Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/40311

Registo completo
Campo DCValorIdioma
dc.contributor.authorFabra, María Josépor
dc.contributor.authorFlores-López, M. L.por
dc.contributor.authorCerqueira, M. A.por
dc.contributor.authorJasso de Rodríguez, D.por
dc.contributor.authorLagaron, J. M.por
dc.contributor.authorVicente, A. A.por
dc.date.accessioned2016-02-15T15:54:59Z-
dc.date.available2016-02-15T15:54:59Z-
dc.date.issued2016-03-
dc.identifier.citationFabra, María José.; López, M.; Cerqueira, M. A.; de Rodriguez, Diana Jasso; Lagaron, Jose M.; Vicente, A. A., Layer-by-layer technique to developing functional nanolaminate films with antifungal activity. Food and Bioprocess Technology, 9(3), 471-480, 2016por
dc.identifier.issn1935-5130por
dc.identifier.urihttps://hdl.handle.net/1822/40311-
dc.description.abstractThe layer-by-layer (LbL) deposition method was used to build up alternating layers (five) of different polyelectrolyte solutions (alginate, zein-carvacrol nanocapsules, chitosan and chitosan-carvacrol emulsions) on an aminolysed/charged polyethylene terephthalate (A/C PET) film. These nanolaminated films were characterised by contact angle measurements and through the determination of water vapour (WVTR) and oxygen (O2TR) transmission rates. The effect of active nanolaminated films against the Alternaria sp. and Rhizopus stolonifer was also evaluated. This procedure allowed developing optically transparent nanolaminated films with tuneable water vapour and gas properties and antifungal activity. The water and oxygen transmission rate values for the multilayer films were lower than those previously reported for the neat alginate or chitosan films. The presence of carvacrol and zein nanocapsules significantly decreased the water transmission rate (up to 40 %) of the nanolaminated films. However, the O2TR behaved differently and was only improved (up to 45 %) when carvacrol was encapsulated, i.e. nanolaminated films prepared by alternating alginate with nanocapsules of zein-carvacrol layers showed better oxygen barrier properties than those prepared as an emulsion of chitosan and carvacrol. These films containing zein-carvacrol nanocapsules also showed the highest antifungal activity (30 %), which did not significantly differ from those obtained with the highest amount of carvacrol, probably due to the controlled release of the active agent (carvacrol) from the zein-carvacrol nanocapsules. Thus, this work shows that nanolaminated films prepared with alternating layers of alginate and zein-carvacrol nanocapsules can be considered to improve the shelf-life of foodstuffs.por
dc.description.sponsorshipThe authors acknowledge financial support from FP7 IP project BECOBIOCAP^. M. J. Fabra is recipients of a Juan de la Cierva contract from the Spanish Ministry of Economy and Competitivity. Maria L. Flores-López thanks Mexican Science and Technology Council (CONACyT, Mexico) for PhD fellowship support (CONACyT Grant Number 215499/310847). The author Miguel A. Cerqueira is a recipient of a fellowship (SFRH/BPD/72753/2010) supported by Fundação para a Ciência e Tecnologia, POPH-QREN and FSE (FCT, Portugal). The authors also thank the FCT Strategic Project of UID/ BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP- 01-0124-FEDER-027462) and the project BBioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes,^ REF. NORTE-07-0124-FEDER-000028 Co-funded by the Programa Operacional Regional do Norte (ON.2–O Novo Norte), QREN, FEDER. The support of EU Cost Action FA0904 is gratefully acknowledged.por
dc.language.isoengpor
dc.publisherSpringer por
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147337/PTpor
dc.relationinfo:eu-repo/grantAgreement/FCT/5876-PPCDTI/126270/PTpor
dc.relationSFRH/BPD/72753/2010por
dc.rightsopenAccesspor
dc.subjectCarvacrolpor
dc.subjectAlginatepor
dc.subjectChitosanpor
dc.subjectNanocapsulespor
dc.subjectBarrier propertiespor
dc.titleLayer-by-layer technique to developing functional nanolaminate films with antifungal activitypor
dc.typearticle-
dc.peerreviewedyespor
dc.relation.publisherversionhttp://www.springer.com/food+science/journal/11947por
dc.commentsCEB26565por
sdum.publicationstatuspublishedpor
oaire.citationStartPage471por
oaire.citationEndPage480por
oaire.citationIssue3por
oaire.citationConferencePlaceUnited States-
oaire.citationTitleFood and Bioprocess Technologypor
oaire.citationVolume9por
dc.date.updated2016-02-10T14:53:05Z-
dc.identifier.eissn1935-5149-
dc.identifier.doi10.1007/s11947-015-1646-1por
dc.subject.wosScience & Technologypor
sdum.journalFood and Bioprocess Technologypor
Aparece nas coleções:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
document_26565_1.pdf417,59 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID