Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/36602

Registo completo
Campo DCValorIdioma
dc.contributor.authorPraveen, S.por
dc.contributor.authorOliveira, Sara M.por
dc.contributor.authorBorges, J.por
dc.contributor.authorMano, J. F.por
dc.date.accessioned2015-08-07T10:27:32Z-
dc.date.available2015-08-07T10:27:32Z-
dc.date.issued2015-01-
dc.date.submitted2015-01-
dc.identifier.citationPraveen S., Oliveira S. M., Borges J., Mano J. F. Assembly of cell-laden hydrogel fiber into non-liquefied and liquefied 3D spiral constructs by perfusion-based layer-by-layer technique, Biofabrication, Vol. 7, Issue 1, pp. 011001-011007, doi:10.1088/1758-5090/7/1/011001, 2015por
dc.identifier.issn1758-5082por
dc.identifier.urihttps://hdl.handle.net/1822/36602-
dc.description.abstractIn this work, three-dimensional (3D) self-sustaining, spiral-shaped constructs were produced through a combination of ionotropic gelation, to form cell-encapsulated alginate fibers, and a perfusion-based layer-by-layer (LbL) technique. Single fibers were assembled over cylindrical molds by reeling to form spiral shapes, both having different geometries and sizes. An uninterrupted nanometric multilayer coating produced by a perfusion-based LbL technique, using alginate and chitosan, generated stable 3D spiral-shaped macrostructures by gripping and affixing the threads together without using any crosslinking/binding agent. The chelation process altered the internal microenvironment of the 3D construct from the solid to the liquefied state while preserving the external geometry. L929 cell viability by MTS and dsDNA quantification favor liquefied 3D constructs more than nonliquefied ones. The proposed technique setup helps us to generate complex polyelectrolyte-based 3D constructs for tissue engineering applications and organ printing.por
dc.description.sponsorshipThe authors acknowledge the financial support by the Portuguese Foundation for Science and Technology (FCT) for grants SFRH/BPD/48948/2008, SFRH/BD/70107/2010 and project PTDC/CTM-BIO/1814/2012. This work has also received funding from the European Union's 7th framework program (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS and also from FEDER through the competitive factors operation program (COMPETE).por
dc.language.isoengpor
dc.publisherIOP Publishingpor
dc.relationSFRH/BPD/48948/2008-
dc.relationSFRH/BD/70107/2010-
dc.relationinfo:eu-repo/grantAgreement/FCT/5876-PPCDTI/127180/PT-
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/316331/EU-
dc.relationPTDC/CTM-BIO/1814/2012-
dc.rightsrestrictedAccesspor
dc.subjectCell-encapsulationpor
dc.subjectChelationpor
dc.subjectHydrogel fiberpor
dc.subjectLayer-by-layerpor
dc.subjectLiquefied corepor
dc.subjectSwitching cell microenviromentpor
dc.subjectTissue engineeringpor
dc.subjecttissue engineering Supplementary material for this article is available onlinepor
dc.titleAssembly of cell-laden hydrogel fiber into non-liquefied and liquefied 3D spiral constructs by perfusion-based layer-by-layer techniquepor
dc.typearticle-
dc.peerreviewedyespor
dc.relation.publisherversionhttp://iopscience.iop.org/1758-5090/7/1/011001/articlepor
dc.commentshttp://www.3bs.uminho.pt/node/18287por
sdum.publicationstatuspublishedpor
oaire.citationStartPage011001por
oaire.citationEndPage011007por
oaire.citationIssue1por
oaire.citationTitleBiofabricationpor
oaire.citationVolume7por
dc.date.updated2015-08-06T13:37:23Z-
dc.identifier.doi10.1088/1758-5090/7/1/011001por
dc.identifier.pmid25562702por
dc.subject.wosScience & Technologypor
sdum.journalBiofabricationpor
Aparece nas coleções:3B’s - Artigos em revistas/Papers in scientific journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
18287-Manuscript_Biofabrication.pdf
Acesso restrito!
1,34 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID