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Abstract Accurate monitoring and control of industrial

bioprocess requires the knowledge of a great number of

variables, being some of them not measurable with stan-

dard devices. To overcome this difficulty, software sensors

can be used for on-line estimation of those variables and,

therefore, its development is of paramount importance. An

Asymptotic Observer was used for monitoring Escherichia

coli fed-batch fermentations. Its performance was evalu-

ated using simulated and experimental data. The results

obtained showed that the observer was able to predict the

biomass concentration profiles showing, however, less

satisfactory results regarding the estimation of glucose and

acetate concentrations. In comparison with the results

obtained with an Extended Kalman Observer, the perfor-

mance of the Asymptotic Observer in the fermentation

monitoring was slightly better.

Keywords Software sensors � State estimation �
Nonlinear systems � Fed-batch fermentation � Biomass

Introduction

The ability to measure primary process variables, such as

biomass, substrate and product concentrations, is of major

academic and industrial relevance in order to guarantee the

successful operation and automatic control of bioprocesses

at their optimal state. Nevertheless, direct on-line mea-

surements of these biological state variables are frequently

not possible due to the lack of cheap and reliable measuring

devices or probes. In fact, in many practical applications,

only some of the state variables involved are available

for on-line measurement. Therefore, the development of

methodologies, namely software sensors [1, 2], which can

provide accurate estimation of process variables that are

not measurable in real time, based on on-line available data

while overcoming the significant model uncertainty and the

non-linear and time-varying nature of the system, is of

great interest [3–11].

Two principal classes of state observers are described in

the literature. The first class includes the classical observ-

ers, which are based on the perfect knowledge of both

model structure and parameters, such as the Luenberger

and the Kalman observers, as well as the non-linear

observers. Several works have been published concerning

the application of such observers, mainly the Extended

Kalman Observer, to biological processes [12–17]. Nev-

ertheless, in spite of the satisfactory results reported, an

uncertainty in the model parameters can generate a large

bias in the estimation of unmeasured state(s) with these

methodologies [2, 10]. The second class of observers, the

Asymptotic Observers [1], do not require the knowledge of

the process kinetics showing, however, a potential problem

concerning the dependence of the estimation convergence

rate on the operating conditions [1, 13, 18].

Several applications of state observers to bioprocesses

can be found in the literature [9–11, 13, 19–25] although

only few examples refer to their implementation in

complex bioprocesses, described by dynamic models con-

taining several balance equations and with complex

kinetics.
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The main objective of this work was the design of an

Asymptotic Observer (AO) for the estimation of biomass,

glucose and acetate concentrations in high-cell density fed-

batch fermentation of Escherichia coli and to compare its

performance with that of a classical observer (Extended

Kalman Observer, EKO). The importance of this process

for the biopharmaceutical industry is widely recognized, as

E. coli is still the most important host microorganism used

to produce many recombinant proteins. However, the on-

line measurement of some state variables, namely the

biomass concentration, is not easily accomplished during

this process, posing additional difficulties for the imple-

mentation of control algorithms [11, 26].

The application of the above-mentioned state observers

in our case required the on-line measurement of a subset of

state variables (dissolved oxygen and carbon dioxide con-

centrations) together with broth weight and gaseous mass

transfer rates. Moreover, a dynamic mathematical model of

the process was used, which includes balance equations for

the main state variables (biomass, glucose, acetate, dis-

solved oxygen and carbon dioxide concentrations).

In the coming section of this work, the dynamic model

of E. coli fed-batch fermentation is briefly presented. In the

following section, the AO for state estimation is described.

In the next section, the materials and methods are descri-

bed, followed by the presentation and discussion of the

main results achieved with the AO concerning simulated

and experimental data and a comparison with the results

obtained using the EKO. Finally, a last section is devoted

to some general conclusions.

Process modeling

The dynamics of a reaction network in a stirred tank bio-

reactor can be described by the following mass balance

equations written in a matrix form as [1]:

dn
dt
¼ Kr n; tð Þ � Dnþ F ð1Þ

in which, n is a vector representing the n state component

concentrations (n [ <n), r is the growth rate vector corre-

sponding to m reactions (r [ <m), K is the matrix of yield

coefficients (K [ <n9m), F is the vector of feed rates and

gaseous outflow rates (F [ <n), D is the dilution rate (being

D-1 the residence time).

As previously presented [27], during the aerobic growth

of E. coli with glucose as the only added substrate, the

microorganism can follow three main metabolic pathways:

oxidative growth on glucose, fermentative growth on glu-

cose, and oxidative growth on acetate. The corresponding

dynamic model for fed-batch fermentation can be repre-

sented as follows:

d

dt

X
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where X, S, A, O, and C represent biomass, glucose, ace-

tate, dissolved oxygen, and dissolved carbon dioxide

concentrations, respectively; l1, l2, and l3 are the specific

growth rates; ki are the yield (stoichiometric) coefficients;

Fin and Sin are the substrate feed rate and the glucose

concentration in the feeding solution, respectively; W is the

culture medium weight. CTR is the carbon dioxide transfer

rate from liquid to gas phase and OTR is the oxygen

transfer rate from gas to liquid phase.

The variation of the culture weight with time is given

by:

dW

dt
¼ Ftot ð3Þ

where Ftot includes weight variations due to the substrate

feed rate, the amount of culture removed during sampling,

base and acid additions, evaporation and mass loss from the

reactor due to gas exchanges, that cannot be considered

negligible in small-scale high-cell density reactors.

It should be remarked that the three above mentioned

metabolic pathways represented in the mathematical

model do not occur simultaneously in the cell, originating

four partial models corresponding to different metabolic

regimens:

• regimen A: simultaneous oxidative and fermentative

growth on glucose (l1,l2, [ 0; l3 = 0)

• regimen B: oxidative growth on glucose (l1 [ 0;

l2 = l3 = 0)

• regimen C: simultaneous oxidative growth on acetate

and glucose (l1, l3, [ 0; l2 = 0)

• regimen D: oxidative growth on acetate (l3 [ 0;

l1 = l2 = 0)

Observability of E. coli fed-batch model

The AO allows the estimation of the missing state variables

even when the process is not exponentially observable [1],

being required that the number of the measured state

variables is equal or greater than the rank of the matrix K.

Based on these facts, the possibility of applying AO was

studied for nine different combinations of measured and

estimated variables, among the five state variables (X, S, A,
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O and C). Each of those cases was classified as observable

in the situation when the full model (FM) described by

Eq. 2 is used, observable only under some of the regimens

described previously (described by a partial model—PM),

or as not observable. Those results are illustrated in Table 1,

showing that if three reactions are to be considered, the

number of measured variables must be equal or greater than

3. Therefore, all the combinations of three measured vari-

ables are theoretically possible. The same occurs when a

partial model is considered together with the measurement

of two state variables, as illustrated in Table 1.

Asymptotic Observer (AO)

The idea behind the AO consists in using the structure of

the dynamic model to obtain a part of it in a form that is

independent of the kinetics. These observers allow recon-

structing the missing state variables even the process is not

exponentially observable and the kinetics are unknown.

The following additional assumptions should also be made

for the design of these observers: (1) the yield coefficients

(matrix K) are known; and (2) the number q of measured

state variables is equal to or greater than the rank of the

matrix K: q C p = rank (K) [1].

Considering a partition in the state variables vector n

induced by the measured (n1) and unmeasured (n2) vari-

ables the dynamic model can be re-written as follows:

dn1

dt
¼ K1r n; tð Þ � Dn1 þ F1 ð4aÞ

dn2

dt
¼ K2r n; tð Þ � Dn2 þ F2 ð4bÞ

The following state transformation can then be defined:

Z � n2 �K2K�1
1 n1 ð5Þ

where K1
21 is the pseudo-inverse of the matrix K1, con-

sidering that K1 has full rank. K1 and K2 are obtained from

the matrix K applying the induced partition.

The dynamics of Z are independent of the reaction rates

r(n,t):

dZ

dt
¼ �DZ�K2K�1

1 F1 þ F2 ð6Þ

Finally, the equation of the AO is given by:

dẐ

dt
¼ �DẐ�K2K�1

1 F1 þ F2 ð7aÞ

n̂2 ¼ ẐþK2K�1
1 n1 ð7bÞ

where, Ẑ and n̂2 are the on-line estimations of Z and n2,

respectively.

The most important advantage of this observer is its

completely independence of the process kinetics. However,

the speed of convergence of the estimation is completely

determined by the experimental condition through the

value of the dilution rate, implying that D(t) can not remain

equal to zero for an excessively long period of time [1, 2].

Taking into account the results obtained from the

observability study carried out and since the dissolved

oxygen and carbon dioxide concentrations are variables on-

line accessible during industrial fermentation runs using

standard on-line instruments, case 4 is given as an example

for the design of this observer. Therefore, the following

state partition can be chosen: nT
1 ¼ O C½ � and

nT
2 ¼ X S A½ �.

In this case, the application of the AO requires the use of

partial models. Therefore, the matrix used in the state

transformation of Eq. 5, regimen A, will be:
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and for regimen C:
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The observer is given by the following equations:

d

dt

Ẑ1

Ẑ2
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Ẑ2

Ẑ3
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Table 1 Observability of the model for different combinations of the

measured and estimated variables using the AO

Case Measured

variables

Estimated

variables

Observability

1 A, O, C X, S FM

2 S, A, O X, C FM

3 S, O, C X, A FM

4 O, C X, S, A PM

5 A, O X, S, C PM

6 S, O X, A, C PM

7 S, C X, A, O PM

8 S, A X, O, C PM

9 A, C X, S, O PM

OTR, CTR, W and F are measured on-line for all cases

FM full model, PM partial model
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Another advantage of this kind of observers is that there

are no tuning parameters since the initial values of the Z

variables can be obtained directly from Eqs. 7b or 10b, by

replacing the values of the estimated variables by their

experimental initial values, usually known. However, in the

cases where partial models are used, the different regimens

are described using different mathematical equations, being

necessary to alternate between algorithms. Therefore, a

detection mechanism to identify which regimen the cells

exhibit in a given moment is needed that can be based on

the values of the specific growth rates or on changes of

acetate concentration. In this study, a detection mechanism

based on the specific growth rate was used. For obtaining

the specific growth rates l1 to l3, the estimator deduced in

Rocha et al. [29], based on the formulation proposed by

Bastin and Dochain [1] and reformulated by Pomerleau and

Perrier [30], was used.

Simulation and experimental validation

Experimental conditions and equipment

The E. coli fed-batch fermentations were performed in a

5 L Biostat MD fermenter from B. Braun Biotech (Ger-

many) connected to a Digital Control Unit, with an initial

medium weight of 3 kg with an initial concentration of

glucose of 5 g kg-1. A pre-programmed profile of feeding

rates was used for the addition of 2 L of feeding solution

with a concentration of 250 g kg-1 of glucose. Aqueous

solutions of phosphoric acid (85%) and ammonia (25%)

were added during the fermentations for pH control. The

set-points for the environmental variables were 37 �C for

temperature, pH 7, and 30% of saturation for dissolved

oxygen. The dissolved oxygen and carbon dioxide con-

centrations were monitored with commercial sensors

(Metter Toledo, Switzerland). For offgas measurements, a

mass spectrometer Dymaxion (DM 200 M) from Ametek

(USA) connected to the exhaust gas line of the fermenter

and to the inlet, aeration line was used. The gas transfer

rates were calculated from these gas analysis data. The

total weights of the fermenter and of the feeding solution

reservoir were measured using two analytical balances

(Metter Toledo, Switzerland). Biomass concentration was

monitored by measuring OD at 600 nm. A modular liquid

chromatograph (Jasco, Japan) with refractive index and

UV/Vis detectors was used for measuring glucose and

acetic acid concentrations, respectively, with an organic

acids column (Chrompack 257001).

Hardware and software

A program developped in LabVIEW (version 7.0) was used

to acquire and store the data obtained from the fermenter

Digital Control Unit, concerning the Fin, W, O and C.

The model simulations were performed by solving the

differential equations of Eq. 2 using the MATLAB version

7.1 (The MathWorks, Inc., USA) subroutine ODE23s. The

implementation of the observers using both experimental

and simulated data was conducted using the Euler integra-

tion method. The calculations regarding the observability of

the model, together with most of the mathematical opera-

tions behind the design of the state observers were

performed using the Symbolic Math toolbox running in

MATLAB 7.1.

AO performance

In order to study the robustness of the AO, cases 1 and 4

(Table 1) were used. For these cases, simulated ‘‘pseudo-

real’’ values of the state variables, obtained by numerical

integration of the differential equation of Eq. 2, were used.

These ‘‘pseudo-real’’ values were then corrupted with

white noise, according to the standard deviations typically

found in this process at the authors’ lab, originating

‘‘pseudo-experimental’’ values. Then, the observer algo-

rithm was used to obtain the ‘‘estimated’’ variables from

the ‘‘pseudo-experimental’’ data corresponding to the

measured variables. Experimental validation was also

carried out for case 4, which was selected since it required

the measurement of few state variables, which are com-

monly measured in industry as mentioned before.

The AO performance was evaluated by calculating the

quadratic error between experimental and estimated data,

according to the following equation:

difn ¼
Xnp

j¼1

nexp;j � nest;j

�nexp;j

 !2

ð11Þ

where np is the number of experimental points and nexp and

nest are experimental and estimated values of the state

variable n and �nexp;j is the average of the nexp values.

In order to illustrate the robustness of the AO a com-

parison with the performance of a classical observer, such

as the EKO (see ‘‘Appendix’’ for detailed information),

was made. EKO was selected since it still is often used,

mostly because the algorithm can be derived directly from

the state space model [31].

The AO and EKO performances, regarding the simula-

tion results obtained in the estimation of biomass, glucose

and acetate concentrations, calculated using Eq. 11, for

cases 1 and 4, are shown in Table 2. The analysis of the

results obtained show that the state variables are well
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estimated, in spite of the introduction of noise, showing the

robustness of both AO and EKO, being the AO more

susceptible to noise effects.

The experimental validation of both observers was

performed using two experiments (Exp_1 and Exp_2).

Table 3 shows the performance indexes obtained with AO

and EKO. The results obtained show that the observers

studied presented a satisfactory performance, for both

experiments, allowing the adequate estimation of biomass

concentration. However, the performance of both observers

is less satisfactory for the estimation of glucose and acetate

concentrations. In Fig. 1, the on-line data acquired during

Exp_2 are shown. The variables measured on-line were O,

C, CTR, OTR, Fin and W. Figure 2 shows the good

agreement obtained for both observers, between the esti-

mated biomass concentration values and the off-line

measurements, although some divergences can be observed

at the end of the fermentation.

In general, the performance of the experimental imple-

mentation of AO was quite satisfactory and superior to that

of the EKO. In fact, and although EKO are still often used

[31], they must be developed based on the perfect knowl-

edge of the system structure and parameters, especially

those related with the process kinetics. Therefore, their

implementation will be successful if the process dynamics

are (almost) exactly described by the kinetic model equa-

tions and if the observers are initialized, close enough to

Table 2 Performance indexes obtained for AO for cases 1 and 4 of

Table 1, using simulated data

Observer Case difX difS difA

AO 1 0.196 1.42 –

4 1.09 9 10-2 0.311 0.389

EKO 1 4.55 9 10-3 4.80 9 10-2 –

4 4.81 9 10-3 0.101 0.165

Comparison with the results obtained with EKO

Table 3 Performance indexes for AO for two fermentations (Exp_1

and Exp_2)

Observer Case difX difS difA

AO Exp_1 8.02 656 370

Exp_2 4.42 734 738

EKO Exp_1 8.34 442 369

Exp_2 17.7 2,069 738

Comparison with the results obtained with EKO
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the true state values [2]. Since the implementation of the

AO does not require the knowledge of the kinetics structure

and parameters, where most of the model uncertainties

usually rely, it is not surprising that these Observers behave

better with real data [32].

Moreover, since a model linearization step is used in the

EKO design, the stability and convergence properties are

essentially local and valid around an equilibrium point, and

therefore it is difficult to assure their stability over a wide

range of operation conditions [2, 31]. Even though the AO

does not contain any estimation error driving term its

asymptotic stability is guaranteed even if the dynamical

model is unstable [2, 32]. However, a note of caution should

be drawn for the cases, not contemplated in this paper, when

the dilution rate [D(t)] is kept close to zero for long periods,

since the rate of convergence of the estimation fully

depends on the values of that variable[1, 2]. In those cases,

the performance of AO is expected to be much poorer.

Furthermore, although the kinetics of the process may be

considered unknown in these observers, the state variables

estimation requires the knowledge of the correct reaction

scheme, with known stoichiometric coefficients (matrix K).

Consequently, uncertainties on these model parameters

together with the noise eventually associated with on-line

measurements can generate a large bias in the estimation of

the unmeasured state variables [2]. These facts can help to

explain the lower performance on the estimation of biomass

at the end of the fermentation. In order to improve the

accuracy of the stoichiometric coefficients, which is indis-

pensable for the efficient implementation of such observers,

an ad-hoc experimental design can be carried out.

It should also be remarked that the AO requires, in order

to achieve convergence, relatively high sampling intervals

(3 min), compatible with on-line practical implementation

requirements of some instruments, like FIA [28].

As known, state estimation techniques are of major

importance in several areas of science and engineering,

especially in biotechnology, since hardware sensors are

extremely expensive and have to deal with stringent

operating conditions, like sterilization and long processing

times. The present work shows that the AO can be suc-

cessfully applied to the on-line monitoring of a complex

E.coli fermentation, being an effective alternative to the

use of hardware sensors.

Conclusions

The design of monitoring and control algorithms to

improve the performance of bioprocesses is of major

importance. However, it is difficult to find inexpensive and

robust commercial sensors that allow real-time monitoring

of important process variables, namely the biomass

concentration, required for the implementation of control

and optimization strategies. In fact, nowadays the biomass

concentration is still mostly measured using off-line labo-

ratory analysis, making it of limited use for control

purposes. Therefore, the development of software sensors

is of paramount importance.

In this work, an AO was applied for the monitoring of

fed-batch E. coli fermentation and its performance and

flexibility was evaluated and compared with a classical

observer. In addition, the robustness of the AO algorithm

concerning the effect of experimental noise in the mea-

sured variables was checked with numerical simulations

and experimental data.

The observer algorithm studied only requires on-line

measurements of dissolved oxygen and carbon dioxide

concentrations, together with the gaseous transfer rates,

which represent common measurements both in industrial

and academic facilities. The sampling frequency required is

also compatible with most existing data acquisition systems.

The results obtained showed that the Asymptotic

Observer is rather flexible regarding the choice of the

measured variables, exhibiting a satisfactory performance

in estimating variables from experimental data.
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Appendix: Extended Kalman Observer

Bastin and Dochain [1] proposed the following general

equation for a state observer of non-linear systems

described by Eq. 1, when a sub-set of the state vector, n1 is

obtained by on-line measurement:

dn̂
dt
¼ Kr n̂; t

� �
� Dn̂þ FþX n̂

� �
n1 � n̂1

h i
ð12Þ

where n̂ and n̂1 represent the on-line estimation of n and n1,

respectively. X n̂
� �

is the gain matrix of dimension n 9 q,

function of n̂, and q is the number of on-line measured

variables.

This last equation can be seen as an extension of the

model given by Eq. 1 with an additional driving term which

is proportional to the observation error of the measured part

of the state. The state observer design problem consists then

in choosing the more adequate gain matrix, X n̂
� �

.

In order to obtain the Extended Kalman Observer

(EKO), the following assumptions are made: (1) a full

knowledge of the model is available, i.e. the structure of

the reaction kinetics r(n,t) is completely known and the
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numerical values of all the coefficients involved in the

model (yield and kinetic coefficients) are given; and (2) D

and F are known on-line, together with a q subset of state

variables. This vector of state variables measured n1 is

related to the state of the system as follows:

n1 ¼ Ln ð13Þ

where the q 9 n matrix L is an elementary matrix which

selects the measured components of n. On the other hand,

the vector of unmeasured states is denoted n2, so that (n1,

n2) constitutes a partition of n.

If the measured variables are O and C (as discuseed for

the AO), the following state partition can be chosen: nT
1 ¼

O C½ � and nT
2 ¼ X S A½ �. The matrix L is as follows:

L ¼ 0 0 0 1 0

0 0 0 0 1

� �
ð14Þ

To solve the problem of selecting an appropriate matrix

X n̂; t
� �

(Eq. 12), the observation error, e ¼ n� n̂, and its

dynamics can be used [1]. Considering a linearized tangent

approximation of the dynamic model of the observation

error around e = 0, the following equation can be obtained

[1]:

de

dt
¼ M n̂

� �
�X n̂

� �
L

h i
e ð15Þ

with:

M n̂
� �
� K

or n; tð Þ
on

� �

n¼n̂

�DIN ð16Þ

where IN is the n 9 n identity matrix. For the E. coli model

used matrix M n̂
� �
¼M X̂; Ŝ; Â; Ô; Ĉ

� �
and:

or n; tð Þ
on

� �

n¼n̂

¼

o l1X̂ð Þ
oX̂

o l1X̂ð Þ
oŜ

o l1X̂ð Þ
oÂ

o l1X̂ð Þ
oÔ

o l1X̂ð Þ
oĈ

o l2X̂ð Þ
oX̂

o l2X̂ð Þ
oŜ

o l2X̂ð Þ
oÂ

o l2X̂ð Þ
oÔ

o l2X̂ð Þ
oĈ

o l3X̂ð Þ
oX̂

o l3X̂ð Þ
oŜ

o l3X̂ð Þ
oÂ

o l3X̂ð Þ
oÔ

o l3X̂ð Þ
oĈ

2
6664

3
7775

ð17Þ

The design of the EKO is reduced to the quadratic

optimization problem of finding the matrix X n̂; t
� �

that

minimizes the mean square observation error taking into

account the constraint of the linear tangent error model

(Eqs. 15 and 16). The solution of this optimization problem

is given by [1]:

X n̂; t
� �

¼ R n̂; t
� �

LT ð18Þ

where the n 9 n square symmetric matrix R n̂; t
� �

is

generated by the Riccati equation:

dR

dt
¼ �RLTLRþ RMT n̂; t

� �
þM n̂; t

� �
R ð19Þ

The observer is then written from Eqs. 1 and 12 as:

d

dt

X̂
Ŝ
Â
Ô
Ĉ

2
66664

3
77775
¼

1 1 1

�k1 �k2 0

0 k3 �k4

�k5 �k6 �k7

k8 k9 k10

2
66664

3
77775

l1

l2

l3

2
4

3
5X̂ � D

X̂
Ŝ
Â
Ô
Ĉ

2
66664

3
77775

þ

0
Fin

W

� �
Sin

0

OTR
�CTR

2
66664

3
77775
þ

R1 R2

R3 R4

R5 R6

R7 R8

R9 R10

2
66664

3
77775

O� Ô
C � Ĉ

� �
ð20Þ

where the elements of R are time dependent and obtained

by the solution of Eq. 19. Therefore, the only tuning

parameters for this observer are the initial values of the

elements of that matrix.
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