoder) that increases the feature
maps resolution and, optionally, (iii) a post-processor to refine the predictions. Densely
Connected Convolutional Networks, or simply DenseNets, achieved excellent results on
image classification. The novelty introduced by DenseNets is connecting each layer directly
to every other layer, following a feed-forward topology. Thus the model is more accurate and
easier to train. The Tiramisu model extends DenseNets to address the semantic segmentation
problem (Jégou et al., 2017). There are several advantages of using DenseNet over ResNet:
(i) DenseNets are more efficient in terms of parameter usage, (ii) DenseNets perform deep
supervision due to short paths to all feature maps in the architecture, and (iii) layers can
reuse information from feature maps computed in preceding layers.

The Tiramisu architecture is built from dense blocks, transition down blocks, transition up
blocks, convolutional layers, skip connections and concatenations (figure 19).

The downsampling path includes five replicas of the following topology: a dense block, a
concatenation of the dense block output with the dense block input (direct connection), and
a transition down block. As shown in right part of figure 19 a dense blocks is composed of
four "layers" and feed-forward direct connections, similar to ResNet. Each "layer" consists
on a batch normalization layer, a ReLU activation function, a convolution layer using a 3 × 3
kernel, and dropout. A transition down block includes a batch normalization layer, a ReLU
activation function, a convolution layer using a 1 × 1 kernel, dropout, and a max pooling
layer.

The upsampling path replicates the following topology five times: a transition up block, a
concatenation of the transition up block output with the skip connection coming from the
correct point on the downsampling path, and a dense block. A transition up block includes
a transposed convolution with a 3 × 3 kernel and using stride 2. Between the end of the
downsampling path and the beginning of the upsampling path there is an additional dense
block.

3.10.6 Feature Pyramid Network

Feature Pyramid Network (FPN) is a type of deep learning architecture used in computer
vision tasks, such as object detection and instance segmentation (Lin et al., 2016). It was
designed to address the problem of preserving both fine and coarse features of an image,
which is critical to accurately detect and segment objects. The main idea behind FPN is to
construct a pyramid of features, where each layer of the pyramid corresponds to a different

3.10. Image Segmentation with Deep Learning Models 53

Figure 19: Tiramisu semantic segmentation model.

scale. The lower layers capture coarse information about the image, while the higher layers
capture finer details. These features are combined and processed to produce accurate object
detection and segmentation results.

3.10.7 Mask R-CNN

Mask R-CNN is a deep learning architecture thought for computer vision tasks, such as
instance segmentation (He et al., 2017). It extends the popular two-stage object detection
architecture, called Faster R-CNN, by adding a third branch that predicts the object mask, in
parallel with the bounding box and class prediction. The Mask R-CNN architecture consists

3.10. Image Segmentation with Deep Learning Models 54

of a backbone network for feature extraction, a region proposal network for proposing candi-
date object regions, and two heads for classification and mask prediction. This architecture
is able to perform instance segmentation, which involves both object detection and semantic
segmentation of individual objects within an image.

4

P R O P O S E D M E T H O D O L O G Y

Today, we use technology daily, with computers, tablets, or mobile phones, and it is difficult
to understand that only a few years ago this was not the reality.

4.1 related work

In the late 1990s and early 2000s, researchers had little knowledge of the inner workings of
CNNs and were considered black boxes. Complex and heavy architectures made training
CNNs difficult. In early 2000, it was widely assumed that the backpropagation algorithm,
used to train CNNs, was not effective in converging to the global minimum of the loss
function. Therefore, CNNs were considered to be less effective feature extractors compared
to traditional methods of feature engineering. However, with the technological advances
that occurred at the level of datasets and libraries used to implement neural networks, the
development of CNNs finally has the potential to evolve in a remarkable way. The significant
improvement in performance achieved by CNNs is considered to have occurred between
2012 and 2019.

The learning capacity of deep CNNs is essentially due to the fact that they use several
layers that can automatically extract representative features from the training data. Over
the last decade, several innovative ideas have been introduced in CNNs, such as exploring
different activation and loss functions, performing hyperparameter optimization, applying
regularization techniques, and including architectural innovations in the network topology.
However, it was the architectural innovations that brought the greatest gains to the perfor-
mance of DCNNs. Some of these ideas include (i) exploring the spatial component and depth
of the information, (ii) varying the depth and width of the layers, (iii) using topologies with
multiple paths, (iv) using residual modules to reduce the problem of vanishing gradients in
deep networks, or using the attention mechanism (Khan et al., 2020).

Several CNN architectures have been proposed in recent decades, such as LeNet, AlexNet,
ZfNet, VGG, U-NET, GoogleNet, ResNet, Inception, Inception-ResNet, DenseNet, Wide
ResNet, ResNeXt, PyramidNet or SE Net (figure 20).

55

4.1. Related Work 56

Figure 20: Milestones in CNN evolution.

4.1. Related Work 57

The LeNet model was proposed by Yann LeCun in 1998 (LeCun et al., 1995). Its historical
importance comes from being the first CNN to show top performance in the digit recognition
task. It has the ability to classify the digits without being affected by small distortions,
rotations, variations in position, and scale. LeNet is a feedforward neural network consisting
of five pairs of convolution-pooling layers. Semantic segmentation makes predictions about
the object category each pixel belongs to, providing a comprehensive description of the
scene that includes the object category, its location, and shape information (figure 21). State-
of-the-art semantic segmentation approaches are typically based on the fully convolutional
networks (FCNs) structure (Long et al., 2015a). The adaptation of deep convolutional neural
networks benefits from the rich object information scene categories and semantics learned
from several sets of images (Zhang et al., 2018).

Figure 21: Labeling a scene at the pixel-level is a challenge for semantic segmentation models.

As CNN evolution progressed, Simonyan and Zisserman (2015) proposed a simple and
efficient architecture called VGG. VGG is commonly used in two configurations with 16

or 19 layers. Compared to AlexNet and ZfNet, VGG has more layers and thus it has a
higher representational capacity. VGG replaced (5 × 5) filters with more (3 × 3) filters
and experimentally demonstrated that the use of smaller (3 × 3) filters can achieve the
benefits of larger ones, such as (5 × 5) and (7 × 7). The use of smaller filters provides an

4.1. Related Work 58

additional advantage of lower computational effort due to the reduction in the number of
parameters (Khan et al., 2020).

The GoogleNet model was the winner of the ILSVRC 2014 competition and is also known
as Inception-V1. The main purpose of the authors was to increase accuracy with reduced
computational cost (Szegedy et al., 2015). GoogleNet introduced the new concept of an initial
block in the CNN, which incorporates multiscale convolution transformations using the
idea of division, transformation, and merging. On GoogleNet, the conventional convolution
layers are replaced by small blocks, similar to the idea of replacing each layer by a micro
neural network as proposed in the Network in Network (NiN) architecture (Lin and and.
S Yan, 2013). These blocks encapsulate parallel paths using filters with different sizes, (1× 1),
(3 × 3), and (5 × 5), to capture spatial information at different scales. Exploring the idea
of division, transformation and fusion in GoogleNet helped to solve a problem related to
learning variations in the same image that result from different resolutions or scales (Khan
et al., 2020).

To increase the learning capacity of ResNet, Han et al. (2017) proposed the PyramidNet
model. Instead of increasing the number of feature maps (or channels) very sharply when
moving from one downsampling layer to the next, as occurs in ResNet, they opted for a
more gradual increase in the number of channels, but involving as many layers as possible.
This architect improved the generalization capability of the model. They also proposed a
residual unit to improve the accuracy of classification. Due to a gradual increase in the depth
of the feature maps, as we progress on the network, it was named a pyramidal network.
In the pyramid lattice, the depth of the feature maps is regulated by the l-factor, which is
calculated by equation 32 (Khan et al., 2020).

dl =

{
16 , if l = 1

[dl−1 +
λ
n] , if 2 ≤ l ≤ n + 1

(32)

The authors Ronneberger et al. (2015) proposed a deep learning architecture, called U-Net,
which is specifically designed for biomedical image segmentation, which is a critical task in
medical imaging applications. The U-Net model consists of two parts: a contracting pathway
to capture context and a symmetric expanding pathway to enable precise localization,
along with skip connections that allow the network to use low-level features for accurate
segmentation. They evaluated the U-Net architecture on two widely used medical imaging
datasets, the ISBI cell tracking challenge and the EM segmentation challenge. The results
demonstrated that the U-Net architecture outperformed other methods and achieved state-
of-the-art performance on both datasets, highlighting its effectiveness for a wide range of
biomedical image segmentation tasks, including segmenting cell structures and electron
microscopy images. The work also showed that skip connections in the U-Net architecture

4.1. Related Work 59

were crucial for achieving accurate segmentation. Furthermore, the U-Net model was found
to be easily adaptable to different imaging modalities and segmentation tasks, making
it a valuable tool for medical imaging applications with small training datasets. Overall,
the U-Net architecture presented in this study has significant potential for improving the
accuracy and efficiency of biomedical image segmentation, which can have a positive impact
on various medical applications.

The study by Long et al. (2012) proposes a new approach for semantic image segmentation
using fully convolutional neural networks FCNs. The authors demonstrate that by replacing
the fully connected layers in a traditional convolutional neural network with convolutional
layers, the network can be trained to predict a segmentation map for each input image.
The proposed FCNs method achieved state-of-the-art performance on the PASCAL VOC
2012 benchmark dataset, outperforming previous approaches that relied on hand-designed
features and post-processing (table 1). The FCNs method also showed promising results
on other datasets, including the SIFT Flow dataset and the NYUDv2 dataset. The authors
further analyzed the FCNs approach and showed that it can be used for various semantic
segmentation tasks, including object detection, image retrieval, and scene parsing. They
also propose an end-to-end learning approach that can incorporate different sources of
supervision, such as class labels and bounding boxes, to improve the accuracy of semantic
segmentation. Overall, the study demonstrates the effectiveness of fully convolutional neural
networks for semantic image segmentation and opens up possibilities for future research in
this area. The output result of this study is a fully convolutional neural network architecture
that can perform pixel-wise segmentation of images, which has applications in fields such
as object detection, autonomous driving, and medical imaging.

Table 1: Results of different architecture evaluated by Long et al. (2012).

The work by Kohlberger et al. (2011a) presents a method for automatic segmentation
of multiple organs in medical images. The proposed method combines a learning-based
segmentation approach with level set optimization to achieve accurate and efficient seg-
mentation. The authors explain the importance of accurate organ segmentation in medical
imaging and the challenges associated with manual segmentation. They described the

4.1. Related Work 60

proposed method, which consists of two main stages: a learning-based segmentation and
a level set optimization. In the first stage, the authors use a deep convolutional neural
network to learn the appearance and shape of each organ. The CNN is trained on a large
dataset of annotated medical images, and is able to accurately segment the organs in new
images based on their appearance and context. In the second stage, the authors use a
level set optimization to refine the initial segmentation obtained with the CNN. Level set
optimization is a well-established method for segmentation that uses a mathematical model
to evolve the segmentation boundary over time. The authors used a modified version of the
level set method that incorporates shape priors learned by the CNN, as well as information
from neighboring organs, to improve the accuracy of the segmentation (table 2). The authors
evaluate their method on two different datasets of CT and MRI images, and compare it
to several state-of-the-art segmentation methods. They show that their method achieves
high accuracy and efficiency, and outperforms other methods in terms of both segmentation
quality and computation time. In conclusion, the authors present a novel method for auto-
matic multi-organ segmentation in medical images that combines a learning-based approach
with a level set optimization. Their method achieves high accuracy and efficiency, and has
the potential to improve clinical workflows and patient outcomes in a variety of medical
applications.

Table 2: Symmetric surface errors obtained with learning-based segmentation and after applying a
level set-based refinement (Kohlberger et al., 2011a).

Sobhaninia et al. (2017) explored various perspectives of brain MRI imaging and applied
distinct networks to segmentation. This work evaluated the impact of utilizing separate
networks for MRI segmentation by comparing the outcomes to those achieved with a single
network. Experimental assessments of the networks indicated that a Dice score of 0.73 was
obtained using a single network, while a Dice score of 0.79 was obtained using multiple
networks (table 3). These findings suggest that the use of multiple networks may improve the

4.2. Proposed Methodology 61

precision of brain tumor segmentation compared to using a single network. In general, this
study highlights the importance of carefully selecting appropriate segmentation networks
and considering multiple-view MRIs to achieve optimal segmentation results.

Method Data Dice
Single LinkNet for all angles All angles 0.73

Separately trained Linknet networks for each angle Coronal view 0.78

Separately trained Linknet networks for each angle Sagittal view 0.79

Separately trained Linknet networks for each angle Axial view 0.71

Table 3: Results of different approaches explored by Sobhaninia et al. (2017).

In the paper (Kohlberger et al., 2011b), the authors introduced a new segmentation method
that combines learning-based and PDE optimization-based level set approaches to achieve
accurate multi-organ segmentation in CT medical images. The proposed method provides
several advantages, including an accurate organ boundary detection, with minimal overlap,
and a high segmentation accuracy, with a 1.17-2.89mm average surface error. The authors
also highlight the limitations of point cloud-based shape representations and the advantages
of level set-based representations in encoding segment boundaries at a homogeneous
resolution, which simplifies the detection and formulation of constraints to prevent overlaps.
Furthermore, the proposed method preserves point-to-point correspondences estimated
during learning-based segmentation and presents novel terms to impose region-specific
geometric constraints between adjacent boundaries. The paper describes an energy-based
minimization approach for multiple organs as a segmentation refinement stage and shows
how it improves upon detection-based results for the liver, lungs, and kidneys. In addition,
the authors also highlight its practical applications. The automatic multi-organ segmentation
method has the potential to facilitate a variety of clinical workflows, including radiation
therapy planning, diagnosis, and treatment monitoring. The key contributions include the
combination of learning-based and level set approaches, using novel constraints to prevent
overlaps between adjacent segment boundaries, reaching a high accuracy, and an efficient
method to segment multiple organs. Their methodology significantly enhance the clinical
utility of CT imaging by providing reliable and automated segmentation results, thereby
enabling more effective diagnosis and treatment planning for various medical conditions.
Overall, the paper represents a significant step forward in the field of medical image analysis
and segmentation, with potential applications in a wide range of clinical scenarios.

4.2 proposed methodology

To solve the image segmentation problem two deep learning models will be used: U-Net
and Tiramisu. The proposed methodology outlines the steps for training and evaluating

4.3. Dataset 62

these models on a dataset of images, and provides a plan for comparing their semantic seg-
mentation performance, in terms of IoU and efficiency. The presentation of the methodology
covers the following topics:

• Present the dataset that will be used during the project development.

• Preprocessing the dataset, including splitting it into training, validation, and evaluation
subsets.

• Describe the models that were selected to perform medical image segmentation.

• Present the implementation of the selected models with the Keras library.

4.3 dataset

The LGG Segmentation Dataset contains 3929 brain MRI scans, 3929 manual Fluid-Attenuated
Inversion Recovery (FLAIR) abnormality segmentation masks, and occupies more than 10G
bytes. The resolution of the images is 256 × 256 pixels. The dataset was obtained from The
Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA), was recorded in
110 patient exams, 5 institutions, and with Lower Grade Gliomas (LGGs). A lower grade
glioma is a type of tumor that develops in the brain and tends to grow slowly. The number
of scans with tumor is 1373 and without tumor is 2556.

FLAIR is an advanced MRI sequence that reveals T2 tissues (fat and water), while sup-
pressing cerebrospinal fluid, allowing the detection of superficial brain lesions. T2 MRI
images are captured using radiofrequency pulse sequences with a timing that highlights fat
and water within the body. The purpose of using FLAIR is to detect lesions that are usually
missed by MRI (Bakshi et al., 2001).

The ground truth for training the segmentation models is the manual segmentation masks.
The MRI images were obtained from the patients, but the ground truth masks were manually
annotated by a medical student with experience in neuroradiology using drawing software.
Later, these masks were validated and corrected by a radiologist. Figure 22 shows four
samples of the dataset, where images are on the top and the masks are on the bottom.

4.4 data preprocessing

Image preprocessing involves transforming raw images into an understandable and useful
format. This step must be done before the images are applied in model training. It includes,
but is not limited to, resizing, orienting, and applying color correction.

Image resizing is a manipulation applied to an image to create an image with different
size but the same content. If our dataset has images with different sizes, we must resize

4.4. Data Preprocessing 63

Figure 22: Samples of the LGG segmentation dataset.

them to get a uniform dataset. In our case, we resized all the images so that they have
128 × 128 pixels. In order to minimize computational cost, we changed the images to NPY

format, which helps us in the training process. The fragment of Python code included in
listing 4.1 illustrates the image resizing task.
NPY is a simple format for saving NumPy arrays to files, including full information about the

arrays. NPY is the standard binary format in NumPy to store a single array on disk. Information
such as the shape and and type of the array, which is necessary to reconstruct the array
correctly even on another machine possibly with a different architecture, is also stored on
the NPY file 1.

1 from PIL import Image

2 image_dataset = []

3 mask_dataset = []

4 for i in tqdm(range(len(df))):

5 img_path = train_files[i]

6 image = cv2.imread(img_path,0)

7 image = image.fromarray(image)

8 image = image.resize((SIZE,SIZE))

9 image_dataset.append(np.array(image))

10 mask_path = mask_files[i]

11 image = cv2.imread(msk_path,0)

12 image = Image.fromarray(image)

13 image = image.resize((SIZE,SIZE))

14 mask_dataset.append(np.array(image))

Listing 4.1: Image resizing code.

1 https://numpy.org/devdocs/reference/generated/numpy.lib.format.html

4.4. Data Preprocessing 64

When we read an image into memory, the pixels are usually encoded with an 8-bit integer,
between 0 and 255, for each color channel. However, regression models, including neural
networks, prefer an input that is encoded as floating point values within a smaller range.
Often, we want the values to have mean 0 and standard deviation 1 as the standard normal
distribution 28. This process is called image normalization and its implementation is
illustrated in listing 4.2.

1 from tensorflow.keras.utils import normalize

2 image_dataset = np.expand_dims(normalize(np.array(image_dataset), axis=1),3)

3 mask_dataset = np.expand_dims((np.array(mask_dataset)),3)/255.

Listing 4.2: Image normalization code.

The fundamental goal of an ML model is to make accurate predictions on data not
included in the training dataset. Before using a model to make predictions, we need to
evaluate the predictive performance of the model. To assess the quality of predictions of
an ML model when faced with data it has not seen, we can leave aside part of the dataset.
The standard procedure for achieving this goal is to split the entire dataset into two or three
parts: the training set, the validation set, and the test set (figure 23). In our case, we split the
dataset into two parts, 80% for training and 20% for testing, selected randomly. The code
included in listing 4.3 implements the splitting of the dataset.

Figure 23: Splitting the dataset.

1 from sklearn.model_selection import train_test_split

2 X_train, X_test, y_train, y_test = train_test_split(

3 image_dataset,

4 mask_dataset,

5 test_size = 0.2,

6 random_state = 0

7)

Listing 4.3: Code to split the dataset into training and test sets.

4.5. Selecting Models for Image Segmentation 65

During the training phase, the DL models are fed a mini-batch of samples and respective
masks at a time. Batches are randomly sampled from the dataset via python generators.

4.5 selecting models for image segmentation

In this section, we present the details of the DL models that were selected to carry out
semantic segmentation of the medical images, U-Net and Tiramisu network, describing
some layers of the networks and aspects that are distinct in the selected architectures. We
will also describe the training and inference processes.

Figure 24 gives a simplified view of the U-Net model during training. On the left, a
(batch of) preprocessed image feeds the network. The image is forward propagated through
the network layers and a mask is output (top image on the right). This mask is compared
with the ground truth mask and by using a loss function an error is calculated. During
the backpropagation step, we calculate the gradient of the loss function in relation to each
parameter of the model, which are the weights and biases of the layers, and the error (or
gradient) is used to adjust the respective parameter value.

Figure 24: U-Net during training.

4.5. Selecting Models for Image Segmentation 66

Figure 25 gives a simplified view of the trained U-Net performing inference. It begins
with an input image from the test set feeding the network (on the left), the image is forward
propagated through the network already trained, and the model outputs a segmentation
mask that distinguishes tumor from non-tumor pixels (on the right).

Figure 25: U-Net during inference.

4.5.1 U-Net Model

The U-Net architecture presented in figures 24 and 25 consists of a contracting path that
captures context and a symmetric expanding path that enables precise localization. This
simple encoder-decoder architecture has become very popular and has been adapted to deal
with a variety of segmentation problems. In the standard U-Net model, the contracting path
consists of a series of four blocks, each containing two convolution-ReLU layers and one
max pooling layer. The expanding path includes four blocks, each containing a transposed
convolution layer and two convolution-ReLU layers. Between the contracting and expanding
paths there is a bottleneck block that has 2 convolution-ReLU layers. In addition, the network
has a skip connection from each encoder block to the corespondent decoder block. These
connections inject higher resolution information in later stages of the network.

4.5. Selecting Models for Image Segmentation 67

As explained by Jordan (2018b), there are a number of more advanced blocks that can be
stacked to build a U-Net network. Drozdzal et al. (2016) replaced the basic blocks, built
with stacked convolutions, with residual blocks. The residual block introduces short skip
connections, within the block, alongside the existing long skip connections, between the
corresponding encoder and decoder blocks, found in the standard U-Net structure. They
report that short skip connections allow for faster convergence when training and allow
deeper models to be trained.

4.5.2 Tiramisu Model

By expanding the architecture of U-Net, Jégou et al. (2016) proposed using dense blocks,
but still following a decoder-encoder network topology, arguing that the characteristics
of DenseNets make them a very good fit for semantic segmentation, as they naturally
induce skip connections and multiscale supervision. These dense blocks are useful because
they carry low-level features from previous layers directly alongside higher-level features
from later layers, allowing for highly efficient feature reuse. The proposed model is called
Tiramisu and is depicted in figure 26.

Figure 26: Tiramisu fully convolutional neural network.

4.6. Implementation of Image segmentation Models 68

A very important aspect of the Tiramisu architecture is the fact that the upsampling path
does not have a skip connection between the input and output of a dense block. The authors
note that because the upsampling path increases the feature maps spatial resolution, the
linear growth in the number of features would be too memory demanding. Thus, only the
output of each encoder dense block is passed directly to the correspondent decoder block.

In simple terms, the goal of segmentation is to take an RGB color image with size
H × W × 3 or a grayscale image with size H × W × 1, and output a segmentation mask
with size H × W × 1 and where each pixel is assigned a class label represented by an
integer value. Figure 27 illustrates the segmentation of a scene in 5 classes. To simplify
the visualization, the segmentation mask has a lower resolution than the input scene. In
reality, the segmentation mask resolution should match the input image resolution. Instead
of generating a single mask in which each pixel is assigned a value that identifies one of
multiple classes, we can generate multiple binary masks, one for each class of our problem.

Figure 27: A simple example of semantic segmentation.

4.6 implementation of image segmentation models

We present now a few implementation details about the model’s implementation.

• The convolution layers are implemented with the Conv2D keras function. The input
of the layer is convolved with a set of filters to produce a set of feature maps. The
fundamental parameters of Conv2D are the size of the filters, the stride, the padding,
and the activation functions. We chose to use all filters with size 3 × 3, the padding
was set to ’same’ to maintain the size of the output equal to the input image size, and
the selected activation function is ReLu.

• To reduce the computation cost and the number of parameters, when we increase
the number of feature maps in successive convolution layers, the feature maps are

4.6. Implementation of Image segmentation Models 69

often downsampled. A common implementation of downsampling in neural networks
are the pooling layers. MaxPooling2D is a Keras layer that downsamples the input
along its spatial dimensions, height and width, by taking the maximum value over
a specified input window for each channel of the input. The window is repeatedly
shifted by strides along each dimension. The main parameters of MaxPooling2D are
the window size over which we calculate the maximum, the strides that specify how
many positions the pooling window moves for in each pooling step, and the padding
to apply to the input tensors of the layer.

• To reverse the effect of max pooling layers, the upsampling of feature maps is imple-
mented with the Conv2DTranspose Keras layer. This layer implements a 2D transposed
convolution, which is not a deconvolution. In transposed convolutions, the filters
are used to learn meaningful decompression instead of compression as in regular
convolutions. The transposed convolution operation is equivalent to the gradient
calculation of a regular convolution, that is, it is equivalent to the backward pass of a
regular convolution. A transposed convolution essentially computes the transposed
matrix of a regular convolutional layer, swapping the effect of a regular convolution
forward pass with its backward pass effect. The curious fact is that the weights of a
transposed convolution can be learned (Dumoulin and Visin, 2018).

To conclude the presentation of the implementation of the U-Net and Tiramisu networks,
we summarize the number of trainable parameters of both models in listings 4.4 and 4.5,
respectively.

1 Total params: 1,941,105

2 Trainable params: 1,941,105

3 Non-trainable params: 0

Listing 4.4: Number of parameters in the U-Net model.

1 Total params: 13,824,657

2 Trainable params: 13,818,793

3 Non-trainable params: 5,864

Listing 4.5: Number of parameters in the Tiramisu model.

The architecture of U-Net reported by the Keras Model.summary method is detailed in
listing 4.6. The main code that implements U-Net is included in appendix 7, on listings 7.8
and 7.9. Due to its long description, the summary of the Tiramisu model can be found in
appendix 7, on listings 7.12 until 7.24. The main code that implements Tiramisu is included
on listings 7.28 and 7.29.

4.6. Implementation of Image segmentation Models 70

1 Layer (type) Output Shape Params Connected to

2 input_9 (InputLayer) [(None, 128, 128, 3) 0

3 lambda_8 (Lambda) (None, 128, 128, 3) 0 input_9[0][0]

4 conv2d_152 (Conv2D) (None, 128, 128, 16) 448 lambda_8[0][0]

5 dropout_72 (Dropout) (None, 128, 128, 16) 0 conv2d_152[0][0]

6 conv2d_153 (Conv2D) (None, 128, 128, 16) 2320 dropout_72[0][0]

7 max_pooling2d_32 (MaxPooling2D) (None, 64, 64, 16) 0 conv2d_153[0][0]

8 conv2d_154 (Conv2D) (None, 64, 64, 32) 4640 max_pooling2d_32[0][0]

9 dropout_73 (Dropout) (None, 64, 64, 32) 0 conv2d_154[0][0]

10 conv2d_155 (Conv2D) (None, 64, 64, 32) 9248 dropout_73[0][0]

11 max_pooling2d_33 (MaxPooling2D) (None, 32, 32, 32) 0 conv2d_155[0][0]

12 conv2d_156 (Conv2D) (None, 32, 32, 64) 18496 max_pooling2d_33[0][0]

13 dropout_74 (Dropout) (None, 32, 32, 64) 0 conv2d_156[0][0]

14 conv2d_157 (Conv2D) (None, 32, 32, 64) 36928 dropout_74[0][0]

15 max_pooling2d_34 (MaxPooling2D) (None, 16, 16, 64) 0 conv2d_157[0][0]

16 conv2d_158 (Conv2D) (None, 16, 16, 128) 73856 max_pooling2d_34[0][0]

17 dropout_75 (Dropout) (None, 16, 16, 128) 0 conv2d_158[0][0]

18 conv2d_159 (Conv2D) (None, 16, 16, 128) 147584 dropout_75[0][0]

19 max_pooling2d_35 (MaxPooling2D) (None, 8, 8, 128) 0 conv2d_159[0][0]

20 conv2d_160 (Conv2D) (None, 8, 8, 256) 295168 max_pooling2d_35[0][0]

21 dropout_76 (Dropout) (None, 8, 8, 256) 0 conv2d_160[0][0]

22 conv2d_161 (Conv2D) (None, 8, 8, 256) 590080 dropout_76[0][0]

23 conv2d_transpose_32 (Conv2DTr.) (None, 16, 16, 128) 131200 conv2d_161[0][0]

24 concatenate_32 (Concatenate) (None, 16, 16, 256) 0 conv2d_transpose_32[0][0]

25 conv2d_159[0][0]

26 conv2d_162 (Conv2D) (None, 16, 16, 128) 295040 concatenate_32[0][0]

27 dropout_77 (Dropout) (None, 16, 16, 128) 0 conv2d_162[0][0]

28 conv2d_163 (Conv2D) (None, 16, 16, 128) 147584 dropout_77[0][0]

29 conv2d_transpose_33 (Conv2DTr.) (None, 32, 32, 64) 32832 conv2d_163[0][0]

30 concatenate_33 (Concatenate) (None, 32, 32, 128) 0 conv2d_transpose_33[0][0]

31 conv2d_157[0][0]

32 conv2d_164 (Conv2D) (None, 32, 32, 64) 73792 concatenate_33[0][0]

33 dropout_78 (Dropout) (None, 32, 32, 64) 0 conv2d_164[0][0]

34 conv2d_165 (Conv2D) (None, 32, 32, 64) 36928 dropout_78[0][0]

35 conv2d_transpose_34 (Conv2DTr.) (None, 64, 64, 32) 8224 conv2d_165[0][0]

36 concatenate_34 (Concatenate) (None, 64, 64, 64) 0 conv2d_transpose_34[0][0]

37 conv2d_155[0][0]

38 conv2d_166 (Conv2D) (None, 64, 64, 32) 18464 concatenate_34[0][0]

39 dropout_79 (Dropout) (None, 64, 64, 32) 0 conv2d_166[0][0]

40 conv2d_167 (Conv2D) (None, 64, 64, 32) 9248 dropout_79[0][0]

41 conv2d_transpose_35 (Conv2DTr.) (None, 128, 128, 16) 2064 conv2d_167[0][0]

42 concatenate_35 (Concatenate) (None, 128, 128, 32) 0 conv2d_transpose_35[0][0]

43 conv2d_153[0][0]

44 conv2d_168 (Conv2D) (None, 128, 128, 16) 4624 concatenate_35[0][0]

45 dropout_80 (Dropout) (None, 128, 128, 16) 0 conv2d_168[0][0]

46 conv2d_169 (Conv2D) (None, 128, 128, 16) 2320 dropout_80[0][0]

47 conv2d_170 (Conv2D) (None, 128, 128, 1) 17 conv2d_169[0][0]

Listing 4.6: Summary of the U-Net model.

5

R E S U LT S

After performing several experiments with U-Net and Tiramisu models, with different loss
functions, this chapter reports the achieved results. We will show that U-Net allows us to get
better results than Tiramisu. Several loss functions were tried with both models, including a
combination of all losses, which we called total loss.

We begin the presentation of results with a summary of the experiments that were
performed, including the model, the number of parameters of the model, the loss function,
and the evaluation metric (table 4).

Model Parameters Loss Function Metric
Jaccard
Binary Cross Entropy (BCE)

U-Net 1,941,105 BCE-dice IoU
Tversky
Total
Jaccard
BCE

Tiramisu 13,824,657 BCE-dice IoU
Focal Tversky
Binary focal

Table 4: Summary of the performed experiments.

In the field of statistics and artificial intelligence, it is common to work with loss functions
to measure the error, or loss, of predictions. Since classification and regression are the
two main machine learning tasks, there are different loss functions to evaluate the error in
each of these tasks. Since segmentation is essentially a classification problem, we will use
loss functions suitable for classification. The loss functions that were evaluated are Jaccard,
Binary Cross-Entropy, Focal, Tversky, BCE-dice, and a combination of all the previous ones.

As described in section 3.4, there are several algorithms among which we can choose the
one with which we are going to optimize the machine learning models. We selected the Adam
optimizer. Adam calculates an exponentially decaying average of past squared gradients

71

5.1. Evaluation Metric 72

and an exponentially decaying average of past gradients, regulated by the hyperparameters
β1 and β2.

5.1 evaluation metric

The IoU, also known as the Jaccard index or the Jaccard similarity coefficient, is one of the
most widely used metrics in semantic segmentation. IoU is a very intuitive metric whose
meaning is illustrated in figure 28. IoU is the area of interception between the predicted
segmentation mask and the ground truth mask divided by the area of union between the
predicted segmentation mask and the ground truth mask. The metric ranges from 0 to 1,
or 0 to 100%, with 0 meaning no overlap and 1 meaning complete overlap between the
segmentation masks.

Figure 28: Meaning of the Intersection over Union metric.

In binary or multiclass image segmentation, the mean IoU of the prediction is calculated
by taking the IoU of each class and averaging them. The IoU metric is better than the pixel
accuracy to evaluate a segmentation model. For this reason, in the present work, the metric
adopted to evaluate the performance of the models was IoU. IoU can be calculated with the
method included in listing 5.1.

5.2 hyperparameter optimization

Hyperparameters are the parameters that allow us to configure several aspects of the models
and of the training process itself. These parameters are not learned through the regular

5.2. Hyperparameter Optimization 73

training process. They need to be optimized apart. In machine learning, hyperparameter
optimization is the process of selecting the best combination of hyperparameters that deliver
the best model performance. Several optimization techniques exist, such as Grid Search,
Random Search, or Bayesian Search. There are also a few frameworks that implement
these optimization techniques, for example Keras Tuner, Optuna, Hyperopt, Scikit-Optimize,
Ray Tune, Talos, or BayesianOptimization. Finally, some integrated platforms support
hyperparameter optimization, namely Weights and Biases, comet.ml, neptune.ai, or Polyaxon.
Here we will give a brief overview of the explored solutions: Weights and Biases and Keras
Tuner.

1 def iou(y_true, y_pred):

2 y_true_f = K.flatten(y_true)

3 y_pred_f = K.flatten(y_pred)

4 smooth = 0.00001

5 intersection = K.sum(y_true_f * y_pred_f)

6 union = K.sum(y_true_f)+K.sum(y_pred_f)-intersection

7 iou_val = (intersection + smooth) / (union + smooth)

8 return iou_val

Listing 5.1: Computing the IoU metric.

Weights and Biases

Weights and Biases (WandB) is a machine learning platform for developers to build better
models faster. We can use WandB lightweight and interoperable tools to quickly track
experiments, data versioning, manage models, evaluate model performance, reproduce
experiments, visualize results, spot regressions, and collaborate. Weights and Biases sweeps
facilitate the automation of hyperparameter optimization and to explore the space of possible
solutions. The main benefits of WandB sweeps are the following:

1. Performing hyperparameter optimization only requires a few lines of code. We can
launch a sweep across dozens of machines as easy as starting a sweep on our local
machine.

2. All the optimization algorithms’ code is open source.

3. Sweeps are completely customizable and configurable.

Keras Tuner

KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves
the pain points of hyperparameter search. One can easily configure the search space with

5.3. Learning Rate 74

a define-by-run syntax, then leverage one of the available search algorithms to find the
best hyperparameter values for our models. KerasTuner comes with Bayesian Optimization,
Hyper-band, and Random Search algorithms built-in, and it is also designed to be easily
extended with new search algorithms. Listings 5.2 and 5.3 contains an example of code to
search for the best learning rate value for training U-Net with KerasTuner.

5.3 learning rate

The learning rate (LR) is a hyperparameter that controls how much to change the weights
and biases of the model, in response to the error calculated by the loss function, in each
training iteration. The learning rate may be the most important hyperparameter when
training deep neural networks (Brownlee, 2019). Therefore, it is vital to investigate the effect
of the learning rate on model performance and to build an intuition about the effect of the
learning rate dynamics on the model behavior. In this work, we evaluated the influence of
the learning rate and its dynamics on the model performance. Based on experiments, we
concluded that:

• Using too large learning rates results in unstable training and too small learning rates
makes the training very slow.

• Selecting an optimization algorithm that uses momentum can accelerate training, and
applying a learning rate schedule can help the optimization process to converge. By
learning rate schedule, we mean varying the learning rate over time.

• Adaptive learning rates can accelerate training and alleviate the pressure of choosing
the optimal learning rate and the optimal learning rate schedule.

1 import kerastuner as kt

2 from tensorflow import keras

3 from kerastuner.tuners import RandomSearch

4 from kerastuner.engine.hypermodel import HyperModel

5 from kerastuner.engine.hyperparameters import HyperParameter

6

7 def build_model(hp):

8 model = UNet(128,128,1)

9 model.compile(optimizer=keras.optimizers.Adam(

10 hp.Choice(’learning_rate’,values=[1e-2, 1e-3, 1e-4])

11),

12 loss=[total_loss],metrics=[dsc])

13 return model

14

15

Listing 5.2: Search the best learning rate for training U-Net with KerasTuner (part 1).

5.3. Learning Rate 75

1 tuner = RandomSearch(build_model,kt.Objective("val_dsc",

2 direction="max"),max_trials=5,directory=’test_dir’)

3

4 tuner.search_space_summary()

5 ’’’

6 output: Search space summary

7 Default search space size: 1

8 learning_rate (Choice)

9 {’default’: 0.01, ’conditions’: [], ’values’: [0.01, 0.001, 0.0001], ’ordered’: True}

10 ’’’

11 tuner.search(X_train, y_train,epochs=5,validation_data=(X_test,y_test))

12 ’’’

13 Trial 4 Complete [00h 01m 35s]

14 val_dsc: 0.4713146984577179

15 Best val_dsc So Far: 0.7267881631851196

16 Total elapsed time: 00h 14m 00s

17 INFO:tensorflow:Oracle triggered exit

18 ’’’

19 tuner.results_summary()

20 ’’’

21 Results summary

22 Results in test_dir/untitled_project

23 Showing 10 best trials

24 Objective(name=’val_dsc’, direction=’max’)

25 Trial summary

26 Hyperparameters:

27 learning_rate: 0.0001

28 Score: 0.7267881631851196

29 Trial summary

30 Hyperparameters:

31 learning_rate: 0.001

32 Score: 0.4713146984577179

33 Trial summary

34 Hyperparameters:

35 learning_rate: 0.01

36 Score: 0.01896912045776844

37 ’’’

Listing 5.3: Search the best learning rate for training U-Net with KerasTuner (part 2).

Deep learning neural networks are optimized with an algorithm based on stochastic
gradient descent. SGD is an optimization algorithm that estimates the gradient of the error
(or loss), for the current iteration, and then updates the weights and bias of the model using
backpropagation of the gradients from the end to the beginning of the network. The amount
in which the weights are updated is governed by the learning rate. The learning rate has a
small positive value smaller than 1, often in the range 105 and 10−1.

5.3. Learning Rate 76

The learning rate controls how quickly the model is adapted to the problem. Smaller
learning rates require more training epochs, given that smaller changes are made to the
weights on each update, whereas larger learning rates result in rapid changes and require
fewer training epochs. A learning rate that is too large can cause the model to converge
too quickly to a suboptimal solution, while a learning rate that is too small can cause the
process to get stuck.

The Keras DL library allows us to easily configure the learning rate for the different
optimization algorithms based on stochastic gradient descent. Next, we present a few
learning rate configurations allowed by Keras.

• Keras allows us to adjust the learning rate using a callback. The callback operates
separately from the optimization algorithm, although it adjusts the learning rate used
by the optimization algorithm. It is recommended to use the SGD algorithm when
using a callback to adjust the learning rate. Callbacks are configured and instantiated,
and then all are included in a list of callbacks passed as an argument to the fit method
that trains the model.

Keras provides the ReduceLROnPlateau method to adjust the learning rate when a
plateau in model performance is detected, e.g., no change occurs for a given number of
training epochs. This method can be used as a callback. ReduceLROnPlateau requires
us to specify:

– monitor, the metric to monitor during training;

– factor, the value by which the learning rate will be multiplied when altered;

– patience, which specifies the number of training epochs to wait before altering
the learning rate.

For example, we can monitor the validation loss, reduce the learning rate to 1/10 of
the actual value, and alter the LR when the validation loss does not improve for 100

epochs (table 5).

Model monitor factor patience min_lr

U-Net Validation loss 0.1 100 0.0001

Table 5: Example of parameters used to reduce the learning rate with ReduceLROnPlateau.

Learning rate Train loss Validation loss Train IoU Validation IoU
fixed 1.134538 1.237166 0.936169 0.877554

adjustable 1.136153 1.227107 0.935371 0.884071

Table 6: Comparison between U-Net with total loss and fixed vs. adjustable LR after 300 epochs.

Table 6 shows the influence of the learning rate on the model performance. Adjusting
LR with ReduceLROnPlateau results in a relatively small improvement in the validation

5.3. Learning Rate 77

IoU. This trend can also be verified in figures 29 and 30, apart from a greater oscillation
on the initial epochs, the final performance of U-Net is essentially the same.

The Keras DL library provides the following possibilities for adjusting the learning
rate.

• Keras allow us to apply learning rate decay, or learning rate scheduling, to modify how
the learning rate of the optimization process changes over time. The learning rate

schedules API provides various methods to decay the LR: exponential, piecewise
constant, polynomial, inverse time, cosine, and cosine with restarts. LR decay can be
used with SGD, RMSprop, Adam, Adadelta, Adagrad, and other optimizers. Listing 5.4
gives an example of applying exponential learning rate decay.

Figure 29: U-Net with total loss and fixed LR: loss value and IoU metric over 300 training epochs.

1 exp_lr_decay = keras.optimizers.schedules.ExponentialDecay(

2 initial_learning_rate=1e-16,

3 decay_steps=10000,

4 decay_rate=0.9

5)

6 optimizer = keras.optimizers.Adam(learning_rate=exp_lr_decay)

Listing 5.4: Exponential learning rate decay in Keras.

• An adaptive control over the learning rate can also be applied by choosing an optimizer
algorithm that implements it. Examples of these optimizers are RMSprop, Adagrad, or
Adam.

5.4. Loss Function 78

Figure 30: U-Net with total loss and adjustable LR: loss value and IoU metric over 300 training
epochs.

5.4 loss function

This section addresses the topic that was explored in greater depth in this dissertation, the
evaluation of the impact of different loss functions on the performance of image segmentation
models.

5.4.1 Binary Cross Entropy Loss

The binary cross-entropy function calculates the loss associated with one prediction ŷ, when
the ground truth is yi, by computing the equation 26. For a batch of samples, we can approxi-
mate their loss by an average of the individual losses. This is equivalent to the average result
of the categorical cross-entropy loss function applied to many independent classification
problems, each problem having only two possible classes with target probabilities yi and
(1 − yi). Binary cross entropy is available in Keras and, to use it, we just have to import the
correct module, as shown in the listing 5.5.

1 from keras.losses import binary_crossentropy

Listing 5.5: Import the Keras module to use binary cross-entropy.

Table 7 and figure 31 show the loss and IoU metric associated with training the Tiramisu
network with the binary cross-entropy loss function. We can observe that the model exhibits

5.4. Loss Function 79

a large performance gap between training and validation. It seems that the model is too
complex and does not generalize well when dealing with unseen data.

Table 8 and figure 32 show the loss and IoU metric associated with training the U-Net
network with the binary cross-entropy loss function. U-Net has a slightly better performance
than Tiramisu during training and shows a much higher generalization capability. Training
stops before the planned 300 epochs, around 190 epochs, due to the EarlyStop callback.

Train loss Validation loss Train IoU Validation IoU
0.004563 0.034805 0.875985 0.455383

Table 7: Tiramisu with Binary Cross-Entropy loss: loss value and IoU metric after 300 training epochs.

Figure 31: Tiramisu with BCE loss: loss value and IoU metric over 300 training epochs.

Train loss Validation loss Train IoU Validation IoU
0.002910 0.010951 0.906896 0.839899

Table 8: U-Net with Binary Cross-Entropy loss: loss value and IoU metric after 300 epochs.

5.4. Loss Function 80

Figure 32: U-Net with BCE loss: loss value and IoU metric over 190 training epochs.

5.4.2 Focal Loss

The focal loss function generalizes the binary cross entropy by introducing a hyperparameter
called focusing parameter, which allows hard-to-classify samples to be penalized more
heavily than easy-to-classify samples (Lin et al., 2017). This loss can be considered as a loss
function which down-weights the easily classified samples and gives much more importance
to samples which are hard to classify. Focal loss solves the problem of class imbalance
because samples from the majority class are usually easier to predict, whereas those from
the minority class are harder to predict (khandelwal, 2020). This happens because samples
from the majority class dominate the loss and, consequently, the backpropagation of the
gradients. The focal loss can be seen as a cross-entropy loss modulated by the focusing
parameter. The loss associated with the prediction ŷi, for the pixel i, is given by equation 33.

FocalLoss(ŷi) = −(1 − ŷi)
γlog(ŷi) (33)

Here γ ≥ 0 is the focusing parameter and ŷi is the prediction probability for the pixel i.
The image 33 shows how the focal loss behaves for different values of γ. When γ = 0, the

focal loss is equivalent to the cross-entropy. Let us call the first part of the loss expression,
(1 − ŷi)

γ, the modulating factor. In the case of a misclassified sample, ŷi is small and

5.4. Loss Function 81

makes the modulating factor very close to 1. In this case, the loss function behaves as a
Cross-Entropy loss. As the confidence of the model increases, ŷi becomes close to 1 and the
modulating factor approaches 0. In this case, the importance of well-classified samples in
the loss is down-weighted. The focusing parameter γ will rescale the modulating factor, so
that the easy-to-classify samples are down-weighted more than the hard-to-classify ones,
reducing their impact on the loss function.

Figure 33: Behavior of the focal loss for different values of the focusing parameter γ.

Table 9 and figure 34 show the loss and IoU metric associated with U-Net training with
focal loss. Training U-Net with BCE loss achieved better performance than training and with
focal loss. The focal loss was expected to result in better performance in the segmentation
task. Again, training stops before the planned 300 epochs due to the EarlyStop callback.

Train loss Validation loss Train IoU Validation IoU
0.000847 0.003178 0.789232 0.726670

Table 9: U-Net with focal loss: loss value and IoU metric after 300 epochs.

5.4.3 Dice Loss

Dice is another popular loss function for the image segmentation task. It is based on the
Dice coefficient, which is essentially a measure of the overlap between the prediction and the
ground truth masks (figure 35). This measure ranges from 0 to 1, where a Dice coefficient of
1 denotes complete overlap. The Dice coefficient was originally developed for binary data
and can be calculated using equation 34.

5.4. Loss Function 82

Figure 34: U-Net with focal loss: loss value and IoU metric over 215 epochs.

Figure 35: Meaning of the Dice coefficient.

Dice(Y, Ŷ) =
2.|Y ∩ Ŷ|
|Y|+ |Ŷ|

(34)

where Y is the ground truth mask, Ŷ is the predicted mask, |Y ∩ Ŷ| represents the common
elements between the masks Y and Ŷ, |Y| represents the sum of the elements in the mask Y,
and |Ŷ| is the sum of the elements in the mask Ŷ.

5.4. Loss Function 83

For the case of evaluating a Dice coefficient on predicted segmentation masks, we can
approximate |Y ∩ Ŷ| by the element-wise multiplication between the predicted and ground
truth masks (figure 36). The Dice coefficient can be calculated with the code included in
listing 5.6.

Figure 36: Example of calculating the |Y ∩ Ŷ| term present in the Dice coefficient.

Because our segmentation masks are binary, the product in the numerator has no contri-
bution from the predictions whose ground truth is 0 . For the pixels that should be 1, the
coefficient penalizes the low-confidence predictions, since they contribute with a small value
when they should contribute with a value close to 1. A higher value for the product in the
numerator leads to a better Dice coefficient. To quantify |Y| and |Ŷ|, some researchers use
the simple sum, whereas other researchers prefer the squared sum (Jordan, 2018a).

1 def dsc(y_true, y_pred):

2 smooth = 0.00001

3 y_true_f = K.flatten(y_true)

4 y_pred_f = K.flatten(y_pred)

5 intersection = K.sum(y_true_f * y_pred_f)

6 score = ((2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth))

7 return score

Listing 5.6: Computing the Dice coefficient.

The Dice loss is simply 1 minus the Dice coefficient, and as such its range of variation is
also from 0 to 1 (equation 35).

DiceLoss(Y, Ŷ) = 1 − 2.|Y ∩ Ŷ|
|Y|+ |Ŷ|

(35)

5.4.4 Jaccard Loss

The IoU, or Jaccard index, is similar to the Dice coefficient and is calculated by equation 36.

J(Y, Ŷ) =
|Y ∩ Ŷ|
|Y + Ŷ|

=
|Y ∩ Ŷ|

|Y|+ |Ŷ| − |Y ∩ Ŷ|
(36)

5.4. Loss Function 84

The Jaccard loss is simply 1 minus the Jaccard index, and its range of variation is from 0
to 1 (equation 37). Using the iou method presented in listing 5.1 to calculate IoU, the Python
implementation of the Jaccard loss is quite simple (listing 5.7).

JL(Y, Ŷ) = 1 − |Y ∩ Ŷ|
|Y|+ |Ŷ| − |Y ∩ Ŷ|

(37)

Where Y is the ground truth mask and Ŷ is the predicted mask.

1 def jaccard_loss(y_true, y_pred):

2 loss = 1 - iou(y_true, y_pred)

3 return loss

Listing 5.7: Code to calculate the Jaccard loss.

Table 10 and figure 37 show the loss and IoU metric associated with the training of
Tiramisu with the Jaccard loss. The large performance gap between training and validation,
observed with the BCE loss, remains.

Table 11 and figure 38 present the loss and IoU metric for U-Net trained with the Jaccard
loss function. In this case, U-Net exhibits the best performance among all configurations
described until now.

Train loss Validation loss Train IoU Validation IoU
0.102543 0.542375 0.933835 0.485366

Table 10: Tiramisu with Jaccard loss: loss value and IoU metric after 300 epochs.

Train loss Validation loss Train IoU Validation IoU
0.063033 0.117658 0.936963 0.884401

Table 11: U-Net with Jaccard loss: loss value and IoU metric after 300 epochs.

5.4.5 Binary Cross Entropy-Dice Loss

The BCE-Dice loss function combines two terms, binary cross entropy and Dice (equation 38).
The term CrossEntropyLoss is calculated with the equation 26 and term DiceLoss is calculated
with the equation 35.

BceDiceLoss = CrossEntropyLoss + DiceLoss (38)

Table 12 and figure 39 show the loss and IoU metric associated with the training of
Tiramisu with the BCE-Dice loss. The validation IoU achieved by Tiramisu improved to
57.4%, when compared to previous Tiramisu configurations, but is still much lower than the
U-Net results.

5.4. Loss Function 85

Figure 37: Tiramisu with Jaccard loss: loss value and IoU metric over 300 epochs.

Table 13 and figure 40 present the loss and IoU metric for U-Net trained with the BCE-Dice
loss function. Although the training IoU is the highest among all configurations tested with
U-Net, the validation IoU is 86.1%, which is 2% lower than the best result.

Train loss Validation loss Train IoU Validation IoU
0.105560 0.514741 0.937979 0.574185

Table 12: Tiramisu with BCE-Dice loss: loss value and IoU metric after 300 epochs.

Train loss Validation loss Train IoU Validation IoU
0.063428 0.139721 0.941786 0.861621

Table 13: U-Net with BCE-Dice loss: loss value and IoU metric after 300 epochs.

5.4.6 Tversky Loss

One of the limitations of the Dice loss function is that it equally weighs false positive and
false negative predictions. Tversky loss was introduced by Salehi et al. (2017) and was
thought to optimize segmentation models trained with unbalanced datasets. It is based on

5.4. Loss Function 86

Figure 38: U-Net with Jaccard loss: loss value and IoU metric over 300 epochs.

Figure 39: Tiramisu with BCE-Dice loss: loss value and IoU metric over 300 epochs.

5.4. Loss Function 87

Figure 40: U-Net with BCE-Dice loss: loss value and IoU metric after 300 epochs.

the Tversky index and can be seen as a generalization of the Dice coefficient and the Jaccard
index. The Tversky index is a number from 0 to 1, given by equation 39.

TverskyIndex(Y, Ŷ) =
|Y ∩ Ŷ|

|Y ∩ Ŷ|+ α|Ŷ \ Y|+ β|Y \ Ŷ|
=

TP
TP + α FP + β FN

(39)

where

• Y is the ground truth mask.

• Ŷ is the predicted mask.

• |Y ∩ Ŷ| is the set of elements common to Y and Ŷ, or the true positives (TP).

• |Y \ Ŷ| is the relative complement of Ŷ in Y, or the members of Y who are not members
of Ŷ, or the false negatives (FN).

• |Ŷ \Y| is the relative complement of Y in Ŷ, or the members of Ŷ who are not members
of Y, or the false positives (FP).

• α is the parameter that controls the magnitude of the penalty applied to false positives
(FP).

5.4. Loss Function 88

• β is the parameter that controls the magnitude of the penalty applied to false negatives
(FN).

The parameters α and β are equal to or greater than 0. If α = β = 1 the Tversky index
becomes the Tanimoto coefficient, when α = β = 0.5 the index is equal to the Dice coefficient,
and if α = β = 1 the index is equal to the Jaccard index. If we choose α > β we penalize
false positives more than false negatives.

Since the Tversky index is a number between 0 and 1, we can define the Tversky loss
as 1 minus the Tversky index (equation 40). The Python code included in the listing 5.8
implements the Tversky loss.

TverskyLoss(Y, Ŷ) = 1 − |Y ∩ Ŷ|
|Y ∩ Ŷ|+ α|Ŷ \ Y|+ β|Y \ Ŷ|

= 1 − TP
TP + α FP + β FN

(40)

Table 14 and figure 41 present the loss and IoU metric for U-Net trained with the Tversky
loss function. The validation IoU is 86.5% and is roughly the same as the U-Net trained with
BCE-dice loss.

1 def tversky(y_true, y_pred, alpha=0.7): # Tversky index

2 y_true_pos = K.flatten(y_true)

3 y_pred_pos = K.flatten(y_pred)

4 true_pos = K.sum(y_true_pos * y_pred_pos)

5 false_neg = K.sum(y_true_pos * (1-y_pred_pos))

6 false_pos = K.sum((1-y_true_pos)*y_pred_pos)

7 Tindex = (true_pos + smooth)/(true_pos + alpha*false_neg + (1-alpha)*false_pos + smooth)

8 return Tindex

9

10 def tversky_loss(y_true, y_pred, alpha=0.7): # Tversky loss

11 return 1 - tversky(y_true, y_pred, alpha)

Listing 5.8: Python code that implements the Tversky index and the Tversky loss function.

Train loss Validation loss Train IoU Validation IoU
0.058718 0.117278 0.924808 0.865769

Table 14: U-Net with Tversky loss: loss value and IoU metric after 300 epochs.

5.4.7 Focal Tversky Loss

The focal Tversky loss (FTL) was proposed by Abraham and Khan (2019) to address the lower
ability of the Dice loss to segment small-sized regions of interest. The focal Tversky loss is a
generalization of the Tversky loss. It is defined by equation 41 and is parameterized by γ.

5.4. Loss Function 89

Figure 41: U-Net with Tversky loss: loss value and IoU metric over 300 epochs.

The authors suggested that γ must be in the range [1 : 3], and γ favors the segmentation of
regions of interest that are difficult to identify over the background that is easy to isolate.

FocalTverskyLoss(Y, Ŷ) = (1 − TverskyIndex(Y, Ŷ))
1
γ (41)

The behavior of the focal Tversky loss as a function of the Tversky index, for different
values of the parameter γ, is plotted in figure 42. In this figure, the linear blue line is the
Tversky loss.

The nonlinear behavior of focal Tversky loss allows training to focus on detecting samples
that are difficult to segment, i.e. samples with Tversky index < 0.5, by assigning a higher
contribution to the loss when these samples are misclassified. On the other hand, the
nonlinear behavior of focal Tversky loss reduces the contribution to the loss when a sample
that is easy to segment is misclassified.

In cases where γ < 1, the loss gradient is higher for samples with a Tversky index > 0.5
(correctly classified samples), forcing the model to focus on correct segmentation of such
samples. This behavior can be useful in later stages of the training process, as the model is
encouraged to learn even though we are approaching convergence. However, this behavior
will favor the correct detection of easy samples during the early stages of training, which
can lead to weak learning (Vinod, 2020).

5.4. Loss Function 90

Figure 42: The focal Tversky loss behavior for different values of the parameter γ.

When dealing with an imbalanced dataset, the focal Tversky loss is useful when γ > 1.
In this case, the loss gradient is higher for samples with a Tversky index < 0.5 (incorrectly
classified samples). In this way, the loss encourages the model to focus on the correct
classification of samples that are difficult to segment, especially small regions, which usually
have a low Tversky index. Listing 5.9 contains the Python implementation of the focal
Tversky loss function.

1 def focal_tversky(y_true, y_pred, alpha=0.7, gamma=1.3333): # Focal Tversky loss

2 Tindex = tversky(y_true, y_pred, alpha)

3 inv_gamma = 1.0/gamma

4 FTloss = K.pow((1 - Tindex), inv_gamma)

5 return FTloss

Listing 5.9: Python code that implements the focal Tversky loss function.

Table 15 and figure 43 show the loss and IoU metric associated with the training of
Tiramisu with the focal Tversky. The validation IoU achieved by Tiramisu is only 45.3%.

Table 16 and figure 44 present the loss and IoU metric for U-Net trained with the focal
Tversky loss function. The training and validation IoU are about the same as when using
Tversky loss.

Train loss Validation loss Train IoU Validation IoU
0.938525 0.944698 0.633185 0.453520

Table 15: Tiramisu with focal Tversky loss: loss value and IoU metric after 300 epochs.

5.4. Loss Function 91

Train loss Validation loss Train IoU Validation IoU
0.121612 0.202741 0.922976 0.869215

Table 16: U-Net with focal Tversky loss: loss value and IoU metric after 300 epochs.

Figure 43: Tiramisu with focal Tversky loss: loss value and IoU metric after 300 epochs.

5.4.8 Total Loss

To conclude the evaluation of the loss functions, it was decided to combine most of the
losses presented in a total loss function (equation 42).

TotalLoss = CrossEntropyLoss(Y, Ŷ) + FocalLoss(Ŷ) + DiceLoss(Y, Ŷ) +

TverskyLoss(Y, Ŷ) + FocalTverskyLoss(Y, Ŷ) (42)

Where Y is the ground truth mask and Ŷ is the predicted mask.
Table 17 and figure 45 show the loss and IoU metric associated with the training of

Tiramisu with the total loss. The validation IoU raised to 67.8%, by far the best result
achieved by Tiramisu. Table 18 and figure 46 present the loss and IoU metric for U-Net
trained with the total loss. The validation IoU is 87.7%, 0.7% less than U-Net trained with
Jaccard loss.

5.4. Loss Function 92

Figure 44: U-Net with focal Tversky loss: loss value and IoU metric over 300 epochs.

Train loss Validation loss Train IoU Validation IoU
1.045244 1.339628 0.937572 0.677880

Table 17: Tiramisu with total loss: loss value and IoU metric after 300 epochs.

Train loss Validation loss Train IoU Validation IoU
1.134538 1.237166 0.936169 0.877554

Table 18: U-Net with total loss: loss value and IoU metric after 300 epochs.

We summarize the results of all the experiments performed with the different loss functions
in tables 19 and 20, for the Tiramisu and U-Net models, respectively.

Loss Function Train loss Validation loss Train IoU Validation IoU
Binary Cross Entropy 0.004563 0.034805 0.875985 0.455383

Jaccard 0.102543 0.542375 0.933835 0.485366

BCE-Dice 0.105560 0.514741 0.937979 0.574185

Focal Tversky 0.938525 0.944698 0.633185 0.453520

Total 1.045244 1.339628 0.937572 0.677880

Table 19: Summary of the training results for the Tiramisu model with different loss functions.

5.4. Loss Function 93

Figure 45: Tiramisu with total loss: loss value and IoU metric over 300 epochs.

Figure 46: U-Net with total loss: loss value and IoU metric over 300 epochs.

5.5. Model Training 94

Loss Function Train loss Validation loss Train IoU Validation IoU
Binary Cross Entropy 0.002910 0.010951 0.906896 0.839899

Focal 0.000847 0.003178 0.789232 0.726670

Jaccard 0.063033 0.117658 0.936963 0.884401

BCE-Dice 0.063428 0.139721 0.941786 0.861621

Tversky 0.058718 0.117278 0.924808 0.865769

Focal Tversky 0.121612 0.202741 0.922976 0.869215

Total 1.134538 1.237166 0.936169 0.877554

Table 20: Summary of the training results for the U-Net model with different loss functions.

5.5 model training

In this section, additional information about model training is given. Training is the most
computationally demanding task of the whole development process. To speed up training,
it is convenient to run it on GPUs. Model training was run on the Google Colaboratory
platform, with 25 GB of RAM and a freely available GPU. This is not high-end hardware at
all, but it was enough to run model training.

In Python, the model optimization is done with the Keras model.fit method. To speed up
the process of loading the training data to the Google Colaboratory platform, it is imported
from a zip file. Table 21 contains the main hyperparameters of model training: batch size,
number of epochs, optimizer, and the initial value of the learning rate (LR). As explained in
the previous section, several loss functions were applied during training.

Model Batch size Epochs Optimizer
U-Net 32 300 Adam, LR=0.0001, epsilon=1e-07

Tiramisu 32 300 Adam, LR=0.0001, epsilon=1e-07

Table 21: Model training hyperparameters LR initial value.

Figures 47 and 48 plot the accuracy metric (IoU) during the training of Tiramisu and
U-Net, using different loss functions. We can confirm that total loss allows Tiramisu to
obtain the best validation accuracy (67.8%). Excluding the BCE-focal loss, all loss functions
allow U-Net to reach a similar accuracy, but training with the Jaccard loss resulted in the
best validation accuracy (88.4%).

Besides analyzing the models’ accuracy, another relevant aspect to consider is the time
necessary to train the models. In Google Colaboratory platform, with the free plan, the time
required for training each model is presented in table 22 and figure 49. Since Tiramisu is a
model much larger than U-Net, its training is naturally much longer.

5.5. Model Training 95

Figure 47: Training Tiramisu with different loss functions: IoU metric.

Model Loss function Metric Time (hr:min)
BCE 10:39

Tiramisu BCE-Dice IoU 4:50

Focal Tversky 4:55

Total 4:40

BCE 0:43

BCE-Dice 0:45

Jaccard 0:43

U-Net BCE-Focal IoU 0:42

Tversky 0:42

Focal Tversky 1:39

Total 1:40

Total, reduce LR callback 1:40

Table 22: Time necessary to train the different models during 300 epochs.

Another aspect that was analyzed is the size of the models. The size occupied by the
U-Net model on disk is given in table 23. Interestingly, training U-Net with Binary Cross
Entropy Focal loss makes the model almost 3 times more spacy than the other losses.

5.6. Model Testing 96

Figure 48: Training U-Net with different loss functions: IoU metric.

Model Loss function Metric Size (B)
BCE 52,237,793

BCE-Dice 67,143,837

Jaccard 22,428,841

BCE-Focal 22,427,193

U-Net Tversky IoU 22,427,193

Focal Tversky 22,427,353

Total 22,428,093

Total, reduce LR callback 22,427,353

Jaccard+tuning model 37,334,114

Table 23: Size occupied by the U-Net model on disk.

5.6 model testing

For a visual inspection of the quality of the segmentation, some samples were plotted during
the test step. Thus, figure 50 shows 4 images from the test set, together with the respective

5.6. Model Testing 97

Figure 49: Time necessary to train the different models during 300 epochs.

ground truth mask and the predicted mask. The model used on the predictions is U-Net,
trained with Dice, BCE-Dice, focal Tversky, and total losses.

Figure 51 makes it clear that the best IoU result during the test, among all configurations
tried, is 88.65% and was obtained by U-Net trained with total loss and adjusting the learning
rate with the ReduceLROnPlateau callback. The second best result is 88.59% and was achieved
by U-Net trained with Jaccard loss.

Finally, the time that a model takes to make a prediction was analyzed, that is, the time
taken to output a segmentation mask for an input image. To achieve this goal, the Python
module time was used. The results are documented in table 25 and plotted in figure 52. The
image inference time for U-Net is between 0.063 and 0.085 seconds. Tiramisu is much slower
and takes between 0.24 and 0.26 seconds to make a prediction.

5.6. Model Testing 98

Model IoU
Tiramisu, Jaccard loss 64.43

Tiramisu, BCE loss 61.04

Tiramisu, BCE-Dice loss 67.60

Tiramisu, Focal Tversky loss 54.33

Tiramisu, Total loss 71.01

U-Net, Jaccard loss 88.59

U-Net, BCE loss 83.99

U-Net, BCE-Dice loss 86.39

U-Net, BCE-Focal loss 76.37

U-Net, Tversky loss 87.62

U-Net, Focal Tversky loss 87.49

U-Net, Tuning model 87.51

U-Net, Total loss 88.15

U-Net, Total loss, reduce LR callback 88.65

Table 24: IoU metric achieved during the testing step by the U-Net and Tiramisu models.

Model Loss function Metric Time (s)
Jaccard 0.257766

BCE 0.235551

Tiramisu BCE-Dice IoU 0.239501

Focal Tversky 0.250234

Total 0.250732

BCE 0.070521

BCE-Dice 0.069886

Jaccard 0.085801

BCE-Focal 0.081481

U-Net Tversky IoU 0.063535

Focal Tversky 0.080072

Total 0.066226

Total, reduce LR callback 0.068562

Jaccard+tuning model 0.083304

Table 25: Image inference time for the different models.

5.6. Model Testing 99

Figure 50: U-Net with different loss functions: four examples of prediction on test set.

5.6. Model Testing 100

Figure 51: Results from the testing step for U-Net and Tiramisu models, trained with different loss
functions.

5.6. Model Testing 101

Figure 52: Image inference time for different models.

6

C O N C L U S I O N S A N D F U T U R E W O R K

6.1 conclusions

According to the initial objectives, the main contribution of this dissertation was the design
and development of a predictive deep learning model that helps to detect tumors on the
MRI images. This automatic help facilitates the tedious and error-prone task done by doctors
and imaging specialists.

This kind of model also reduces the level of subjectivity that exists between different
imaging specialists and clinicians when they have to analyze a certain image. Several models
were developed to segment the aggressiveness pattern of tumors according to the cellular
morphological architecture, both in the tumor front and inside it. An exhaustive analysis of
segmentation techniques was conducted in the field of medical imaging, especially when
applied to brain tumors, was conducted. Different methods were reviewed to improve
the performance of tumor segmentation. The tumor pattern, the histology it acquires, its
behavior, and how it affects the patient’s health in terms of prognosis were analyzed in
detail.

The available histological images require high computational costs for the process. There-
fore, different methods were developed to allow building a base of MRI image data to be
able to work on them and be compatible with the model’s predictions. We generally do this
process because in the future we will not have a problem with model training limitations
and be able to train models with more complex architectures. Generally, U-Net and Tiramisu
are models that have a lot of training parameters. So, we tried, since the beginning of the
project, to reduce the computational cost at each stage.

With acquired knowledge about tumor aggressiveness patterns and with the supervision
of experts in the field of tumor anatomy, each image was annotated with a tumor mask.
These masks were used as the ground truth during the supervised training of deep learning
models.

The selected data set was divided into training testing and validation data.

102

6.2. Future Work 103

Two deep neural network architectures were selected to solve the tumor segmentation
problem. The selected models, U-Net and Tiramisu, were trained in a supervised approach
and evaluated. The interception over union (IoU) metric was selected to evaluate the models.
An exhaustive study of the loss functions used in image segmentation problems was carried
out, and most of them were implemented and tested with the two mentioned models.

A quantitative and qualitative analysis of the results obtained with each combination of
model and loss function was performed. This allowed us to identify the trained model that
gets the best performance on the segmentation task, the model that trains faster, makes
inference faster, and occupies the least space on the disk. U-Net is the model that obtains the
best result in all these aspects. The U-Net model, trained with total loss and adjusting the
learning rate during training, got 88.65% IoU during the testing step, the best value among
all trained models. After training the two models, U-Net and Tiramisu, we observed that
the Tiramisu exhibits a lower IoU score, and apart from that, a particularity of the Tiramisu
model is, that it has more training parameters, and when the number of training parameters
increases, the computational cost also increases.

6.2 future work

There are several obstacles related to the segmentation of the image by computer vision that
must be overcome to apply to an even wider range of areas than we have already obtained.

As explained before, this thesis tries to apply a novel method of Deep learning in the field
of image segmentation, there is still a lot to do to improve the algorithm and the results and
also to continue working to expand the scope of this project in the field of computer vision.

Overcome the obstacles related to semantic segmentation and may also take this algorithm
and improve to apply to segmentation of the 3D images or videos in the future. on the
other hand, using a more complete database with the supervision of experts in the field of
medicine to increase the reliability of the model.

B I B L I O G R A P H Y

American cancer society. https://www.cancer.org. Accessed on November 2022.

N. Abraham and N. Khan. A novel focal tversky loss function with improved attention u-net
for lesion segmentation. In IEEE International Symposium on Biomedical Imaging, pages
683–687, 2019. URL https://arxiv.org/pdf/1810.07842.pdf.

American Institute For Medical & Biological Engineering AIMBE. Why biomedi-
cal engineering, Consulted in 2022. URL https://navigate.aimbe.org/?gclid=

Cj0KCQjw8rT8BRCbARIsALWiOvS_z_u7XXbXFWNHaqVJN9Lp4vN1KcFR3leNA-9MfAyEu_

mYxFFQjL4aAh4YEALw_wcB.

Jacques Aumont. L’image. France, Aubin Imprimeur, 1994.

V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(12):2481 – 2495, 2017.

R. Bakshi, S. Ariyaratana, R. Benedict, and L. Jacobs. Fluid-attenuated inversion recovery
magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions.
Archives of Neurology, 58(5), 2001.

G. Bastarrika. Tomografía computarizada y práctica clínica. Anales del Sistema Sanitario
de Navarra, 2007. URL http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=

S1137-66272007000300001.

Hans Belting. Antropología de la Imagen. KATS Editores, Argentina, 2007.

Adam Bohr and Kaveh Memarzadeh. Artificial Intelligence in Healthcare. Academic Press,
Elsevier, 2020.

Jennifer Bresnick. Artificial intelligence in healthcare market to see 40% cagr surge, 2017.
URL https://www.sciencedirect.com/science/article/pii/B9780128184387000010.

Jason Brownlee. Machine Lerning Mastery. 2019. URL https://machinelearningmastery.

com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected

104

https://www.cancer.org
https://arxiv.org/pdf/1810.07842.pdf
https://navigate.aimbe.org/?gclid=Cj0KCQjw8rT8BRCbARIsALWiOvS_z_u7XXbXFWNHaqVJN9Lp4vN1KcFR3leNA-9MfAyEu_mYxFFQjL4aAh4YEALw_wcB
https://navigate.aimbe.org/?gclid=Cj0KCQjw8rT8BRCbARIsALWiOvS_z_u7XXbXFWNHaqVJN9Lp4vN1KcFR3leNA-9MfAyEu_mYxFFQjL4aAh4YEALw_wcB
https://navigate.aimbe.org/?gclid=Cj0KCQjw8rT8BRCbARIsALWiOvS_z_u7XXbXFWNHaqVJN9Lp4vN1KcFR3leNA-9MfAyEu_mYxFFQjL4aAh4YEALw_wcB
http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272007000300001
http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272007000300001
https://www.sciencedirect.com/science/article/pii/B9780128184387000010
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/

bibliography 105

crfs. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017. URL https:

//arxiv.org/pdf/1606.00915.pdf.

Michal Drozdzal, Eugene Vorontsov, Gabriel Chartrand, Samuel Kadoury, and Chris Pal.
The Importance of Skip Connections in Biomedical Image Segmentation. 2016. URL https:

//arxiv.org/abs/1608.04117.

Guillaume Duchenne. Mécanisme de la physionomie humaine, 1862. URL https://gallica.

bnf.fr/ark:/12148/bpt6k5699210s.texteImage.

V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning, 2018. URL
https://arxiv.org/pdf/1603.07285.pdf.

Raquel Raudales Díaz. Imágenes diagnósticas: Conceptos y generalidades. Revista
de la Facultad de Ciencias Médicas, 2014. URL http://www.bvs.hn/RFCM/pdf/2014/pdf/

RFCMVol11-1-2014-6.pdf.

Mariana Fontainhas. Brain Semantic Segmentation: A Deep Learning approach in Human and Rat
MRI studies. 2018.

U.S. Food and Drug. U.s. food and drug, 2017. URL https://www.fda.gov/.

Center for Drug Evaluation, Research Center for Biologics Evalua-
tion, and Research. U.s. food and drug, 2020. URL https://

www.fda.gov/regulatory-information/search-fda-guidance-documents/

clinical-trial-imaging-endpoint-process-standards-guidance-industry.

L. Foulds. The histological analysis of tumours: a critical review. The American Journal of
Cancer, 38(1):1–24, 1940.

Marissa Gómez. Historia de la imagen digital, 2013. URL https://interartive.org/2017/

04/historias-de-la-imagen-digital-marisa-gomez.

A Hack. Semantic Segmentation. 2019. URL https://medium.com/hackabit/

semantic-segmentation-8f2900eff5c8.

D. Han, J. Kim, and J. Kim. Deep pyramidal residual networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), page 6307–6315, 2017. URL https://

arxiv.org/pdf/1610.02915.pdf.

K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn, 2017. URL https://arxiv.org/

pdf/1703.06870.pdf.

Jeremy Jordan. An overview of semantic image segmentation, 2018a. URL https://www.

jeremyjordan.me/semantic-segmentation/.

https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/pdf/1606.00915.pdf
https://arxiv.org/abs/1608.04117
https://arxiv.org/abs/1608.04117
https://gallica.bnf.fr/ark:/12148/bpt6k5699210s.texteImage
https://gallica.bnf.fr/ark:/12148/bpt6k5699210s.texteImage
https://arxiv.org/pdf/1603.07285.pdf
http://www.bvs.hn/RFCM/pdf/2014/pdf/RFCMVol11-1-2014-6.pdf
http://www.bvs.hn/RFCM/pdf/2014/pdf/RFCMVol11-1-2014-6.pdf
https://www.fda.gov/
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-trial-imaging-endpoint-process-standards-guidance-industry
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-trial-imaging-endpoint-process-standards-guidance-industry
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-trial-imaging-endpoint-process-standards-guidance-industry
https://interartive.org/2017/04/historias-de-la-imagen-digital-marisa-gomez
https://interartive.org/2017/04/historias-de-la-imagen-digital-marisa-gomez
https://medium.com/hackabit/semantic-segmentation-8f2900eff5c8
https://medium.com/hackabit/semantic-segmentation-8f2900eff5c8
https://arxiv.org/pdf/1610.02915.pdf
https://arxiv.org/pdf/1610.02915.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://arxiv.org/pdf/1703.06870.pdf
https://www.jeremyjordan.me/semantic-segmentation/
https://www.jeremyjordan.me/semantic-segmentation/

bibliography 106

Jeremy Jordan. Common architectures in convolutional neural networks, 2018b. URL
https://www.jeremyjordan.me/convnet-architectures/.

Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, and Yoshua Bengio. The
One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. 2016.
URL https://arxiv.org/abs/1611.09326.

Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, and Yoshua Bengio. The
One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. 2017.

Samiya Luthfia Khaleel. The evolution of medical imaging in clin-
ical research, 2017. URL https://www.clinicalleader.com/doc/

the-evolution-of-medical-imaging-in-clinical-research-0001.

A. Khan, A. Sohail, U. Zahoora, and A. Qureshi. A survey of the recent architectures of deep
convolutional neural networks. Artificial Intelligence Review, 53:5455–5516, 2020.

Sarthak khandelwal. Focal loss: An efficient way of han-
dling class imbalance, 2020. URL https://medium.com/swlh/

focal-loss-an-efficient-way-of-handling-class-imbalance-4855ae1db4cb.

Timo Kohlberger, Michal Sofka, Jingdan Zhang, Neil Birkbeck, Jens Wetzl, Jens Kaftan,
Jerome Declerck, and Kevin Zhou. Automatic multi-organ segmentation using learning-
based segmentation and level set optimization. In Medical Image Computing and Computer-
Assisted Intervention, pages 28–36. Springer, 2011a. ISBN 978-3-642-23625-9. doi: 10.1007/
978-3-642-23626-6_42. URL https://doi.org/10.1007/978-3-642-23626-6_42.

Timo Kohlberger, Brendt Wohlberg, Omid Masoud, Diana Mateus, Ender Konukoglu, Lily
Ng, Martin Rajchl, Jeff Chuang, Guillaume Vaillant, Chi-Wing Fu, et al. Automatic
multi-organ segmentation using learning-based segmentation and level set optimization.
Springer, 6893, 2011b.

Y LeCun, LD Jackel, and L Bottou. Learning algorithms for classification: a comparison on
handwritten digit recognition. Neural Netw Stat Mech Perspect. 1995.

M. Lin and Q. Chen and. S Yan. Network in network, 2013. URL https://doi.org/10.1109/

asru.2015.7404828.

T. Lin, P. Dollár, R. Girshick, K. He an B. Hariharan, and S. Belongie. Feature pyramid
networks for object detection, 2016. URL https://arxiv.org/pdf/1612.03144.pdf.

T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal Loss for Dense Object Detection. 2017.
URL https://arxiv.org/pdf/1708.02002.pdf.

https://www.jeremyjordan.me/convnet-architectures/
https://arxiv.org/abs/1611.09326
https://www.clinicalleader.com/doc/the-evolution-of-medical-imaging-in-clinical-research-0001
https://www.clinicalleader.com/doc/the-evolution-of-medical-imaging-in-clinical-research-0001
https://medium.com/swlh/focal-loss-an-efficient-way-of-handling-class-imbalance-4855ae1db4cb
https://medium.com/swlh/focal-loss-an-efficient-way-of-handling-class-imbalance-4855ae1db4cb
https://doi.org/10.1007/978-3-642-23626-6_42
https://doi.org/10.1109/asru.2015.74048 28
https://doi.org/10.1109/asru.2015.74048 28
https://arxiv.org/pdf/1612.03144.pdf
https://arxiv.org/pdf/1708.02002.pdf

bibliography 107

Xiaoqing Liu, Kunlun Gao, Bo Liu, Chengwei Pan, Kongming Liang, Lifeng Yan, Jiechao
Ma, Fujin He, Shu Zhang, and Siyuan Pan. Advances in Deep Learning-Based Medical Image
Analysis. 2021. URL https://spj.sciencemag.org/journals/hds/2021/8786793/.

J. Long, E. Shelhamer, , and T. Darrell. Fully convolutional networks for semantic segmen-
tation. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3431—-3440,
2015a.

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015b. URL https:

//arxiv.org/pdf/1411.4038.pdf.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3431–3440, 2012.

J. Lucas. What is biomedical engineering?, 2014. URL https://www.livescience.com/

48001-biomedical-engineering.html.

Market and Market. Clinical trial imaging market, 2016. URL https://www.

marketsandmarkets.com/Market-Reports/clinical-trials-imaging-market-30446624.

html.

S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos. Image
segmentation using deep learning: A survey, 2020. URL https://arxiv.org/pdf/2001.

05566.pdf.

Edwin D. Murphy. Particularity of Tumors, chapter 27. Dover Publications, 2007. URL
http://www.informatics.jax.org/greenbook/chapters/chapter27.shtml.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o(1/k2). Doklady AN USSR, 269:543–547, 1983.

Isabel Marília Peres. Fotografia Médica, chapter 5. Edições 70, 2014.

Martínez Rodríguez, Jairo Alejandro, and Vitola Oyaga. Fundamentos teórico-prácticos del
ultrasonido. Tecnura, 2007. URL https://www.redalyc.org/pdf/2570/257021012001.pdf.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Nassir Navab, Joachim Hornegger, William Wells,
and Alejandro Frangi, editors, Medical Image Computing and Computer-Assisted Intervention
– MICCAI 2015, volume 9351 of Lecture Notes in Computer Science. Springer, 2015. ISBN
978-3-319-24573-7. doi: 10.1007/978-3-319-24574-4_28. URL https://doi.org/10.1007/

978-3-319-24574-4_28.

https://spj.sciencemag.org/journals/hds/2021/8786793/
https://arxiv.org/pdf/1411.4038.pdf
https://arxiv.org/pdf/1411.4038.pdf
https://www.livescience.com/48001-biomedical-engineering.html
https://www.livescience.com/48001-biomedical-engineering.html
https://www.marketsandmarkets.com/Market-Reports/clinical-trials-imaging-market-30446624.html
https://www.marketsandmarkets.com/Market-Reports/clinical-trials-imaging-market-30446624.html
https://www.marketsandmarkets.com/Market-Reports/clinical-trials-imaging-market-30446624.html
https://arxiv.org/pdf/2001.05566.pdf
https://arxiv.org/pdf/2001.05566.pdf
http://www.informatics.jax.org/greenbook/chapters/chapter27.shtml
https://www.redalyc.org/pdf/2570/257021012001.pdf
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28

bibliography 108

Sebastian Ruder. An overview of gradient descent optimization algorithms, 2016. URL
https://arxiv.org/pdf/1609.04747.pdf.

Beeren Sahu. The Evolution of Deeplab for Semantic Seg-
mentation. 2019. URL https://towardsdatascience.com/

the-evolution-of-deeplab-for-semantic-segmentation-95082b025571.

S. Salehi, D. Erdogmus, and A. Gholipour. Tversky loss function for image segmentation
using 3d fully convolutional deep networks. In Machine Learning in Medical Imaging, page
379–387, 2017. URL https://arxiv.org/abs/1706.05721.

Jay Selig. What is machine learning? a definition., 2020. URL https:

//www.expert.ai/blog/machine-learning-definition/#:~:text=Machine%20learning%

20is%20an%20application,it%20to%20learn%20for%20themselves.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations (ICLR), 2015. URL
https://arxiv.org/pdf/1409.1556.pdf.

Z. Sobhaninia, S. Rezaei, A. Noroozi, M. Ahmadi, H. Zarrabi, N. Karimi, A. Emami, and
S. Samavi. Brain tumor segmentation using deep learning by type specific sorting of
images, 2017. URL https://arxiv.org/pdf/1809.07786.pdf.

Jan Erik Solem. Programming Computer Vision with Python. O’Reilly Media, 2012.

Perry Sprawls. Magnetic Resonance Imaging: Principles, Methods, and Techniques. Medical
Physics Publishing, Madison, Wisconsin, 2000. URL http://www.sprawls.org/resources/

books/Sprawls%20Magnetic%20Resonance%20Imaging%20PMT%20%20.pdf.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), page 1–9, 2015.

Lydia Sánchez. Image, 2009. URL http://glossarium.bitrum.unileon.es/Home/imagen.

Robin Vinod. Dealing with class imbalanced image datasets using the
Focal Tversky Loss. 2020. URL https://towardsdatascience.com/

dealing-with-class-imbalanced-image-datasets-1cbd17de76b5.

Rupert Allan Willis. Pathology of tumours. Buttenvorth & Co., 1960.

Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi,
and Amit Agrawal. Context encoding for semantic segmentation, 2018.

https://arxiv.org/pdf/1609.04747.pdf
https://towardsdatascience.com/the-evolution-of-deeplab-for-semantic-segmentation-95082b025571
https://towardsdatascience.com/the-evolution-of-deeplab-for-semantic-segmentation-95082b025571
https://arxiv.org/abs/1706.05721
https://www.expert.ai/blog/machine-learning-definition/#:~:text=Machine%20learning%20is%20an%20application,it%20to%20learn%20for%20themselves
https://www.expert.ai/blog/machine-learning-definition/#:~:text=Machine%20learning%20is%20an%20application,it%20to%20learn%20for%20themselves
https://www.expert.ai/blog/machine-learning-definition/#:~:text=Machine%20learning%20is%20an%20application,it%20to%20learn%20for%20themselves
https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1809.07786.pdf
http://www.sprawls.org/resources/books/Sprawls%20Magnetic%20Resonance%20Imaging%20PMT%20%20.pdf
http://www.sprawls.org/resources/books/Sprawls%20Magnetic%20Resonance%20Imaging%20PMT%20%20.pdf
http://glossarium.bitrum.unileon.es/Home/imagen
https://towardsdatascience.com/dealing-with-class-imbalanced-image-datasets-1cbd17de76b5
https://towardsdatascience.com/dealing-with-class-imbalanced-image-datasets-1cbd17de76b5

bibliography 109

Ping Zheng and Wenbo Guo. Brain tumour segmentation based on an improved u-net, 18

November 2022. URL https://bmcmedimaging.biomedcentral.com/articles/10.1186/

s12880-022-00931-1f.

Liad Pollak Zuckerman. Efficient method for running Fully Convolu-
tional Networks (FCNs). 2019. URL https://towardsdatascience.com/

efficient-method-for-running-fully-convolutional-networks-fcns-3174dc6a692b.

https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-022-00931-1f
https://bmcmedimaging.biomedcentral.com/articles/10.1186/s12880-022-00931-1f
https://towardsdatascience.com/efficient-method-for-running-fully-convolutional-networks-fcns-3174dc6a692b
https://towardsdatascience.com/efficient-method-for-running-fully-convolutional-networks-fcns-3174dc6a692b

7

D E V E L O P E D P Y T H O N C O D E

This appendix contains most of the code developed during the present dissertation, as well
as a compilation of results obtained and graphs of the architecture of the developed models.

1 import os

2 import random

3 import pandas as pd

4 import numpy as np

5 import matplotlib.pyplot as plt

6

7 plt.style.use("ggplot")

8 %matplotlib inline

9

10 import cv2

11 from tqdm import tqdm

12 from tqdm import tqdm_notebook, tnrange

13 from glob import glob

14 from itertools import chain

15 from skimage.io import imread, imshow, concatenate_images

16 from skimage.transform import resize

17 from skimage.morphology import label

18 from sklearn.model_selection import train_test_split

19

20 import tensorflow as tf

21 from skimage.color import rgb2gray

22 from tensorflow.keras import Input

23 from tensorflow.keras.models import Model, load_model, save_model

24 from tensorflow.keras.layers import Input, Activation, BatchNormalization,

25 Dropout, Lambda, Conv2D, Conv2DTranspose, MaxPooling2D, concatenate

26 from tensorflow.keras.optimizers import Adam

27 from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint

28

29 from tensorflow.keras import backend as K

30 from tensorflow.keras.preprocessing.image import ImageDataGenerator

31 from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint

Listing 7.1: Import the necessary libraries.

110

111

1 import pandas as pd

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from sklearn.model_selection import train_test_split

5 from keras.callbacks import EarlyStopping, ModelCheckpoint,ReduceLROnPlateau

6

7 X_all = np.load(’bd_npy/x_BD_original_image.npy’)

8 y_all = np.load(’bd_npy/y_BD_original_image.npy’)

9 #Data Visualization

10 def count_labels(y_all):

11 how_many_0 = len(np.where(y_all==0)[0])

12 how_many_1 = len(np.where(y_all==1)[0])

13

14 print(’#Tumor:’,how_many_0)

15 print(’#Non Tumor:’,how_many_1)

16

17 return how_many_0,how_many_1

Listing 7.2: Python code for loading the dataset into memory.

1 image_number = random.randint(0, len(X_train))

2 plt.figure(figsize=(12, 6))

3 plt.subplot(121)

4 plt.imshow(np.reshape(X_train[image_number], (128, 128)), cmap=’gray’)

5 plt.subplot(122)

6 plt.imshow(np.reshape(y_train[image_number], (128, 128)), cmap=’gray’)

7 plt.show()

Listing 7.3: Python code to visualize the effect of data normalization.

1 print(X_train.shape)

2 print(y_train.shape)

3

4 (3143, 128, 128, 1)

5 (3143, 128, 128, 1

Listing 7.4: Print the dataset shape.

1 rows,cols=3,3

2 fig=plt.figure(figsize=(10,10))

3 for i in range(1,rows*cols+1):

4 fig.add_subplot(rows,cols,i)

5 plt.imshow(image_dataset[i])

6 plt.imshow(mask_dataset[i],alpha=0.4)

7 plt.show()

Listing 7.5: Python code to visualize a grid of 3x3 images and 3x3 masks from the dataset.

112

Figure 53: Visualization of 3x3 images from the dataset.

113

1 from keras.losses import binary_crossentropy

2 import keras.backend as K

3 import tensorflow as tf

4

5 epsilon = 1e-5

6 smooth = 0.00001

7

8 def lovasz_hinge_one(y_true, y_pred):

9 logit = y_true

10 truth = y_pred

11 m = truth.detach()

12 m = m*(margin[1]-margin[0])+margin[0]

13

14 truth = truth.float()

15 sign = 2. * truth - 1.

16 hinge = (m - logit * sign)

17 hinge, permutation = torch.sort(hinge, dim=0, descending=True)

18 hinge = F.relu(hinge)

19

20 truth = truth[permutation.data]

21 gradient = compute_lovasz_gradient(truth)

22

23 loss = torch.dot(hinge, gradient)

24 return loss

25

26 def dsc(y_true, y_pred): # Dice’s coefficient

27 smooth =0.00001

28 y_true_f = K.flatten(y_true)

29 y_pred_f = K.flatten(y_pred)

30 intersection = K.sum(y_true_f * y_pred_f)

31 score = ((2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth))

32 return score

33

34 def dice_loss(y_true, y_pred):

35 loss = 1 - dsc(y_true, y_pred)

36 return loss

37

38 def bce_dice_loss(y_true, y_pred):

39 loss = binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred)

40 return loss

Listing 7.6: Python code to implement loss functions (part 1).

114

1

2 def confusion(y_true, y_pred):

3 smooth=0.00001

4 y_pred_pos = K.clip(y_pred, 0, 1)

5 y_pred_neg = 1 - y_pred_pos

6 y_pos = K.clip(y_true, 0, 1)

7 y_neg = 1 - y_pos

8 tp = K.sum(y_pos * y_pred_pos)

9 fp = K.sum(y_neg * y_pred_pos)

10 fn = K.sum(y_pos * y_pred_neg)

11 prec = (tp + smooth)/(tp+fp+smooth)

12 recall = (tp+smooth)/(tp+fn+smooth)

13 return prec, recall

14

15 def tversky(y_true, y_pred):

16 y_true_pos = K.flatten(y_true)

17 y_pred_pos = K.flatten(y_pred)

18 true_pos = K.sum(y_true_pos * y_pred_pos)

19 false_neg = K.sum(y_true_pos * (1-y_pred_pos))

20 false_pos = K.sum((1-y_true_pos)*y_pred_pos)

21 alpha = 0.7

22 return (true_pos + smooth)/(true_pos + alpha*false_neg + (1-alpha)*false_pos + smooth)

23

24 def tversky_loss(y_true, y_pred):

25 return 1 - tversky(y_true,y_pred)

26

27 def focal_tversky(y_true,y_pred):

28 pt_1 = tversky(y_true, y_pred)

29 gamma = 0.75

30 return K.pow((1-pt_1), gamma)

31

32 def lovasz(y_true, y_pred):

33 beta=0.5

34 y_true = tf.cast(y_true, tf.float32)

35 y_pred = tf.math.sigmoid(y_pred)

36 numerator = y_true * y_pred

37 denominator = y_true * y_pred + beta * (1 - y_true) * y_pred +

38 (1 - beta) * y_true * (1 - y_pred)

39

40 return 1 - tf.reduce_sum(numerator) / tf.reduce_sum(denominator)

41

42 def total_loss(y_true, y_pred):

43 loss = binary_crossentropy(y_true, y_pred) + dice_loss(y_true, y_pred) +

44 FocalTverskyLoss(y_true, y_pred, smooth=1e-6)+lovasz(y_true, y_pred)

45 return loss

Listing 7.7: Python code to implement loss functions (part 2).

115

1 def UNet(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS):

2 inputs = tf.keras.layers.Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))

3 s = inputs

4 # Contraction path

5 c1 = tf.keras.layers.Conv2D(16, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

6 padding=’same’)(s)

7 c1 = tf.keras.layers.Dropout(0.1)(c1)

8 c1 = tf.keras.layers.Conv2D(16, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

9 padding=’same’)(c1)

10 p1 = tf.keras.layers.MaxPooling2D((2, 2))(c1)

11

12 c2 = tf.keras.layers.Conv2D(32, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

13 padding=’same’)(p1)

14 c2 = tf.keras.layers.Dropout(0.1)(c2)

15 c2 = tf.keras.layers.Conv2D(32, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

16 padding=’same’)(c2)

17 p2 = tf.keras.layers.MaxPooling2D((2, 2))(c2)

18

19 c3 = tf.keras.layers.Conv2D(64, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

20 padding=’same’)(p2)

21 c3 = tf.keras.layers.Dropout(0.2)(c3)

22 c3 = tf.keras.layers.Conv2D(64, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

23 padding=’same’)(c3)

24 p3 = tf.keras.layers.MaxPooling2D((2, 2))(c3)

25

26 c4 = tf.keras.layers.Conv2D(128, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

27 padding=’same’)(p3)

28 c4 = tf.keras.layers.Dropout(0.2)(c4)

29 c4 = tf.keras.layers.Conv2D(128, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

30 padding=’same’)(c4)

31 p4 = tf.keras.layers.MaxPooling2D(pool_size=(2, 2))(c4)

32

33 c5 = tf.keras.layers.Conv2D(256, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

34 padding=’same’)(p4)

35 c5 = tf.keras.layers.Dropout(0.3)(c5)

36 c5 = tf.keras.layers.Conv2D(256, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

37 padding=’same’)(c5)

38

39 # Expansion path

40 u6 = tf.keras.layers.Conv2DTranspose(128, (2, 2), strides=(2, 2), padding=’same’)(c5)

41 u6 = tf.keras.layers.concatenate([u6, c4])

42 c6 = tf.keras.layers.Conv2D(128, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

43 padding=’same’)(u6)

44 c6 = tf.keras.layers.Dropout(0.2)(c6)

45 c6 = tf.keras.layers.Conv2D(128, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

46 padding=’same’)(c6)

Listing 7.8: Python code that implements the U-Net model (part 1).

116

1 u7 = tf.keras.layers.Conv2DTranspose(64, (2, 2), strides=(2, 2), padding=’same’)(c6)

2 u7 = tf.keras.layers.concatenate([u7, c3])

3 c7 = tf.keras.layers.Conv2D(64, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

4 padding=’same’)(u7)

5 c7 = tf.keras.layers.Dropout(0.2)(c7)

6 c7 = tf.keras.layers.Conv2D(64, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

7 padding=’same’)(c7)

8

9 u8 = tf.keras.layers.Conv2DTranspose(32, (2, 2), strides=(2, 2), padding=’same’)(c7)

10 u8 = tf.keras.layers.concatenate([u8, c2])

11 c8 = tf.keras.layers.Conv2D(32, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

12 padding=’same’)(u8)

13 c8 = tf.keras.layers.Dropout(0.1)(c8)

14 c8 = tf.keras.layers.Conv2D(32, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

15 padding=’same’)(c8)

16

17 u9 = tf.keras.layers.Conv2DTranspose(16, (2, 2), strides=(2, 2), padding=’same’)(c8)

18 u9 = tf.keras.layers.concatenate([u9, c1], axis=3)

19 c9 = tf.keras.layers.Conv2D(16, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

20 padding=’same’)(u9)

21 c9 = tf.keras.layers.Dropout(0.1)(c9)

22 c9 = tf.keras.layers.Conv2D(16, (3, 3), activation=’relu’, kernel_initializer=’he_normal’,

23 padding=’same’)(c9)

24

25 outputs = tf.keras.layers.Conv2D(1, (1, 1), activation=’sigmoid’)(c9)

26

27 model = tf.keras.Model(inputs=[inputs], outputs=[outputs])

28

29 return model

Listing 7.9: Python code that implements the U-Net model (part 2).

1 Model: "Unet Model Jaccard"

2 Layer (type) Output Shape Params Connected to

3 input_9 (InputLayer) [(None, 128, 128, 3) 0

4 lambda_8 (Lambda) (None, 128, 128, 3) 0 input_9[0][0]

5 conv2d_152 (Conv2D) (None, 128, 128, 16) 448 lambda_8[0][0]

6 dropout_72 (Dropout) (None, 128, 128, 16) 0 conv2d_152[0][0]

7 conv2d_153 (Conv2D) (None, 128, 128, 16) 2320 dropout_72[0][0]

8 max_pooling2d_32 (MaxPooling2D) (None, 64, 64, 16) 0 conv2d_153[0][0]

9 conv2d_154 (Conv2D) (None, 64, 64, 32) 4640 max_pooling2d_32[0][0]

10 dropout_73 (Dropout) (None, 64, 64, 32) 0 conv2d_154[0][0]

11 conv2d_155 (Conv2D) (None, 64, 64, 32) 9248 dropout_73[0][0]

12 max_pooling2d_33 (MaxPooling2D) (None, 32, 32, 32) 0 conv2d_155[0][0]

Listing 7.10: Summary of the U-Net model (part 1).

117

1 conv2d_156 (Conv2D) (None, 32, 32, 64) 18496 max_pooling2d_33[0][0]

2 dropout_74 (Dropout) (None, 32, 32, 64) 0 conv2d_156[0][0]

3 conv2d_157 (Conv2D) (None, 32, 32, 64) 36928 dropout_74[0][0]

4 max_pooling2d_34 (MaxPooling2D) (None, 16, 16, 64) 0 conv2d_157[0][0]

5 conv2d_158 (Conv2D) (None, 16, 16, 128) 73856 max_pooling2d_34[0][0]

6 dropout_75 (Dropout) (None, 16, 16, 128) 0 conv2d_158[0][0]

7 conv2d_159 (Conv2D) (None, 16, 16, 128) 147584 dropout_75[0][0]

8 max_pooling2d_35 (MaxPooling2D) (None, 8, 8, 128) 0 conv2d_159[0][0]

9 conv2d_160 (Conv2D) (None, 8, 8, 256) 295168 max_pooling2d_35[0][0]

10 dropout_76 (Dropout) (None, 8, 8, 256) 0 conv2d_160[0][0]

11 conv2d_161 (Conv2D) (None, 8, 8, 256) 590080 dropout_76[0][0]

12 conv2d_transpose_32 (Conv2DTr.) (None, 16, 16, 128) 131200 conv2d_161[0][0]

13 concatenate_32 (Concatenate) (None, 16, 16, 256) 0 conv2d_transpose_32[0][0]

14 conv2d_159[0][0]

15 conv2d_162 (Conv2D) (None, 16, 16, 128) 295040 concatenate_32[0][0]

16 dropout_77 (Dropout) (None, 16, 16, 128) 0 conv2d_162[0][0]

17 conv2d_163 (Conv2D) (None, 16, 16, 128) 147584 dropout_77[0][0]

18 conv2d_transpose_33 (Conv2DTr.) (None, 32, 32, 64) 32832 conv2d_163[0][0]

19 concatenate_33 (Concatenate) (None, 32, 32, 128) 0 conv2d_transpose_33[0][0]

20 conv2d_157[0][0]

21 conv2d_164 (Conv2D) (None, 32, 32, 64) 73792 concatenate_33[0][0]

22 dropout_78 (Dropout) (None, 32, 32, 64) 0 conv2d_164[0][0]

23 conv2d_165 (Conv2D) (None, 32, 32, 64) 36928 dropout_78[0][0]

24 conv2d_transpose_34 (Conv2DTr.) (None, 64, 64, 32) 8224 conv2d_165[0][0]

25 concatenate_34 (Concatenate) (None, 64, 64, 64) 0 conv2d_transpose_34[0][0]

26 conv2d_155[0][0]

27 conv2d_166 (Conv2D) (None, 64, 64, 32) 18464 concatenate_34[0][0]

28 dropout_79 (Dropout) (None, 64, 64, 32) 0 conv2d_166[0][0]

29 conv2d_167 (Conv2D) (None, 64, 64, 32) 9248 dropout_79[0][0]

30 conv2d_transpose_35 (Conv2DTr.) (None, 128, 128, 16) 2064 conv2d_167[0][0]

31 concatenate_35 (Concatenate) (None, 128, 128, 32) 0 conv2d_transpose_35[0][0]

32 conv2d_153[0][0]

33 conv2d_168 (Conv2D) (None, 128, 128, 16) 4624 concatenate_35[0][0]

34 dropout_80 (Dropout) (None, 128, 128, 16) 0 conv2d_168[0][0]

35 conv2d_169 (Conv2D) (None, 128, 128, 16) 2320 dropout_80[0][0]

36 conv2d_170 (Conv2D) (None, 128, 128, 1) 17 conv2d_169[0][0]

37 Total params: 1,941,105

38 Trainable params: 1,941,105

39 Non-trainable params: 0

Listing 7.11: Summary of the U-Net model (part 2).

118

1 Model: "model_Tiramisu"

2 Layer (type) Output Shape Params Connected to

3 input_12 (InputLayer) [(None, 128, 128, 3) 0

4 conv2d_367 (Conv2D) (None, 128, 128, 48) 1344 input_12[0][0]

5 batch_normalization_192 (BNorm) (None, 128, 128, 48) 512 conv2d_367[0][0]

6 activation_194 (Activation) (None, 128, 128, 48) 0 batch_normalization_192[0][0]

7 conv2d_368 (Conv2D) (None, 128, 128, 16) 6928 activation_194[0][0]

8 dropout_273 (Dropout) (None, 128, 128, 16) 0 conv2d_368[0][0]

9 concatenate_228 (Concatenate) (None, 128, 128, 64) 0 dropout_273[0][0]

10 conv2d_367[0][0]

11 batch_normalization_193 (BNorm) (None, 128, 128, 64) 512 concatenate_228[0][0]

12 activation_195 (Activation) (None, 128, 128, 64) 0 batch_normalization_193[0][0]

13 conv2d_369 (Conv2D) (None, 128, 128, 16) 9232 activation_195[0][0]

14 dropout_274 (Dropout) (None, 128, 128, 16) 0 conv2d_369[0][0]

15 concatenate_229 (Concatenate) (None, 128, 128, 80) 0 dropout_274[0][0]

16 concatenate_228[0][0]

17 batch_normalization_194 (BNorm) (None, 128, 128, 80) 512 concatenate_229[0][0]

18 activation_196 (Activation) (None, 128, 128, 80) 0 batch_normalization_194[0][0]

19 conv2d_370 (Conv2D) (None, 128, 128, 16) 11536 activation_196[0][0]

20 dropout_275 (Dropout) (None, 128, 128, 16) 0 conv2d_370[0][0]

21 concatenate_230 (Concatenate) (None, 128, 128, 96) 0 dropout_275[0][0]

22 concatenate_229[0][0]

23 batch_normalization_195 (BNorm) (None, 128, 128, 96) 512 concatenate_230[0][0]

24 activation_197 (Activation) (None, 128, 128, 96) 0 batch_normalization_195[0][0]

25 conv2d_371 (Conv2D) (None, 128, 128, 16) 13840 activation_197[0][0]

26 dropout_276 (Dropout) (None, 128, 128, 16) 0 conv2d_371[0][0]

27 concatenate_231 (Concatenate) (None, 128, 128, 112 0 dropout_276[0][0]

28 concatenate_230[0][0]

29 batch_normalization_196 (BNorm) (None, 128, 128, 112 512 concatenate_231[0][0]

30 activation_198 (Activation) (None, 128, 128, 112 0 batch_normalization_196[0][0]

31 conv2d_372 (Conv2D) (None, 128, 128, 112 12656 activation_198[0][0]

32 dropout_277 (Dropout) (None, 128, 128, 112 0 conv2d_372[0][0]

33 max_pooling2d_46 (MaxPooling2D) (None, 64, 64, 112) 0 dropout_277[0][0]

34 batch_normalization_197 (BNorm) (None, 64, 64, 112) 256 max_pooling2d_46[0][0]

35 activation_199 (Activation) (None, 64, 64, 112) 0 batch_normalization_197[0][0]

36 conv2d_373 (Conv2D) (None, 64, 64, 16) 16144 activation_199[0][0]

37 dropout_278 (Dropout) (None, 64, 64, 16) 0 conv2d_373[0][0]

38 concatenate_232 (Concatenate) (None, 64, 64, 128) 0 dropout_278[0][0]

39 max_pooling2d_46[0][0]

40 batch_normalization_198 (BNorm) (None, 64, 64, 128) 256 concatenate_232[0][0]

41 activation_200 (Activation) (None, 64, 64, 128) 0 batch_normalization_198[0][0]

42 conv2d_374 (Conv2D) (None, 64, 64, 16) 18448 activation_200[0][0]

43 dropout_279 (Dropout) (None, 64, 64, 16) 0 conv2d_374[0][0]

44 concatenate_233 (Concatenate) (None, 64, 64, 144) 0 dropout_279[0][0]

45 concatenate_232[0][0]

Listing 7.12: Summary of the Tiramisu model (part 1).

119

1 batch_normalization_199 (BNorm) (None, 64, 64, 144) 256 concatenate_233[0][0]

2 activation_201 (Activation) (None, 64, 64, 144) 0 batch_normalization_199[0][0]

3 conv2d_375 (Conv2D) (None, 64, 64, 16) 20752 activation_201[0][0]

4 dropout_280 (Dropout) (None, 64, 64, 16) 0 conv2d_375[0][0]

5 concatenate_234 (Concatenate) (None, 64, 64, 160) 0 dropout_280[0][0]

6 concatenate_233[0][0]

7 batch_normalization_200 (BNorm) (None, 64, 64, 160) 256 concatenate_234[0][0]

8 activation_202 (Activation) (None, 64, 64, 160) 0 batch_normalization_200[0][0]

9 conv2d_376 (Conv2D) (None, 64, 64, 16) 23056 activation_202[0][0]

10 dropout_281 (Dropout) (None, 64, 64, 16) 0 conv2d_376[0][0]

11 concatenate_235 (Concatenate) (None, 64, 64, 176) 0 dropout_281[0][0]

12 concatenate_234[0][0]

13 batch_normalization_201 (BNorm) (None, 64, 64, 176) 256 concatenate_235[0][0]

14 activation_203 (Activation) (None, 64, 64, 176) 0 batch_normalization_201[0][0]

15 conv2d_377 (Conv2D) (None, 64, 64, 16) 25360 activation_203[0][0]

16 dropout_282 (Dropout) (None, 64, 64, 16) 0 conv2d_377[0][0]

17 concatenate_236 (Concatenate) (None, 64, 64, 192) 0 dropout_282[0][0]

18 concatenate_235[0][0]

19 batch_normalization_202 (BNorm) (None, 64, 64, 192) 256 concatenate_236[0][0]

20 activation_204 (Activation) (None, 64, 64, 192) 0 batch_normalization_202[0][0]

21 conv2d_378 (Conv2D) (None, 64, 64, 192) 37056 activation_204[0][0]

22 dropout_283 (Dropout) (None, 64, 64, 192) 0 conv2d_378[0][0]

23 max_pooling2d_47 (MaxPooling2D) (None, 32, 32, 192) 0 dropout_283[0][0]

24 batch_normalization_203 (BNorm) (None, 32, 32, 192) 128 max_pooling2d_47[0][0]

25 activation_205 (Activation) (None, 32, 32, 192) 0 batch_normalization_203[0][0]

26 conv2d_379 (Conv2D) (None, 32, 32, 16) 27664 activation_205[0][0]

27 dropout_284 (Dropout) (None, 32, 32, 16) 0 conv2d_379[0][0]

28 concatenate_237 (Concatenate) (None, 32, 32, 208) 0 dropout_284[0][0]

29 max_pooling2d_47[0][0]

30 batch_normalization_204 (BNorm) (None, 32, 32, 208) 128 concatenate_237[0][0]

31 activation_206 (Activation) (None, 32, 32, 208) 0 batch_normalization_204[0][0]

32 conv2d_380 (Conv2D) (None, 32, 32, 16) 29968 activation_206[0][0]

33 dropout_285 (Dropout) (None, 32, 32, 16) 0 conv2d_380[0][0]

34 concatenate_238 (Concatenate) (None, 32, 32, 224) 0 dropout_285[0][0]

35 concatenate_237[0][0]

36 batch_normalization_205 (BNorm) (None, 32, 32, 224) 128 concatenate_238[0][0]

37 activation_207 (Activation) (None, 32, 32, 224) 0 batch_normalization_205[0][0]

38 conv2d_381 (Conv2D) (None, 32, 32, 16) 32272 activation_207[0][0]

39 dropout_286 (Dropout) (None, 32, 32, 16) 0 conv2d_381[0][0]

40 concatenate_239 (Concatenate) (None, 32, 32, 240) 0 dropout_286[0][0]

41 concatenate_238[0][0]

42 batch_normalization_206 (BNorm) (None, 32, 32, 240) 128 concatenate_239[0][0]

43 activation_208 (Activation) (None, 32, 32, 240) 0 batch_normalization_206[0][0]

44 conv2d_382 (Conv2D) (None, 32, 32, 16) 34576 activation_208[0][0]

45 dropout_287 (Dropout) (None, 32, 32, 16) 0 conv2d_382[0][0]

Listing 7.13: Summary of the Tiramisu model (part 2).

120

1 concatenate_240 (Concatenate) (None, 32, 32, 256) 0 dropout_287[0][0]

2 concatenate_239[0][0]

3 batch_normalization_207 (BNorm) (None, 32, 32, 256) 128 concatenate_240[0][0]

4 activation_209 (Activation) (None, 32, 32, 256) 0 batch_normalization_207[0][0]

5 conv2d_383 (Conv2D) (None, 32, 32, 16) 36880 activation_209[0][0]

6 dropout_288 (Dropout) (None, 32, 32, 16) 0 conv2d_383[0][0]

7 concatenate_241 (Concatenate) (None, 32, 32, 272) 0 dropout_288[0][0]

8 concatenate_240[0][0]

9 batch_normalization_208 (BNorm) (None, 32, 32, 272) 128 concatenate_241[0][0]

10 activation_210 (Activation) (None, 32, 32, 272) 0 batch_normalization_208[0][0]

11 conv2d_384 (Conv2D) (None, 32, 32, 16) 39184 activation_210[0][0]

12 dropout_289 (Dropout) (None, 32, 32, 16) 0 conv2d_384[0][0]

13 concatenate_242 (Concatenate) (None, 32, 32, 288) 0 dropout_289[0][0]

14 concatenate_241[0][0]

15 batch_normalization_209 (BNorm) (None, 32, 32, 288) 128 concatenate_242[0][0]

16 activation_211 (Activation) (None, 32, 32, 288) 0 batch_normalization_209[0][0]

17 conv2d_385 (Conv2D) (None, 32, 32, 16) 41488 activation_211[0][0]

18 dropout_290 (Dropout) (None, 32, 32, 16) 0 conv2d_385[0][0]

19 concatenate_243 (Concatenate) (None, 32, 32, 304) 0 dropout_290[0][0]

20 concatenate_242[0][0]

21 batch_normalization_210 (BNorm) (None, 32, 32, 304) 128 concatenate_243[0][0]

22 activation_212 (Activation) (None, 32, 32, 304) 0 batch_normalization_210[0][0]

23 conv2d_386 (Conv2D) (None, 32, 32, 304) 92720 activation_212[0][0]

24 dropout_291 (Dropout) (None, 32, 32, 304) 0 conv2d_386[0][0]

25 max_pooling2d_48 (MaxPooling2D) (None, 16, 16, 304) 0 dropout_291[0][0]

26 batch_normalization_211 (BNorm) (None, 16, 16, 304) 64 max_pooling2d_48[0][0]

27 activation_213 (Activation) (None, 16, 16, 304) 0 batch_normalization_211[0][0]

28 conv2d_387 (Conv2D) (None, 16, 16, 16) 43792 activation_213[0][0]

29 dropout_292 (Dropout) (None, 16, 16, 16) 0 conv2d_387[0][0]

30 concatenate_244 (Concatenate) (None, 16, 16, 320) 0 dropout_292[0][0]

31 max_pooling2d_48[0][0]

32 batch_normalization_212 (BNorm) (None, 16, 16, 320) 64 concatenate_244[0][0]

33 activation_214 (Activation) (None, 16, 16, 320) 0 batch_normalization_212[0][0]

34 conv2d_388 (Conv2D) (None, 16, 16, 16) 46096 activation_214[0][0]

35 dropout_293 (Dropout) (None, 16, 16, 16) 0 conv2d_388[0][0]

36 concatenate_245 (Concatenate) (None, 16, 16, 336) 0 dropout_293[0][0]

37 concatenate_244[0][0]

38 batch_normalization_213 (BNorm) (None, 16, 16, 336) 64 concatenate_245[0][0]

39 activation_215 (Activation) (None, 16, 16, 336) 0 batch_normalization_213[0][0]

40 conv2d_389 (Conv2D) (None, 16, 16, 16) 48400 activation_215[0][0]

41 dropout_294 (Dropout) (None, 16, 16, 16) 0 conv2d_389[0][0]

42 concatenate_246 (Concatenate) (None, 16, 16, 352) 0 dropout_294[0][0]

43 concatenate_245[0][0]

44 batch_normalization_214 (BNorm) (None, 16, 16, 352) 64 concatenate_246[0][0]

45 activation_216 (Activation) (None, 16, 16, 352) 0 batch_normalization_214[0][0]

46 conv2d_390 (Conv2D) (None, 16, 16, 16) 50704 activation_216[0][0]

Listing 7.14: Summary of the Tiramisu model (part 3).

121

1 dropout_295 (Dropout) (None, 16, 16, 16) 0 conv2d_390[0][0]

2 concatenate_247 (Concatenate) (None, 16, 16, 368) 0 dropout_295[0][0]

3 concatenate_246[0][0]

4 batch_normalization_215 (BNorm) (None, 16, 16, 368) 64 concatenate_247[0][0]

5 activation_217 (Activation) (None, 16, 16, 368) 0 batch_normalization_215[0][0]

6 conv2d_391 (Conv2D) (None, 16, 16, 16) 53008 activation_217[0][0]

7 dropout_296 (Dropout) (None, 16, 16, 16) 0 conv2d_391[0][0]

8 concatenate_248 (Concatenate) (None, 16, 16, 384) 0 dropout_296[0][0]

9 concatenate_247[0][0]

10 batch_normalization_216 (BNorm) (None, 16, 16, 384) 64 concatenate_248[0][0]

11 activation_218 (Activation) (None, 16, 16, 384) 0 batch_normalization_216[0][0]

12 conv2d_392 (Conv2D) (None, 16, 16, 16) 55312 activation_218[0][0]

13 dropout_297 (Dropout) (None, 16, 16, 16) 0 conv2d_392[0][0]

14 concatenate_249 (Concatenate) (None, 16, 16, 400) 0 dropout_297[0][0]

15 concatenate_248[0][0]

16 batch_normalization_217 (BNorm) (None, 16, 16, 400) 64 concatenate_249[0][0]

17 activation_219 (Activation) (None, 16, 16, 400) 0 batch_normalization_217[0][0]

18 conv2d_393 (Conv2D) (None, 16, 16, 16) 57616 activation_219[0][0]

19 dropout_298 (Dropout) (None, 16, 16, 16) 0 conv2d_393[0][0]

20 concatenate_250 (Concatenate) (None, 16, 16, 416) 0 dropout_298[0][0]

21 concatenate_249[0][0]

22 batch_normalization_218 (BNorm) (None, 16, 16, 416) 64 concatenate_250[0][0]

23 activation_220 (Activation) (None, 16, 16, 416) 0 batch_normalization_218[0][0]

24 conv2d_394 (Conv2D) (None, 16, 16, 16) 59920 activation_220[0][0]

25 dropout_299 (Dropout) (None, 16, 16, 16) 0 conv2d_394[0][0]

26 concatenate_251 (Concatenate) (None, 16, 16, 432) 0 dropout_299[0][0]

27 concatenate_250[0][0]

28 batch_normalization_219 (BNorm) (None, 16, 16, 432) 64 concatenate_251[0][0]

29 activation_221 (Activation) (None, 16, 16, 432) 0 batch_normalization_219[0][0]

30 conv2d_395 (Conv2D) (None, 16, 16, 16) 62224 activation_221[0][0]

31 dropout_300 (Dropout) (None, 16, 16, 16) 0 conv2d_395[0][0]

32 concatenate_252 (Concatenate) (None, 16, 16, 448) 0 dropout_300[0][0]

33 concatenate_251[0][0]

34 batch_normalization_220 (BNorm) (None, 16, 16, 448) 64 concatenate_252[0][0]

35 activation_222 (Activation) (None, 16, 16, 448) 0 batch_normalization_220[0][0]

36 conv2d_396 (Conv2D) (None, 16, 16, 16) 64528 activation_222[0][0]

37 dropout_301 (Dropout) (None, 16, 16, 16) 0 conv2d_396[0][0]

38 concatenate_253 (Concatenate) (None, 16, 16, 464) 0 dropout_301[0][0]

39 concatenate_252[0][0]

40 batch_normalization_221 (BNorm) (None, 16, 16, 464) 64 concatenate_253[0][0]

41 activation_223 (Activation) (None, 16, 16, 464) 0 batch_normalization_221[0][0]

42 conv2d_397 (Conv2D) (None, 16, 16, 464) 215760 activation_223[0][0]

43 dropout_302 (Dropout) (None, 16, 16, 464) 0 conv2d_397[0][0]

44 max_pooling2d_49 (MaxPooling2D) (None, 8, 8, 464) 0 dropout_302[0][0]

45 batch_normalization_222 (BNorm) (None, 8, 8, 464) 32 max_pooling2d_49[0][0]

46 activation_224 (Activation) (None, 8, 8, 464) 0 batch_normalization_222[0][0]

Listing 7.15: Summary of the Tiramisu model (part 4).

122

1 conv2d_398 (Conv2D) (None, 8, 8, 16) 66832 activation_224[0][0]

2 dropout_303 (Dropout) (None, 8, 8, 16) 0 conv2d_398[0][0]

3 concatenate_254 (Concatenate) (None, 8, 8, 480) 0 dropout_303[0][0]

4 max_pooling2d_49[0][0]

5 batch_normalization_223 (BNorm) (None, 8, 8, 480) 32 concatenate_254[0][0]

6 activation_225 (Activation) (None, 8, 8, 480) 0 batch_normalization_223[0][0]

7 conv2d_399 (Conv2D) (None, 8, 8, 16) 69136 activation_225[0][0]

8 dropout_304 (Dropout) (None, 8, 8, 16) 0 conv2d_399[0][0]

9 concatenate_255 (Concatenate) (None, 8, 8, 496) 0 dropout_304[0][0]

10 concatenate_254[0][0]

11 batch_normalization_224 (BNorm) (None, 8, 8, 496) 32 concatenate_255[0][0]

12 activation_226 (Activation) (None, 8, 8, 496) 0 batch_normalization_224[0][0]

13 conv2d_400 (Conv2D) (None, 8, 8, 16) 71440 activation_226[0][0]

14 dropout_305 (Dropout) (None, 8, 8, 16) 0 conv2d_400[0][0]

15 concatenate_256 (Concatenate) (None, 8, 8, 512) 0 dropout_305[0][0]

16 concatenate_255[0][0]

17 batch_normalization_225 (BNorm) (None, 8, 8, 512) 32 concatenate_256[0][0]

18 activation_227 (Activation) (None, 8, 8, 512) 0 batch_normalization_225[0][0]

19 conv2d_401 (Conv2D) (None, 8, 8, 16) 73744 activation_227[0][0]

20 dropout_306 (Dropout) (None, 8, 8, 16) 0 conv2d_401[0][0]

21 concatenate_257 (Concatenate) (None, 8, 8, 528) 0 dropout_306[0][0]

22 concatenate_256[0][0]

23 batch_normalization_226 (BNorm) (None, 8, 8, 528) 32 concatenate_257[0][0]

24 activation_228 (Activation) (None, 8, 8, 528) 0 batch_normalization_226[0][0]

25 conv2d_402 (Conv2D) (None, 8, 8, 16) 76048 activation_228[0][0]

26 dropout_307 (Dropout) (None, 8, 8, 16) 0 conv2d_402[0][0]

27 concatenate_258 (Concatenate) (None, 8, 8, 544) 0 dropout_307[0][0]

28 concatenate_257[0][0]

29 batch_normalization_227 (BNorm) (None, 8, 8, 544) 32 concatenate_258[0][0]

30 activation_229 (Activation) (None, 8, 8, 544) 0 batch_normalization_227[0][0]

31 conv2d_403 (Conv2D) (None, 8, 8, 16) 78352 activation_229[0][0]

32 dropout_308 (Dropout) (None, 8, 8, 16) 0 conv2d_403[0][0]

33 concatenate_259 (Concatenate) (None, 8, 8, 560) 0 dropout_308[0][0]

34 concatenate_258[0][0]

35 batch_normalization_228 (BNorm) (None, 8, 8, 560) 32 concatenate_259[0][0]

36 activation_230 (Activation) (None, 8, 8, 560) 0 batch_normalization_228[0][0]

37 conv2d_404 (Conv2D) (None, 8, 8, 16) 80656 activation_230[0][0]

38 dropout_309 (Dropout) (None, 8, 8, 16) 0 conv2d_404[0][0]

39 concatenate_260 (Concatenate) (None, 8, 8, 576) 0 dropout_309[0][0]

40 concatenate_259[0][0]

41 batch_normalization_229 (BNorm) (None, 8, 8, 576) 32 concatenate_260[0][0]

42 activation_231 (Activation) (None, 8, 8, 576) 0 batch_normalization_229[0][0]

43 conv2d_405 (Conv2D) (None, 8, 8, 16) 82960 activation_231[0][0]

44 dropout_310 (Dropout) (None, 8, 8, 16) 0 conv2d_405[0][0]

45 concatenate_261 (Concatenate) (None, 8, 8, 592) 0 dropout_310[0][0]

46 concatenate_260[0][0]

Listing 7.16: Summary of the Tiramisu model (part 5).

123

1 batch_normalization_230 (BNorm) (None, 8, 8, 592) 32 concatenate_261[0][0]

2 activation_232 (Activation) (None, 8, 8, 592) 0 batch_normalization_230[0][0]

3 conv2d_406 (Conv2D) (None, 8, 8, 16) 85264 activation_232[0][0]

4 dropout_311 (Dropout) (None, 8, 8, 16) 0 conv2d_406[0][0]

5 concatenate_262 (Concatenate) (None, 8, 8, 608) 0 dropout_311[0][0]

6 concatenate_261[0][0]

7 batch_normalization_231 (BNorm) (None, 8, 8, 608) 32 concatenate_262[0][0]

8 activation_233 (Activation) (None, 8, 8, 608) 0 batch_normalization_231[0][0]

9 conv2d_407 (Conv2D) (None, 8, 8, 16) 87568 activation_233[0][0]

10 dropout_312 (Dropout) (None, 8, 8, 16) 0 conv2d_407[0][0]

11 concatenate_263 (Concatenate) (None, 8, 8, 624) 0 dropout_312[0][0]

12 concatenate_262[0][0]

13 batch_normalization_232 (BNorm) (None, 8, 8, 624) 32 concatenate_263[0][0]

14 activation_234 (Activation) (None, 8, 8, 624) 0 batch_normalization_232[0][0]

15 conv2d_408 (Conv2D) (None, 8, 8, 16) 89872 activation_234[0][0]

16 dropout_313 (Dropout) (None, 8, 8, 16) 0 conv2d_408[0][0]

17 concatenate_264 (Concatenate) (None, 8, 8, 640) 0 dropout_313[0][0]

18 concatenate_263[0][0]

19 batch_normalization_233 (BNorm) (None, 8, 8, 640) 32 concatenate_264[0][0]

20 activation_235 (Activation) (None, 8, 8, 640) 0 batch_normalization_233[0][0]

21 conv2d_409 (Conv2D) (None, 8, 8, 16) 92176 activation_235[0][0]

22 dropout_314 (Dropout) (None, 8, 8, 16) 0 conv2d_409[0][0]

23 concatenate_265 (Concatenate) (None, 8, 8, 656) 0 dropout_314[0][0]

24 concatenate_264[0][0]

25 batch_normalization_234 (BNorm) (None, 8, 8, 656) 32 concatenate_265[0][0]

26 activation_236 (Activation) (None, 8, 8, 656) 0 batch_normalization_234[0][0]

27 conv2d_410 (Conv2D) (None, 8, 8, 656) 430992 activation_236[0][0]

28 dropout_315 (Dropout) (None, 8, 8, 656) 0 conv2d_410[0][0]

29 max_pooling2d_50 (MaxPooling2D) (None, 4, 4, 656) 0 dropout_315[0][0]

30 batch_normalization_235 (BNorm) (None, 4, 4, 656) 16 max_pooling2d_50[0][0]

31 activation_237 (Activation) (None, 4, 4, 656) 0 batch_normalization_235[0][0]

32 conv2d_411 (Conv2D) (None, 4, 4, 16) 94480 activation_237[0][0]

33 dropout_316 (Dropout) (None, 4, 4, 16) 0 conv2d_411[0][0]

34 concatenate_266 (Concatenate) (None, 4, 4, 672) 0 dropout_316[0][0]

35 max_pooling2d_50[0][0]

36 batch_normalization_236 (BNorm) (None, 4, 4, 672) 16 concatenate_266[0][0]

37 activation_238 (Activation) (None, 4, 4, 672) 0 batch_normalization_236[0][0]

38 conv2d_412 (Conv2D) (None, 4, 4, 16) 96784 activation_238[0][0]

39 dropout_317 (Dropout) (None, 4, 4, 16) 0 conv2d_412[0][0]

40 concatenate_267 (Concatenate) (None, 4, 4, 688) 0 dropout_317[0][0]

41 concatenate_266[0][0]

42 batch_normalization_237 (BNorm) (None, 4, 4, 688) 16 concatenate_267[0][0]

43 activation_239 (Activation) (None, 4, 4, 688) 0 batch_normalization_237[0][0]

44 conv2d_413 (Conv2D) (None, 4, 4, 16) 99088 activation_239[0][0]

45 dropout_318 (Dropout) (None, 4, 4, 16) 0 conv2d_413[0][0]

Listing 7.17: Summary of the Tiramisu model (part 6).

124

1 concatenate_268 (Concatenate) (None, 4, 4, 704) 0 dropout_318[0][0]

2 concatenate_267[0][0]

3 batch_normalization_238 (BNorm) (None, 4, 4, 704) 16 concatenate_268[0][0]

4 activation_240 (Activation) (None, 4, 4, 704) 0 batch_normalization_238[0][0]

5 conv2d_414 (Conv2D) (None, 4, 4, 16) 101392 activation_240[0][0]

6 dropout_319 (Dropout) (None, 4, 4, 16) 0 conv2d_414[0][0]

7 concatenate_269 (Concatenate) (None, 4, 4, 720) 0 dropout_319[0][0]

8 concatenate_268[0][0]

9 batch_normalization_239 (BNorm) (None, 4, 4, 720) 16 concatenate_269[0][0]

10 activation_241 (Activation) (None, 4, 4, 720) 0 batch_normalization_239[0][0]

11 conv2d_415 (Conv2D) (None, 4, 4, 16) 103696 activation_241[0][0]

12 dropout_320 (Dropout) (None, 4, 4, 16) 0 conv2d_415[0][0]

13 concatenate_270 (Concatenate) (None, 4, 4, 736) 0 dropout_320[0][0]

14 concatenate_269[0][0]

15 batch_normalization_240 (BNorm) (None, 4, 4, 736) 16 concatenate_270[0][0]

16 activation_242 (Activation) (None, 4, 4, 736) 0 batch_normalization_240[0][0]

17 conv2d_416 (Conv2D) (None, 4, 4, 16) 106000 activation_242[0][0]

18 dropout_321 (Dropout) (None, 4, 4, 16) 0 conv2d_416[0][0]

19 concatenate_271 (Concatenate) (None, 4, 4, 752) 0 dropout_321[0][0]

20 concatenate_270[0][0]

21 batch_normalization_241 (BNorm) (None, 4, 4, 752) 16 concatenate_271[0][0]

22 activation_243 (Activation) (None, 4, 4, 752) 0 batch_normalization_241[0][0]

23 conv2d_417 (Conv2D) (None, 4, 4, 16) 108304 activation_243[0][0]

24 dropout_322 (Dropout) (None, 4, 4, 16) 0 conv2d_417[0][0]

25 concatenate_272 (Concatenate) (None, 4, 4, 768) 0 dropout_322[0][0]

26 concatenate_271[0][0]

27 batch_normalization_242 (BNorm) (None, 4, 4, 768) 16 concatenate_272[0][0]

28 activation_244 (Activation) (None, 4, 4, 768) 0 batch_normalization_242[0][0]

29 conv2d_418 (Conv2D) (None, 4, 4, 16) 110608 activation_244[0][0]

30 dropout_323 (Dropout) (None, 4, 4, 16) 0 conv2d_418[0][0]

31 concatenate_273 (Concatenate) (None, 4, 4, 784) 0 dropout_323[0][0]

32 concatenate_272[0][0]

33 batch_normalization_243 (BNorm) (None, 4, 4, 784) 16 concatenate_273[0][0]

34 activation_245 (Activation) (None, 4, 4, 784) 0 batch_normalization_243[0][0]

35 conv2d_419 (Conv2D) (None, 4, 4, 16) 112912 activation_245[0][0]

36 dropout_324 (Dropout) (None, 4, 4, 16) 0 conv2d_419[0][0]

37 concatenate_274 (Concatenate) (None, 4, 4, 800) 0 dropout_324[0][0]

38 concatenate_273[0][0]

39 batch_normalization_244 (BNorm) (None, 4, 4, 800) 16 concatenate_274[0][0]

40 activation_246 (Activation) (None, 4, 4, 800) 0 batch_normalization_244[0][0]

41 conv2d_420 (Conv2D) (None, 4, 4, 16) 115216 activation_246[0][0]

42 dropout_325 (Dropout) (None, 4, 4, 16) 0 conv2d_420[0][0]

43 concatenate_275 (Concatenate) (None, 4, 4, 816) 0 dropout_325[0][0]

44 concatenate_274[0][0]

45 batch_normalization_245 (BNorm) (None, 4, 4, 816) 16 concatenate_275[0][0]

46 activation_247 (Activation) (None, 4, 4, 816) 0 batch_normalization_245[0][0]

Listing 7.18: Summary of the Tiramisu model (part 7).

125

1 conv2d_421 (Conv2D) (None, 4, 4, 16) 117520 activation_247[0][0]

2 dropout_326 (Dropout) (None, 4, 4, 16) 0 conv2d_421[0][0]

3 concatenate_276 (Concatenate) (None, 4, 4, 832) 0 dropout_326[0][0]

4 concatenate_275[0][0]

5 batch_normalization_246 (BNorm) (None, 4, 4, 832) 16 concatenate_276[0][0]

6 activation_248 (Activation) (None, 4, 4, 832) 0 batch_normalization_246[0][0]

7 conv2d_422 (Conv2D) (None, 4, 4, 16) 119824 activation_248[0][0]

8 dropout_327 (Dropout) (None, 4, 4, 16) 0 conv2d_422[0][0]

9 concatenate_277 (Concatenate) (None, 4, 4, 848) 0 dropout_327[0][0]

10 concatenate_276[0][0]

11 batch_normalization_247 (BNorm) (None, 4, 4, 848) 16 concatenate_277[0][0]

12 activation_249 (Activation) (None, 4, 4, 848) 0 batch_normalization_247[0][0]

13 conv2d_423 (Conv2D) (None, 4, 4, 16) 122128 activation_249[0][0]

14 dropout_328 (Dropout) (None, 4, 4, 16) 0 conv2d_423[0][0]

15 concatenate_278 (Concatenate) (None, 4, 4, 864) 0 dropout_328[0][0]

16 concatenate_277[0][0]

17 batch_normalization_248 (BNorm) (None, 4, 4, 864) 16 concatenate_278[0][0]

18 activation_250 (Activation) (None, 4, 4, 864) 0 batch_normalization_248[0][0]

19 conv2d_424 (Conv2D) (None, 4, 4, 16) 124432 activation_250[0][0]

20 dropout_329 (Dropout) (None, 4, 4, 16) 0 conv2d_424[0][0]

21 concatenate_279 (Concatenate) (None, 4, 4, 880) 0 dropout_329[0][0]

22 concatenate_278[0][0]

23 batch_normalization_249 (BNorm) (None, 4, 4, 880) 16 concatenate_279[0][0]

24 activation_251 (Activation) (None, 4, 4, 880) 0 batch_normalization_249[0][0]

25 conv2d_425 (Conv2D) (None, 4, 4, 16) 126736 activation_251[0][0]

26 dropout_330 (Dropout) (None, 4, 4, 16) 0 conv2d_425[0][0]

27 concatenate_280 (Concatenate) (None, 4, 4, 896) 0 dropout_330[0][0]

28 concatenate_279[0][0]

29 conv2d_transpose_46 (Conv2DTr.) (None, 8, 8, 240) 1935600 concatenate_280[0][0]

30 concatenate_281 (Concatenate) (None, 8, 8, 896) 0 conv2d_transpose_46[0][0]

31 concatenate_265[0][0]

32 batch_normalization_250 (BNorm) (None, 8, 8, 896) 32 concatenate_281[0][0]

33 activation_252 (Activation) (None, 8, 8, 896) 0 batch_normalization_250[0][0]

34 conv2d_426 (Conv2D) (None, 8, 8, 16) 129040 activation_252[0][0]

35 dropout_331 (Dropout) (None, 8, 8, 16) 0 conv2d_426[0][0]

36 concatenate_282 (Concatenate) (None, 8, 8, 912) 0 dropout_331[0][0]

37 concatenate_281[0][0]

38 batch_normalization_251 (BNorm) (None, 8, 8, 912) 32 concatenate_282[0][0]

39 activation_253 (Activation) (None, 8, 8, 912) 0 batch_normalization_251[0][0]

40 conv2d_427 (Conv2D) (None, 8, 8, 16) 131344 activation_253[0][0]

41 dropout_332 (Dropout) (None, 8, 8, 16) 0 conv2d_427[0][0]

42 concatenate_283 (Concatenate) (None, 8, 8, 928) 0 dropout_332[0][0]

43 concatenate_282[0][0]

44 batch_normalization_252 (BNorm) (None, 8, 8, 928) 32 concatenate_283[0][0]

45 activation_254 (Activation) (None, 8, 8, 928) 0 batch_normalization_252[0][0]

46 conv2d_428 (Conv2D) (None, 8, 8, 16) 133648 activation_254[0][0]

Listing 7.19: Summary of the Tiramisu model (part 8).

126

1 dropout_333 (Dropout) (None, 8, 8, 16) 0 conv2d_428[0][0]

2 concatenate_284 (Concatenate) (None, 8, 8, 944) 0 dropout_333[0][0]

3 concatenate_283[0][0]

4 batch_normalization_253 (BNorm) (None, 8, 8, 944) 32 concatenate_284[0][0]

5 activation_255 (Activation) (None, 8, 8, 944) 0 batch_normalization_253[0][0]

6 conv2d_429 (Conv2D) (None, 8, 8, 16) 135952 activation_255[0][0]

7 dropout_334 (Dropout) (None, 8, 8, 16) 0 conv2d_429[0][0]

8 concatenate_285 (Concatenate) (None, 8, 8, 960) 0 dropout_334[0][0]

9 concatenate_284[0][0]

10 batch_normalization_254 (BNorm) (None, 8, 8, 960) 32 concatenate_285[0][0]

11 activation_256 (Activation) (None, 8, 8, 960) 0 batch_normalization_254[0][0]

12 conv2d_430 (Conv2D) (None, 8, 8, 16) 138256 activation_256[0][0]

13 dropout_335 (Dropout) (None, 8, 8, 16) 0 conv2d_430[0][0]

14 concatenate_286 (Concatenate) (None, 8, 8, 976) 0 dropout_335[0][0]

15 concatenate_285[0][0]

16 batch_normalization_255 (BNorm) (None, 8, 8, 976) 32 concatenate_286[0][0]

17 activation_257 (Activation) (None, 8, 8, 976) 0 batch_normalization_255[0][0]

18 conv2d_431 (Conv2D) (None, 8, 8, 16) 140560 activation_257[0][0]

19 dropout_336 (Dropout) (None, 8, 8, 16) 0 conv2d_431[0][0]

20 concatenate_287 (Concatenate) (None, 8, 8, 992) 0 dropout_336[0][0]

21 concatenate_286[0][0]

22 batch_normalization_256 (BNorm) (None, 8, 8, 992) 32 concatenate_287[0][0]

23 activation_258 (Activation) (None, 8, 8, 992) 0 batch_normalization_256[0][0]

24 conv2d_432 (Conv2D) (None, 8, 8, 16) 142864 activation_258[0][0]

25 dropout_337 (Dropout) (None, 8, 8, 16) 0 conv2d_432[0][0]

26 concatenate_288 (Concatenate) (None, 8, 8, 1008) 0 dropout_337[0][0]

27 concatenate_287[0][0]

28 batch_normalization_257 (BNorm) (None, 8, 8, 1008) 32 concatenate_288[0][0]

29 activation_259 (Activation) (None, 8, 8, 1008) 0 batch_normalization_257[0][0]

30 conv2d_433 (Conv2D) (None, 8, 8, 16) 145168 activation_259[0][0]

31 dropout_338 (Dropout) (None, 8, 8, 16) 0 conv2d_433[0][0]

32 concatenate_289 (Concatenate) (None, 8, 8, 1024) 0 dropout_338[0][0]

33 concatenate_288[0][0]

34 batch_normalization_258 (BNorm) (None, 8, 8, 1024) 32 concatenate_289[0][0]

35 activation_260 (Activation) (None, 8, 8, 1024) 0 batch_normalization_258[0][0]

36 conv2d_434 (Conv2D) (None, 8, 8, 16) 147472 activation_260[0][0]

37 dropout_339 (Dropout) (None, 8, 8, 16) 0 conv2d_434[0][0]

38 concatenate_290 (Concatenate) (None, 8, 8, 1040) 0 dropout_339[0][0]

39 concatenate_289[0][0]

40 batch_normalization_259 (BNorm) (None, 8, 8, 1040) 32 concatenate_290[0][0]

41 activation_261 (Activation) (None, 8, 8, 1040) 0 batch_normalization_259[0][0]

42 conv2d_435 (Conv2D) (None, 8, 8, 16) 149776 activation_261[0][0]

43 dropout_340 (Dropout) (None, 8, 8, 16) 0 conv2d_435[0][0]

44 concatenate_291 (Concatenate) (None, 8, 8, 1056) 0 dropout_340[0][0]

45 concatenate_290[0][0]

46 batch_normalization_260 (BNorm) (None, 8, 8, 1056) 32 concatenate_291[0][0]

Listing 7.20: Summary of the Tiramisu model (part 9).

127

1 activation_262 (Activation) (None, 8, 8, 1056) 0 batch_normalization_260[0][0]

2 conv2d_436 (Conv2D) (None, 8, 8, 16) 152080 activation_262[0][0]

3 dropout_341 (Dropout) (None, 8, 8, 16) 0 conv2d_436[0][0]

4 concatenate_292 (Concatenate) (None, 8, 8, 1072) 0 dropout_341[0][0]

5 concatenate_291[0][0]

6 batch_normalization_261 (BNorm) (None, 8, 8, 1072) 32 concatenate_292[0][0]

7 activation_263 (Activation) (None, 8, 8, 1072) 0 batch_normalization_261[0][0]

8 conv2d_437 (Conv2D) (None, 8, 8, 16) 154384 activation_263[0][0]

9 dropout_342 (Dropout) (None, 8, 8, 16) 0 conv2d_437[0][0]

10 concatenate_293 (Concatenate) (None, 8, 8, 1088) 0 dropout_342[0][0]

11 concatenate_292[0][0]

12 conv2d_transpose_47 (Conv2DTr.) (None, 16, 16, 192) 1880256 concatenate_293[0][0]

13 concatenate_294 (Concatenate) (None, 16, 16, 656) 0 conv2d_transpose_47[0][0]

14 concatenate_253[0][0]

15 batch_normalization_262 (BNorm) (None, 16, 16, 656) 64 concatenate_294[0][0]

16 activation_264 (Activation) (None, 16, 16, 656) 0 batch_normalization_262[0][0]

17 conv2d_438 (Conv2D) (None, 16, 16, 16) 94480 activation_264[0][0]

18 dropout_343 (Dropout) (None, 16, 16, 16) 0 conv2d_438[0][0]

19 concatenate_295 (Concatenate) (None, 16, 16, 672) 0 dropout_343[0][0]

20 concatenate_294[0][0]

21 batch_normalization_263 (BNorm) (None, 16, 16, 672) 64 concatenate_295[0][0]

22 activation_265 (Activation) (None, 16, 16, 672) 0 batch_normalization_263[0][0]

23 conv2d_439 (Conv2D) (None, 16, 16, 16) 96784 activation_265[0][0]

24 dropout_344 (Dropout) (None, 16, 16, 16) 0 conv2d_439[0][0]

25 concatenate_296 (Concatenate) (None, 16, 16, 688) 0 dropout_344[0][0]

26 concatenate_295[0][0]

27 batch_normalization_264 (BNorm) (None, 16, 16, 688) 64 concatenate_296[0][0]

28 activation_266 (Activation) (None, 16, 16, 688) 0 batch_normalization_264[0][0]

29 conv2d_440 (Conv2D) (None, 16, 16, 16) 99088 activation_266[0][0]

30 dropout_345 (Dropout) (None, 16, 16, 16) 0 conv2d_440[0][0]

31 concatenate_297 (Concatenate) (None, 16, 16, 704) 0 dropout_345[0][0]

32 concatenate_296[0][0]

33 batch_normalization_265 (BNorm) (None, 16, 16, 704) 64 concatenate_297[0][0]

34 activation_267 (Activation) (None, 16, 16, 704) 0 batch_normalization_265[0][0]

35 conv2d_441 (Conv2D) (None, 16, 16, 16) 101392 activation_267[0][0]

36 dropout_346 (Dropout) (None, 16, 16, 16) 0 conv2d_441[0][0]

37 concatenate_298 (Concatenate) (None, 16, 16, 720) 0 dropout_346[0][0]

38 concatenate_297[0][0]

39 batch_normalization_266 (BNorm) (None, 16, 16, 720) 64 concatenate_298[0][0]

40 activation_268 (Activation) (None, 16, 16, 720) 0 batch_normalization_266[0][0]

41 conv2d_442 (Conv2D) (None, 16, 16, 16) 103696 activation_268[0][0]

42 dropout_347 (Dropout) (None, 16, 16, 16) 0 conv2d_442[0][0]

43 concatenate_299 (Concatenate) (None, 16, 16, 736) 0 dropout_347[0][0]

44 concatenate_298[0][0]

45 batch_normalization_267 (BNorm) (None, 16, 16, 736) 64 concatenate_299[0][0]

46 activation_269 (Activation) (None, 16, 16, 736) 0 batch_normalization_267[0][0]

Listing 7.21: Summary of the Tiramisu model (part 10).

128

1 conv2d_443 (Conv2D) (None, 16, 16, 16) 106000 activation_269[0][0]

2 dropout_348 (Dropout) (None, 16, 16, 16) 0 conv2d_443[0][0]

3 concatenate_300 (Concatenate) (None, 16, 16, 752) 0 dropout_348[0][0]

4 concatenate_299[0][0]

5 batch_normalization_268 (BNorm) (None, 16, 16, 752) 64 concatenate_300[0][0]

6 activation_270 (Activation) (None, 16, 16, 752) 0 batch_normalization_268[0][0]

7 conv2d_444 (Conv2D) (None, 16, 16, 16) 108304 activation_270[0][0]

8 dropout_349 (Dropout) (None, 16, 16, 16) 0 conv2d_444[0][0]

9 concatenate_301 (Concatenate) (None, 16, 16, 768) 0 dropout_349[0][0]

10 concatenate_300[0][0]

11 batch_normalization_269 (BNorm) (None, 16, 16, 768) 64 concatenate_301[0][0]

12 activation_271 (Activation) (None, 16, 16, 768) 0 batch_normalization_269[0][0]

13 conv2d_445 (Conv2D) (None, 16, 16, 16) 110608 activation_271[0][0]

14 dropout_350 (Dropout) (None, 16, 16, 16) 0 conv2d_445[0][0]

15 concatenate_302 (Concatenate) (None, 16, 16, 784) 0 dropout_350[0][0]

16 concatenate_301[0][0]

17 batch_normalization_270 (BNorm) (None, 16, 16, 784) 64 concatenate_302[0][0]

18 activation_272 (Activation) (None, 16, 16, 784) 0 batch_normalization_270[0][0]

19 conv2d_446 (Conv2D) (None, 16, 16, 16) 112912 activation_272[0][0]

20 dropout_351 (Dropout) (None, 16, 16, 16) 0 conv2d_446[0][0]

21 concatenate_303 (Concatenate) (None, 16, 16, 800) 0 dropout_351[0][0]

22 concatenate_302[0][0]

23 batch_normalization_271 (BNorm) (None, 16, 16, 800) 64 concatenate_303[0][0]

24 activation_273 (Activation) (None, 16, 16, 800) 0 batch_normalization_271[0][0]

25 conv2d_447 (Conv2D) (None, 16, 16, 16) 115216 activation_273[0][0]

26 dropout_352 (Dropout) (None, 16, 16, 16) 0 conv2d_447[0][0]

27 concatenate_304 (Concatenate) (None, 16, 16, 816) 0 dropout_352[0][0]

28 concatenate_303[0][0]

29 conv2d_transpose_48 (Conv2DTr.) (None, 32, 32, 160) 1175200 concatenate_304[0][0]

30 concatenate_305 (Concatenate) (None, 32, 32, 464) 0 conv2d_transpose_48[0][0]

31 concatenate_243[0][0]

32 batch_normalization_272 (BNorm) (None, 32, 32, 464) 128 concatenate_305[0][0]

33 activation_274 (Activation) (None, 32, 32, 464) 0 batch_normalization_272[0][0]

34 conv2d_448 (Conv2D) (None, 32, 32, 16) 66832 activation_274[0][0]

35 dropout_353 (Dropout) (None, 32, 32, 16) 0 conv2d_448[0][0]

36 concatenate_306 (Concatenate) (None, 32, 32, 480) 0 dropout_353[0][0]

37 concatenate_305[0][0]

38 batch_normalization_273 (BNorm) (None, 32, 32, 480) 128 concatenate_306[0][0]

39 activation_275 (Activation) (None, 32, 32, 480) 0 batch_normalization_273[0][0]

40 conv2d_449 (Conv2D) (None, 32, 32, 16) 69136 activation_275[0][0]

41 dropout_354 (Dropout) (None, 32, 32, 16) 0 conv2d_449[0][0]

42 concatenate_307 (Concatenate) (None, 32, 32, 496) 0 dropout_354[0][0]

43 concatenate_306[0][0]

44 batch_normalization_274 (BNorm) (None, 32, 32, 496) 128 concatenate_307[0][0]

45 activation_276 (Activation) (None, 32, 32, 496) 0 batch_normalization_274[0][0]

46 conv2d_450 (Conv2D) (None, 32, 32, 16) 71440 activation_276[0][0]

Listing 7.22: Summary of the Tiramisu model (part 11).

129

1 dropout_355 (Dropout) (None, 32, 32, 16) 0 conv2d_450[0][0]

2 concatenate_308 (Concatenate) (None, 32, 32, 512) 0 dropout_355[0][0]

3 concatenate_307[0][0]

4 batch_normalization_275 (BNorm) (None, 32, 32, 512) 128 concatenate_308[0][0]

5 activation_277 (Activation) (None, 32, 32, 512) 0 batch_normalization_275[0][0]

6 conv2d_451 (Conv2D) (None, 32, 32, 16) 73744 activation_277[0][0]

7 dropout_356 (Dropout) (None, 32, 32, 16) 0 conv2d_451[0][0]

8 concatenate_309 (Concatenate) (None, 32, 32, 528) 0 dropout_356[0][0]

9 concatenate_308[0][0]

10 batch_normalization_276 (BNorm) (None, 32, 32, 528) 128 concatenate_309[0][0]

11 activation_278 (Activation) (None, 32, 32, 528) 0 batch_normalization_276[0][0]

12 conv2d_452 (Conv2D) (None, 32, 32, 16) 76048 activation_278[0][0]

13 dropout_357 (Dropout) (None, 32, 32, 16) 0 conv2d_452[0][0]

14 concatenate_310 (Concatenate) (None, 32, 32, 544) 0 dropout_357[0][0]

15 concatenate_309[0][0]

16 batch_normalization_277 (BNorm) (None, 32, 32, 544) 128 concatenate_310[0][0]

17 activation_279 (Activation) (None, 32, 32, 544) 0 batch_normalization_277[0][0]

18 conv2d_453 (Conv2D) (None, 32, 32, 16) 78352 activation_279[0][0]

19 dropout_358 (Dropout) (None, 32, 32, 16) 0 conv2d_453[0][0]

20 concatenate_311 (Concatenate) (None, 32, 32, 560) 0 dropout_358[0][0]

21 concatenate_310[0][0]

22 batch_normalization_278 (BNorm) (None, 32, 32, 560) 128 concatenate_311[0][0]

23 activation_280 (Activation) (None, 32, 32, 560) 0 batch_normalization_278[0][0]

24 conv2d_454 (Conv2D) (None, 32, 32, 16) 80656 activation_280[0][0]

25 dropout_359 (Dropout) (None, 32, 32, 16) 0 conv2d_454[0][0]

26 concatenate_312 (Concatenate) (None, 32, 32, 576) 0 dropout_359[0][0]

27 concatenate_311[0][0]

28 conv2d_transpose_49 (Conv2DTr.) (None, 64, 64, 112) 580720 concatenate_312[0][0]

29 concatenate_313 (Concatenate) (None, 64, 64, 304) 0 conv2d_transpose_49[0][0]

30 concatenate_236[0][0]

31 batch_normalization_279 (BNorm) (None, 64, 64, 304) 256 concatenate_313[0][0]

32 activation_281 (Activation) (None, 64, 64, 304) 0 batch_normalization_279[0][0]

33 conv2d_455 (Conv2D) (None, 64, 64, 16) 43792 activation_281[0][0]

34 dropout_360 (Dropout) (None, 64, 64, 16) 0 conv2d_455[0][0]

35 concatenate_314 (Concatenate) (None, 64, 64, 320) 0 dropout_360[0][0]

36 concatenate_313[0][0]

37 batch_normalization_280 (BNorm) (None, 64, 64, 320) 256 concatenate_314[0][0]

38 activation_282 (Activation) (None, 64, 64, 320) 0 batch_normalization_280[0][0]

39 conv2d_456 (Conv2D) (None, 64, 64, 16) 46096 activation_282[0][0]

40 dropout_361 (Dropout) (None, 64, 64, 16) 0 conv2d_456[0][0]

41 concatenate_315 (Concatenate) (None, 64, 64, 336) 0 dropout_361[0][0]

42 concatenate_314[0][0]

43 batch_normalization_281 (BNorm) (None, 64, 64, 336) 256 concatenate_315[0][0]

44 activation_283 (Activation) (None, 64, 64, 336) 0 batch_normalization_281[0][0]

45 conv2d_457 (Conv2D) (None, 64, 64, 16) 48400 activation_283[0][0]

46 dropout_362 (Dropout) (None, 64, 64, 16) 0 conv2d_457[0][0]

Listing 7.23: Summary of the Tiramisu model (part 12).

130

1 concatenate_316 (Concatenate) (None, 64, 64, 352) 0 dropout_362[0][0]

2 concatenate_315[0][0]

3 batch_normalization_282 (BNorm) (None, 64, 64, 352) 256 concatenate_316[0][0]

4 activation_284 (Activation) (None, 64, 64, 352) 0 batch_normalization_282[0][0]

5 conv2d_458 (Conv2D) (None, 64, 64, 16) 50704 activation_284[0][0]

6 dropout_363 (Dropout) (None, 64, 64, 16) 0 conv2d_458[0][0]

7 concatenate_317 (Concatenate) (None, 64, 64, 368) 0 dropout_363[0][0]

8 concatenate_316[0][0]

9 batch_normalization_283 (BNorm) (None, 64, 64, 368) 256 concatenate_317[0][0]

10 activation_285 (Activation) (None, 64, 64, 368) 0 batch_normalization_283[0][0]

11 conv2d_459 (Conv2D) (None, 64, 64, 16) 53008 activation_285[0][0]

12 dropout_364 (Dropout) (None, 64, 64, 16) 0 conv2d_459[0][0]

13 concatenate_318 (Concatenate) (None, 64, 64, 384) 0 dropout_364[0][0]

14 concatenate_317[0][0]

15 conv2d_transpose_50 (Conv2DTr.) (None, 128, 128, 80) 276560 concatenate_318[0][0]

16 concatenate_319 (Concatenate) (None, 128, 128, 192 0 conv2d_transpose_50[0][0]

17 concatenate_231[0][0]

18 batch_normalization_284 (BNorm) (None, 128, 128, 192 512 concatenate_319[0][0]

19 activation_286 (Activation) (None, 128, 128, 192 0 batch_normalization_284[0][0]

20 conv2d_460 (Conv2D) (None, 128, 128, 16) 27664 activation_286[0][0]

21 dropout_365 (Dropout) (None, 128, 128, 16) 0 conv2d_460[0][0]

22 concatenate_320 (Concatenate) (None, 128, 128, 208 0 dropout_365[0][0]

23 concatenate_319[0][0]

24 batch_normalization_285 (BNorm) (None, 128, 128, 208 512 concatenate_320[0][0]

25 activation_287 (Activation) (None, 128, 128, 208 0 batch_normalization_285[0][0]

26 conv2d_461 (Conv2D) (None, 128, 128, 16) 29968 activation_287[0][0]

27 dropout_366 (Dropout) (None, 128, 128, 16) 0 conv2d_461[0][0]

28 concatenate_321 (Concatenate) (None, 128, 128, 224 0 dropout_366[0][0]

29 concatenate_320[0][0]

30 batch_normalization_286 (BNorm) (None, 128, 128, 224 512 concatenate_321[0][0]

31 activation_288 (Activation) (None, 128, 128, 224 0 batch_normalization_286[0][0]

32 conv2d_462 (Conv2D) (None, 128, 128, 16) 32272 activation_288[0][0]

33 dropout_367 (Dropout) (None, 128, 128, 16) 0 conv2d_462[0][0]

34 concatenate_322 (Concatenate) (None, 128, 128, 240 0 dropout_367[0][0]

35 concatenate_321[0][0]

36 batch_normalization_287 (BNorm) (None, 128, 128, 240 512 concatenate_322[0][0]

37 activation_289 (Activation) (None, 128, 128, 240 0 batch_normalization_287[0][0]

38 conv2d_463 (Conv2D) (None, 128, 128, 16) 34576 activation_289[0][0]

39 dropout_368 (Dropout) (None, 128, 128, 16) 0 conv2d_463[0][0]

40 concatenate_323 (Concatenate) (None, 128, 128, 256 0 dropout_368[0][0]

41 concatenate_322[0][0]

42 conv2d_464 (Conv2D) (None, 128, 128, 1) 257 concatenate_323[0][0]

43 activation_290 (Activation) (None, 128, 128, 1) 0 conv2d_464[0][0]

44 ==

45 Total params: 13,824,657 Trainable params: 13,818,793 Non-trainable params: 5,864

Listing 7.24: Summary of the Tiramisu model (part 13).

131

1 def fit_model(bat_siz,epoch,model_input):

2 callbacks = [tf.keras.callbacks.EarlyStopping(patience=100, monitor=’val_loss’),

3 tf.keras.callbacks.TensorBoard(log_dir=’logs’)]

4 model = model_input

5 history = model.fit(

6 X_train,

7 y_train,

8 batch_size = bat_siz,

9 verbose=1,

10 epochs=epoch,

11 callbacks=callbacks,

12 validation_data=(X_test, y_test),

13 shuffle=False

14)

15 return history

Listing 7.25: Python code that implements the model training and the callback functions.

1 Unet_total_loss_Metric_Iou = UNet(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS)

2 Unet_total_loss_Metric_Iou.summary()

3 tf.keras.utils.plot_model(

4 Unet_total_loss_Metric_Iou,

5 "Unet_total_loss_Metric_Iou.png",

6 show_shapes = True

7)

8 Unet_total_loss_Metric_Iou.compile(optimizer=opt,loss = [total_loss], metrics=[dsc])

9 checkpointer = tf.keras.callbacks.ModelCheckpoint(

10 ’Unet_total_loss_Metric_Iou.hdf5’,

11 verbose=1,

12 save_best_only=True

13)

14 history_Unet_total_loss_Metric_Iou = get_history(Unet_total_loss_Metric_Iou)

15 Unet_total_loss_Metric_Iou.save(’Unet_total_loss_Metric_Iou.hdf5’)

16 hist_df_history_Unet_total_loss_Metric_Iou =

17 pd.DataFrame(history_Unet_total_loss_Metric_Iou.history)

18 hist_df_history_Unet_total_loss_Metric_Iou.to_csv(

19 ’hist_df_history_Unet_total_loss_Metric_Iou’,

20 encoding=’utf-8’,

21 index=False

22)

Listing 7.26: Python code for training U-Net with total loss.

132

1 from matplotlib.pyplot import figure

2

3 figure(num=None, figsize=(10, 6), dpi=80, facecolor=’w’, edgecolor=’k’)

4

5 with plt.style.context(’Solarize_Light2’):

6

7 plt.plot(

8 (history_Unet_dice_loss_Metric_Iou.history[’val_dsc’]),

9 label=’unet jaccard’,

10 color=’b’)

11 plt.plot(

12 (history_Unet_bce_dice_loss_Metric_Iou.history[’val_dsc’]),

13 label=’bce_dice_loss’,

14 color=’k’)

15 plt.plot(

16 (history_Unet_BinaryCrossentropy_loss_Metric_Iou.history[’val_dsc’]),

17 label=’BinaryCrossentropy_loss’,

18 color=’r’)

19 plt.plot(

20 (history_Unet_FocalTversky_loss_Metric_Iou.history[’val_dsc’]),

21 label=’FocalTverskyLoss’,

22 color=’g’)

23 plt.plot(

24 (history_UNet_lovasz_model.history[’val_dsc’]),

25 label=’LovaszLoss’,

26 color=’w’)

27 plt.plot(

28 (history_Unet_total_loss_Metric_Iou_opt2.history[’val_dsc’]),

29 label=’LovaszLoss’,

30 color=’c’)

31 plt.plot(

32 (history_Unet_total_loss_Metric_Iou.history[’val_dsc’]),

33 label=’total_loss’,

34 color=’y’)

35

36 plt.title(’Intersection over Union for different loss functions and U-Net’)

37 plt.xlabel(’Number of Epochs’, fontsize=14)

38 plt.ylabel(’Intersection over Union’, fontsize=14)

39 ax = plt.subplot(111)

40 box = ax.get_position()

41 ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])

42

43 ax.legend(loc=’center left’, bbox_to_anchor=(1, 0.5))

44 #plt.legend(loc=’best’)

45

46 plt.show()

Listing 7.27: Python code to plot the results from training U-Net.

133

1 from keras.models import Model

2 from keras.layers import Input, MaxPooling2D

3 from keras.layers.convolutional import Conv2D, Conv2DTranspose

4 from keras.layers.normalization import BatchNormalization

5 from keras.layers.core import Activation, Dropout

6 from keras.layers.merge import concatenate

7 from keras import backend as K

8 from keras.regularizers import l2

9 from keras.utils import plot_model

10 import pydot

11 import graphviz

12

13 def denseBlock(t, nb_layers):

14 for _ in range(nb_layers):

15 tmp = t

16 t = BatchNormalization(

17 axis=1,

18 gamma_regularizer=l2(0.0001),

19 beta_regularizer=l2(0.0001)

20)(t)

21 t = Activation(’relu’)(t)

22 t = Conv2D(

23 16,

24 kernel_size=(3, 3),

25 padding=’same’,

26 kernel_initializer=’he_uniform’,

27 data_format=’channels_last’

28)(t)

29 t = Dropout(0.2)(t)

30 t = concatenate([t, tmp])

31 return t

32

33 def transitionDown(t, nb_features):

34 t = BatchNormalization(

35 axis=1,

36 gamma_regularizer=l2(0.0001),

37 beta_regularizer=l2(0.0001)

38)(t)

39 t = Activation(’relu’)(t)

40 t = Conv2D(

41 nb_features,

42 kernel_size=(1, 1),

43 padding=’same’,

44 kernel_initializer=’he_uniform’,

45 data_format=’channels_last’

46)(t)

Listing 7.28: Python code that implements the Tiramisu model (part 1).

134

1 t = Dropout(0.2)(t)

2 t = MaxPooling2D(

3 pool_size=(2, 2),

4 strides=2,

5 padding=’same’,

6 data_format=’channels_last’

7)(t)

8 return t

9

10 def Tiramisu(layer_per_block, n_pool=3, growth_rate=16):

11 input_layer = Input(shape=(128, 128, 1))

12 t = Conv2D(48, kernel_size=(3, 3), strides=(1, 1), padding=’same’)(input_layer)

13

14 # Dense block

15 nb_features = 48

16 skip_connections = []

17 for i in range(n_pool):

18 t = denseBlock(t, layer_per_block[i])

19 skip_connections.append(t)

20 nb_features += growth_rate * layer_per_block[i]

21 t = transitionDown(t, nb_features)

22

23 t = denseBlock(t, layer_per_block[n_pool]) # bottleneck

24

25 skip_connections = skip_connections[::-1] # subvert the array

26

27 for i in range(n_pool):

28 keep_nb_features = growth_rate * layer_per_block[n_pool + i]

29 t = Conv2DTranspose(

30 keep_nb_features, strides=2, kernel_size=(3, 3), padding=’same’,

31 data_format=’channels_last’

32)(t) # Transition up

33 t = concatenate([t, skip_connections[i]])

34

35 t = denseBlock(t, layer_per_block[n_pool+i+1])

36

37 t = Conv2D(

38 1, kernel_size=(1, 1), padding=’same’,

39 kernel_initializer=’he_uniform’,

40 data_format=’channels_last’

41)(t)

42 output_layer = Activation(’sigmoid’)(t)

43 return Model(inputs=input_layer, outputs=output_layer)

44

45 layer_per_block = [2, 3, 5, 6, 5, 3,2]

Listing 7.29: Python code that implements the Tiramisu model (part 2).

135

1 import tensorflow as tf

2 import math

3 import keras.models as models

4 from keras.callbacks import LearningRateScheduler

5 from keras.optimizers import RMSprop, Adam, SGD

6 from keras.callbacks import ModelCheckpoint

7 from keras.layers import Input, merge

8 from keras.regularizers import l2

9 from keras.models import Model

10 from keras import regularizers

11 from keras.models import Model

12 from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, UpSampling2D, Cropping2D

13 from keras import backend as K

14 from keras import callbacks

15 from keras.layers.core import Layer, Dense, Dropout, Activation, Flatten, Reshape, Permute

16 from keras.layers.normalization import BatchNormalization

17 from keras.layers import Conv2DTranspose

Listing 7.30: Import the libraries necessary to implement the Tiramisu model.

Figure 54: Random image from the dataset and the respective mask.

136

Figure 55: Plot of the IoU metric for the U-Net model trained with different loss functions.

Figure 56: Input image 1, ground truth mask, and predicted mask by the U-Net model with Jaccard
loss.

Figure 57: Input image 1, ground truth mask, and predicted mask by the U-Net model with BCE-Dice
loss.

137

Figure 58: Input image 1, ground truth mask, and predicted mask by the U-Net model with Binary
Cross Entropy loss.

Figure 59: Input image 1, ground truth mask, and predicted mask by the U-Net model with focal
Tversky loss.

Figure 60: Input image 2, ground truth mask, and mask predicted by the Tiramisu model with BCE
loss.

Figure 61: Input image 2, ground truth mask, and mask predicted by the Tiramisu model with Dice
loss.

138

Figure 62: Input image 2, ground truth mask, and mask predicted by the Tiramisu model with
BCE-Dice loss.

Figure 63: Input image 2, ground truth mask, and mask predicted by the Tiramisu model with focal
Tversky loss.

Figure 64: Input image 3, ground truth mask, and mask predicted by the U-Net model with total
loss.

139

Figure 65: Input image 3, ground truth mask, and mask predicted by the U-Net model with Lovasz
loss.

140

Figure 66: U-Net model architecture (part 1).

141

Figure 67: U-Net model architecture (part 2).

142

Figure 68: U-Net model architecture (part 3).

143

Figure 69: Tiramisu model architecture (part 1).

144

Figure 70: Tiramisu model architecture (part 2).

145

Figure 71: Tiramisu model architecture (part 3).

146

Figure 72: Tiramisu model architecture (part 4).

147

Figure 73: Tiramisu model architecture (part 5).

148

Figure 74: Tiramisu model architecture (part 6).

149

Figure 75: Tiramisu model architecture (part 7).

150

Figure 76: Tiramisu model architecture (part 8).

151

Figure 77: Tiramisu model architecture (part 9).

152

Figure 78: Tiramisu model architecture (part 10).

153

Figure 79: Tiramisu model architecture (part 11).

154

Figure 80: Tiramisu model architecture (part 12).

155

Figure 81: Tiramisu model architecture (part 13).

156

Figure 82: Tiramisu model architecture (part 14).

157

Figure 83: Tiramisu model architecture (part 15).

158

Figure 84: Tiramisu model architecture (part 16).

159

Figure 85: Tiramisu model architecture (part 17).

160

Figure 86: Tiramisu model architecture (part 18).

161

Figure 87: Tiramisu model architecture (part 19).

162

Figure 88: Tiramisu model architecture (part 20).

163

Figure 89: Tiramisu model architecture (part 21).

164

Figure 90: Tiramisu model architecture (part 22).

165

Figure 91: Tiramisu model architecture (part 23).

166

Figure 92: Tiramisu model architecture (part 24).

167

Figure 93: Tiramisu model architecture (part 25).

	1 Introduction
	1.1 Context
	1.2 Objectives and Expected Results
	1.3 Document Organization

	2 Medical Images
	2.1 Computer vision
	2.2 Images
	2.3 Digital Images
	2.4 Digital Image Processing
	2.5 Medical Images
	2.6 The Evolution of Medical Imaging in Clinical Research
	2.7 Particularities of Medical Images
	2.7.1 X-rays
	2.7.2 Ultrasounds
	2.7.3 Computed Tomography
	2.7.4 Medical Photography and Microscopy
	2.7.5 Magnetic Resonance Imaging

	2.8 Tumors and Particularities of Tumors
	2.9 The Problem and Its Delimitation

	3 Image Segmentation with Deep Neuronal Networks
	3.1 Deep Learning Applied to Medical Images
	3.2 Neural Networks
	3.3 How and When to Adopt Deep Learning Models
	3.4 Model Optimization
	3.5 Loss Functions
	3.6 Data Normalization
	3.7 Data Preprocessing
	3.8 Image Segmentation
	3.9 Traditional Image Segmentation Methods
	3.10 Image Segmentation with Deep Learning Models
	3.10.1 Convolutional Neural Networks
	3.10.2 Fully Convolutional Networks
	3.10.3 DeepLab
	3.10.4 SegNet Neural Network
	3.10.5 Tiramisu
	3.10.6 Feature Pyramid Network
	3.10.7 Mask R-CNN

	4 Proposed Methodology
	4.1 Related Work
	4.2 Proposed Methodology
	4.3 Dataset
	4.4 Data Preprocessing
	4.5 Selecting Models for Image Segmentation
	4.5.1 U-Net Model
	4.5.2 Tiramisu Model

	4.6 Implementation of Image segmentation Models

	5 Results
	5.1 Evaluation Metric
	5.2 Hyperparameter Optimization
	5.3 Learning Rate
	5.4 Loss Function
	5.4.1 Binary Cross Entropy Loss
	5.4.2 Focal Loss
	5.4.3 Dice Loss
	5.4.4 Jaccard Loss
	5.4.5 Binary Cross Entropy-Dice Loss
	5.4.6 Tversky Loss
	5.4.7 Focal Tversky Loss
	5.4.8 Total Loss

	5.5 Model Training
	5.6 Model Testing

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	7 Developed Python Code

