Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/71215

Registo completo
Campo DCValorIdioma
dc.contributor.authorGonçalves, Sandra Beatriz Tomépor
dc.contributor.authorLoureiro, A. M.por
dc.contributor.authorFernandes, H. C.por
dc.contributor.authorPimenta, Sara Filomena Ribeiropor
dc.contributor.authorRibeiro, J. F.por
dc.contributor.authorCorreia, J. H.por
dc.date.accessioned2021-04-01T15:58:42Z-
dc.date.issued2018-12-
dc.identifier.issn1057-7157-
dc.identifier.urihttps://hdl.handle.net/1822/71215-
dc.description.abstractThis paper presents a simple micromachining process to fabricate 2-D devices consisting of up to 20-mm-long shafts for neural applications. The manufacturing technology was mainly based on traditional blade dicing, normally used for wafers individualization into chips/devices in semiconductor and micro-electro-mechanical systems technologies. Here, it is demonstrated how a fully mechanical cutting technology is applied to the successful manufacture of challenging components with high-aspect ratio devices up to 41:1. Several other aspect ratio shafts (lengths varying between 5 and 20 mm) were produced and tested, for both the single-shaft and array devices. Mechanical characterization tests evaluated the devices robustness. Compressive strength tests for single-shaft 20-mm long shafts showed good longitudinal resistance to fracture, withstanding 28 N before breaking. Longitudinal forces play the key role while implanting the shaft inside the brain. Moreover, it was measured the load required to implant and extract 20-mm five-shaft array devices in two different mediums: 0.6% agar gel and calf cadaver brain. Maximum average insertion forces were 23 and 59 mN per shaft at 180 mm.min(-1) for agar and cadaver brain mediums, respectively. Overall, by enhancing the performance of a purely mechanical machining tool, the micro manufacture of high-aspect ratio silicon shafts for neuroscience applications was demonstrated.por
dc.description.sponsorshipS. B. Goncalves is supported by the Portuguese Foundation for Science and Technology (FCT) under grant PD/BD/105931/2014, MIT Portugal Program. This work is supported by FCT with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 -Programa Operacional Competitividade e Internacionalizacao (POCI) with the reference project POCI-01-0145-FEDER-006941 and project PTDC/CTM-REF/28406/2017 (02/SAICT/2017). ANI also supports this work through the Brain-Lighting project by FEDER funds through Portugal 2020, COMPETE 2020 with the reference POCI-01-0247-FEDER-003416.por
dc.language.isoengpor
dc.publisherIEEEpor
dc.relationinfo:eu-repo/grantAgreement/FCT/PD/PD%2FBD%2F105931%2F2014/PTpor
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147325/PTpor
dc.relationPTDC/CTM-REF/28406/2017por
dc.rightsrestrictedAccesspor
dc.subjectBiosensorspor
dc.subjectBlade cuttingpor
dc.subjectIC-compatible manufacturingpor
dc.subjectMechanical implantationpor
dc.subjectHigh-aspect ratio devicespor
dc.subject2D neural silicon shaftspor
dc.titleHigh-aspect ratio Si neural shafts: fabrication and brain implantationpor
dc.typearticlepor
dc.peerreviewedyespor
oaire.citationStartPage1097por
oaire.citationEndPage1104por
oaire.citationIssue6por
oaire.citationVolume27por
dc.date.updated2021-03-31T16:39:31Z-
dc.identifier.eissn1948-0158-
dc.identifier.doi10.1109/JMEMS.2018.2868229por
dc.date.embargo10000-01-01-
dc.subject.wosScience & Technology-
sdum.export.identifier10226-
sdum.journalJournal of Microelectromechanical Systemspor
Aparece nas coleções:CMEMS - Artigos em revistas internacionais/Papers in international journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
SBG_JMEMS.pdf
Acesso restrito!
754,18 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID