
Chapter 12  

A modified electromagnetism-like algorithm 
based on a pattern search method 

Ana Maria A. C. Rocha, Edite M. G. P. Fernandes 

Minho University, Campus de Gualtar, 4710-057 Braga, Portugal 
{arocha;emgpf}@dps.uminho.pt 

Abstract. The Electromagnetism-like (EM) algorithm, developed 
by Birbil and Fang [2] is a population-based stochastic global opti-
mization algorithm that uses an attraction-repulsion mechanism to 
move sample points towards optimality. A typical EM algorithm for 
solving continuous bound constrained optimization problems per-
forms a local search in order to gather information for a point, in the 
population. Here, we propose a new local search procedure based on 
the original pattern search method of Hooke and Jeeves, which is 
simple to implement and does not require any derivative informa-
tion. The proposed method is applied to different test problems from 
the literature and compared with the original EM algorithm. 
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pattern search method. 

12.1 Introduction 

Many real life global optimization problems that arise in areas such as 
physics, chemistry, and molecular biology, involve multi-modal and non-
differentiable nonlinear functions of many variables that are difficult to 
handle by conventional gradient-based algorithms. As a result, many re-
searchers have devoted themselves in finding reliable stochastic global op-
timization methods that do not require any derivative computation. Recent-
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ly, Birbil and Fang proposed the electromagnetism-like (EM) algorithm 
that is a population-based stochastic search method for global optimization 
[1,2]. This algorithm simulates the electromagnetism theory of physics by 
considering each point in the population as an electrical charge. The me-
thod uses an attraction-repulsion mechanism to move a population of 
points towards optimality. The original algorithm incorporates a simple 
random local search procedure that is applied coordinate by coordinate to 
one point only or to all points in the population [2]. In an attempt to im-
prove the accuracy of the results and to accelerate convergence we propose 
a modification to the original EM algorithm by replacing the random local 
search with a pattern search method [6] with guaranteed convergence. 

The method is to work on nonlinear optimization problems with box 
constraints in the following form: 

( )xfmin ,   subject to Ω∈x  (12.1)

where ℜ→ℜnf :  is a nonlinear function and }:{ uxlx n ≤≤ℜ∈=Ω  is a 
bounded feasible region. 

The paper is organized as follows. Sect. 12.2 briefly introduces the 
original EM algorithm and Sect. 12.3 is devoted to describe the main ideas 
concerning the Hooke and Jeeves pattern search method. Sect. 12.4 con-
tains the numerical results and some conclusions are drawn in Sect. 12.5. 

12.2 Electromagnetism-like algorithm 

The EM algorithm starts with a population of randomly generated points 
from the feasible region. Analogous to electromagnetism, each point is a 
charged particle that is released to the space. The charge of each point is 
related to the objective function value and determines the magnitude of at-
traction of the point over the population. The better the objective function 
value, the higher the magnitude of attraction. The charges are used to find 
a direction for each point to move in subsequent iterations.  

The regions that have higher attraction will signal other points to move 
towards them. In addition, a repulsion mechanism is also introduced to ex-
plore new regions for even better solutions. The following notation is used: 
xi∈ℜn denotes the ith point of a population; xbest  is the point that has the 
least objective function value; xk

i∈ℜ (k = 1,…,n), is the kth coordinate of 
the point xi of the population; m is the number of points in the population; 
MaxIt is the maximum number of EM iterations; LSIt denotes the maxi-
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mum number of local search iterations; and δ is a local search parameter,  
δ ∈[0,1].  

The EM algorithm comprises four main procedures. 

Algorithm EM( m, MaxIt, LSIt, δ ) 
Initialize() 
iteration ← 1 
while termination criteria are not satisfied do 

Local(LSIt,δ) 
F ← CalcF() 
Move(F) 
iteration ← iteration + 1 

end while 

Details of each procedure follow. Initialize is a procedure that aims to 
randomly generate m  points from the feasible region. Each coordinate of a 
point xk

i (k = 1,…,n) is assumed to be uniformly distributed between the 
corresponding upper and lower bounds, i.e., xk

i = lk + λ (uk − lk) where 
λ~U(0,1). After computing the objective function value for all the points in 
the population, the procedure identifies the best point, xbest, which is the 
point with the best function value. 

The Local procedure performs a local refinement and can be applied to 
one point or to all points in the population. The local search presented in 
[2] is a random line search algorithm that is applied coordinate by coordi-
nate only to the best point in the population. First, the procedure computes 
the maximum feasible step length, Length = δ (maxk (uk − lk)), based on δ. 
This quantity is used to guarantee that the local search generates feasible 
points. Second, the best point is assigned to a temporary point y to store 
the initial information. Next, for each coordinate k, a random number λ be-
tween 0 and 1 is selected as a step length and the point yk is moved along 
that direction, yk = yk + λ Length. If an improvement is observed, within 
LSIt iterations, the best point is replaced by y and the search along that co-
ordinate ends. 

The CalcF procedure aims to compute the total force exerted on a point 
via other points. First a charge-like value, qi, that determines the power of 
attraction or repulsion for the point xi, is assigned. The charge of the point 
is calculated according to the relative efficiency of the objective function 
values, i.e.,  
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Hence, the points that have better objective function values possess 
higher charges. The total force vector Fi exerted on each point is calculated 
by adding the individual component forces, Fi

j, between any pair of points 
xi and xj, 
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i = 1,…,m.  
Finally, the Move procedure uses the total force vector Fi, to move the 

point xi in the direction of the force by a random step length, 
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where RNG is a vector that contains the allowed range of movement to-
wards the lower bound lk, or the upper bound uk, for each coordinate k. The 
random step length λ is assumed to be uniformly distributed between 0 and 
1. Note that feasibility is maintained by using the normalized force exerted 
on each point. The best point, xbest, is not moved and is carried out to the 
subsequent iteration. 

12.3 Hooke and Jeeves pattern search method 

In this section, we describe our modification to the original EM algorithm. 
In this algorithm, the Local procedure is based on a random line search 
method [2]. Here a new Local procedure based on the Hooke and Jeeves 
(HJ) pattern search algorithm is proposed. This is a derivative-free method 
that searches in the neighbourhood of a point xi for a better approximation 
via exploratory and pattern moves [4,6]. To reduce the number of function 
evaluations, the HJ pattern search algorithm is applied to the current best 
point only. This algorithm is a variant of the coordinate search, in the sense 
that incorporates a pattern move to accelerate the progress of the algo-
rithm, by exploiting information obtained from the search in previous suc-
cessful iterations. The exploratory move carries out a coordinate search (a 
search along the coordinate axes) about the best point, with a step length δ. 
If a new trial point, y, with a better function value than xbest is encountered, 
the iteration is successful. Otherwise, the iteration is unsuccessful and δ 
should be reduced. If the previous iteration was successful, the vector       
y− xbest defines a promising direction and a pattern move is then imple-
mented, meaning that the exploratory move is carried out about the trial 
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point y + (y − xbest), rather than about the current point y. Then, if the coor-
dinate search is successful, the returned point is accepted as the new point; 
otherwise, the pattern move is rejected and the method reduces to coordi-
nate search about y. Please see [4] for details. To ensure feasibility in the 
HJ pattern search algorithm an exact penalty strategy is used. This tech-
nique considers solving 

min
⎩
⎨
⎧
∞

≡
)(

)(
xf

xF   
otherwise

  if Ω∈x
 (12.5)

rather than problem (12.1). This means that any infeasible trial point is re-
jected, since the objective function value is ∞ . 

12.4 Numerical results 

Computational tests were performed on a PC with a 3GHz Pentium IV mi-
croprocessor and 1Gb of memory. We compare the original EM algorithm, 
as described in Sect. 12.2, with the herein proposed EM algorithm modi-
fied with the HJ Local procedure, described in Sect. 12.3. We use a collec-
tion of 18 test functions [2,3,5] (see Table 12.1).  

Table 12.1. Test functions and the corresponding parameters used by EM  

Test function n Box constraints fglobal m MaxIt LSIt δ  
Shekel5 4 [0,10]4 -10.153200 40 150 10 1.00E-03 
Shekel7 4 [0, 10]4 -10.402941 40 150 10 1.00E-03 
Shekel10 4 [0, 10]4 -10.536410 40 150 10 1.00E-03 
Hartman3 3 [0, 1]3 -3.862782 30 75 10 1.00E-03 
Hartman6 6 [0, 1]6 -3.322368 30 75 10 1.00E-03 
Goldstein-Price 2 [-2,2]2 3.000000 20 50 10 1.00E-03 
Branin 2 [-5,10]×[0,15] 0.397887 20 50 10 1.00E-03 
Six-hump Camel 2 [-3,3]×[-2,2] -1.031628 20 50 10 1.00E-03 
Shubert 2 [-10, 10]2 -186.730909 20 50 10 1.00E-03 
Griewank 2 [-100, 100]2 0.000000 30 100 20 1.00E-03 
Himmelblau 2 [-6, 6]2 0.000000 10 50 5 1.00E-03 
Sine envelope 2 [-0.5, 0.5]2 0.000000 20 75 10 5.00E-04 
Bohachevsky 2 [-10, 10]2 0.000000 20 75 20 1.00E-03 
Easom 2 [-10, 10]2 -1.000000 20 50 10 1.00E-03 
Hump 2 [-5, 5]2 0.000000 20 50 10 1.00E-03 
Spherical 2 [-100, 100]2 0.000000 30 75 20 1.00E-03 
Three-hump 2 [-5, 5]2 0.000000 20 50 10 1.00E-03 
Zakharov4 4 [-5, 10]4 0.000000 30 75 20 1.00E-03 
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The first four columns of the table refer to the name of the function, the 
dimension of the problem, n, the default box constraints, and the known 
global optimum, fglobal. The last four columns list the parameters used by 
EM for each function. 

The results obtained by the original EM algorithm are shown in Table 
12.2 and the results of the EM algorithm modified with the HJ Local pro-
cedure are presented in Table 12.3. We use average results for comparison, 
over 25 runs. Table 12.2 and Table 12.3 report average number of function 
evaluations, Evavg, the average best function values, favg, and the best func-
tion value, fbest = min (fi

best, i = 1,…,nruns), over nruns=25 runs. Values of 
the mean absolute error  

n
ff globalavg ||
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=  (12.6)
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are also listed for each problem.  

Table 12.2. Results of original EM with Local procedure applied to the best point 

Test function Evavg favg fbest MAE SD 
Shekel5* 1865 -10.152770 -10.153163 0.000108 0.000270 
Shekel7 1480 -10.402471 -10.402884 0.000117 0.000486 
Shekel10 1486 -10.535939 -10.536256 0.000118 0.000243 
Hartman3 1260 -3.862487 -3.862722 0.000098 0.000111 
Hartman6 1850 -3.322267 -3.322365 0.000017 0.000091 
Goldstein Price 488 3.000141 3.000001 0.000071 0.000077 
Branin 512 0.397906 0.397888 0.000009 0.000012 
Six Hump Camel 291 -1.031599 -1.031628 0.000015 0.000026 
Shubert 357 -186.723068 -186.730906 0.003920 0.005750 
Griewank** 1582 0.000062 0.000008 0.000031 0.000049 
Himmelblau 347 0.000047 0.000008 0.000023 0.000023 
Sine envelope 518 0.000044 0.000002 0.000022 0.000027 
Bohachevsky 793 0.000063 0.000001 0.000032 0.000041 
Easom 489 -0.999966 -1.000000 0.000017 0.000029 
Hump 287 0.000044 0.000001 0.000022 0.000027 
Spherical 903 0.000033 0.000001 0.000017 0.000030 
Three-hump 382 0.000041 0.000001 0.000021 0.000030 
Zakharov4 1621 0.000068 0.000014 0.000017 0.000022 
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The termination criteria and the used parameters are the ones proposed 
in [2]. Thus, both algorithms stop when the number of iterations exceeds 
MaxIt unless the relative error in the best objective function value, with re-
spect to fglobal, is less than 0.01%. In the HJ algorithm, the factor used to 
reduce δ, whenever an unsuccessful iteration is found, is 0.1 and the mini-
mum step length allowed was 1×10-8. In the tables, * means that 4 (in Ta-
ble 12.1) and 5 (in Table 12.2) runs of Shekel5 did not converge and ** 
means that 3 runs of Griewank did not converge. 

The results obtained with the EM algorithm modified with the HJ Local 
procedure are better than the ones produced by the algorithm of Sect. 12.2, 
as far as the accuracy of the results is concerned. The proposed algorithm 
achieves in general the lowest numerical errors (MAE) and lowest stan-
dard deviations (SD) for 25 runs. However, Table 12.3 reveals in some 
cases larger number of function evaluations. 

Table 12.3. Results of EM with HJ Local procedure applied to the best point 

Test function Evavg favg fbest MAE SD 
Shekel5* 1880 -10.153169 -10.153186 0.000008 0.000023 
Shekel7 1677 -10.402855 -10.402934 0.000022 0.000205 
Shekel10 1679 -10.536320 -10.536405 0.000022 0.000177 
Hartman3 1482 -3.862541 -3.862775 0.000080 0.000106 
Hartman6 2378 -3.322308 -3.322361 0.000010 0.000075 
Goldstein Price 405 3.000036 3.000001 0.000018 0.000054 
Branin 372 0.397900 0.397888 0.000006 0.000012 
Six Hump Camel 261 -1.031588 -1.031628 0.000020 0.000025 
Shubert 641 -186.714293 -186.730827 0.008308 0.067471 
Griewank** 2095 0.000018 0.000000 0.000009 0.000017 
Himmelblau 294 0.000018 0.000000 0.000009 0.000021 
Sine envelope 423 0.000025 0.000000 0.000012 0.000030 
Bohachevsky 1892 0.000018 0.000000 0.000009 0.000011 
Easom 476 -0.999965 -1.000000 0.000018 0.000033 
Hump 315 0.000023 0.000000 0.000012 0.000032 
Spherical 514 0.000031 0.000000 0.000015 0.000032 
Three-hump 337 0.000027 0.000001 0.000013 0.000021 
Zakharov4 1430 0.000013 0.000001 0.000003 0.000027 

12.5 Conclusions 

We have studied the Electromagnetism-like algorithm and implemented a 
new Local procedure based on a pattern search method. This new algo-
rithm was applied to different test problems from the literature and com-
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pared with the original EM. The preliminary results seem promising. Fu-
ture developments will focus on extending the numerical experiments to 
other test functions with larger dimensions and many local minimizers in 
the feasible region. The purpose here is to analyze the pattern search abil-
ity to drive the best point towards the global minimizer instead of to a non-
global one. 
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