Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/59873

Registo completo
Campo DCValorIdioma
dc.contributor.authorKang, Kangpor
dc.contributor.authorBergdahl, Bastipor
dc.contributor.authorMachado, Danielpor
dc.contributor.authorDato, Laurapor
dc.contributor.authorHan, Ting-Lipor
dc.contributor.authorLi, Junpor
dc.contributor.authorVillas-Boas, Silaspor
dc.contributor.authorHerrgård, Markus J.por
dc.contributor.authorFörster, Jochenpor
dc.contributor.authorPanagiotou, Giannipor
dc.date.accessioned2019-04-08T08:52:59Z-
dc.date.available2019-04-08T08:52:59Z-
dc.date.issued2019-
dc.identifier.citationKang, Kang; Bergdahl, Basti; Machado, Daniel; Dato, Laura; Han, Ting-Li; Li, Jun; Villas-Boas, Silas; Herrgård, Markus J; Förster, Jochen; Panagiotou, Gianni, Linking genetic, metabolic, and phenotypic diversity among Saccharomyces cerevisiae strains using multi-omics associations. GigaScience, 8(4), giz015, 2019por
dc.identifier.issn2047-217Xpor
dc.identifier.urihttps://hdl.handle.net/1822/59873-
dc.description.abstractThe selection of bioengineering platform strains and engineering strategies to improve the stress resistance of Saccharomyces cerevisiae remains a pressing need in bio-based chemical production. Thus, a systematic effort to exploit the genotypic and phenotypic diversity to boost yeast's industrial value is still urgently needed. Here, we analyzed 5400 growth curves obtained from 36 S. cerevisiae strains and comprehensively profiled their resistances against 13 industrially relevant stresses. We observed that bioethanol and brewing strains exhibit higher resistance against acidic conditions, however, plant isolates tend to have wider range of resistance, which may be associated with their metabolome and fluxome signatures in TCA cycle and fatty acid metabolism. By deep genomic sequencing we found that industrial strains have more genomic duplications especially affecting transcription factors, presenting disparate evolutionary paths in comparison to the environmental strains which have more InDels, gene deletions and strain-specific genes. Genome-wide association studies coupled with protein-protein interaction networks uncovered novel genetic determinants of stress resistances. These resistance-related engineering targets and strain rankings provide a valuable source for engineering significantly improved industrial platform strains.por
dc.description.sponsorshipG.P. would like to thank Deutsche Forschungsgemeinschaft (DFG) CRC/Transregio 124 “Pathogenic fungi and their human host: Networks of interaction,” subproject B5. B.B., L.D., M.J.H., and J.F. thank the Novo Nordisk Foundation for financial support.por
dc.language.isoengpor
dc.publisherOxford University Presspor
dc.rightsopenAccesspor
dc.subjectgeno-to-phenotype associationpor
dc.subjectmulti-omic studypor
dc.subjectplatform strainpor
dc.subjectSaccharomyces cerevisiaepor
dc.subjectstress resistancepor
dc.titleLinking genetic, metabolic, and phenotypic diversity among Saccharomyces cerevisiae strains using multi-omics associationspor
dc.typearticle-
dc.peerreviewedyespor
dc.relation.publisherversionhttps://academic.oup.com/gigasciencepor
dc.commentsCEB50521por
oaire.citationIssue4por
oaire.citationConferencePlaceUnited Kingdom-
oaire.citationVolume8por
dc.date.updated2019-04-05T22:41:58Z-
dc.identifier.doi10.1093/gigascience/giz015por
dc.identifier.pmid30715293por
dc.description.publicationversioninfo:eu-repo/semantics/publishedVersionpor
dc.subject.wosScience & Technologypor
sdum.journalGigaSciencepor
Aparece nas coleções:CEB - Publicações em Revistas/Séries Internacionais / Publications in International Journals/Series

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
document_50521_1.pdf4,83 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID