Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/72623

Registo completo
Campo DCValorIdioma
dc.contributor.authorOliveira, A. N.por
dc.contributor.authorMenezes, Raquelpor
dc.contributor.authorFaria, Susanapor
dc.contributor.authorAfonso, Paulopor
dc.date.accessioned2021-05-13T08:36:59Z-
dc.date.available2021-05-13T08:36:59Z-
dc.date.issued2020-
dc.identifier.citationA. N. Oliveira, R. Menezes, S. Faria & P. Afonso (2020) Mixed-effects modelling for crossed and nested data: an analysis of dengue fever in the state of Goiás, Brazil, Journal of Applied Statistics, 47:13-15, 2912-2926, DOI: 10.1080/02664763.2020.1736528-
dc.identifier.issn0266-4763por
dc.identifier.urihttps://hdl.handle.net/1822/72623-
dc.description.abstractDengue fever is a viral disease transmitted by the mosquito Aedes aegypti. In order to avoid epidemics and deaths, this transmitting vector must be controlled. This work assembles, for the first time, data from multiple governmental bodies describing the number of dengue cases reported, and meteorological conditions in 20 cities in the Goias state, Brazil, from 2008 to 2015. We then apply generalised linear mixed modelling to this novel data set to model dengue occurrences in this state, where the tropical climate favours the proliferation of the main transmitting vector of this disease. The number of reported dengue cases is estimated using meteorological variables as fixed effects, and city and year data are included in the model as random effects. The proposed models can cope with complex data structures, such as nested data, while taking into account the particularities of each year dependent on the city under analysis. The results confirm that precipitation, minimum temperature, and relative air humidity contribute to the increase of dengue cases number, while year and city location are determining factors. Public policies, based on these new results, together with joint actions involving local populations, are essential to combat the vector transmitting dengue and avoid epidemics.por
dc.language.isoengpor
dc.publisherTaylor & Francispor
dc.rightsrestrictedAccesspor
dc.subjectMixed-effects modelpor
dc.subjectDenguepor
dc.subjectClimatepor
dc.subjectSpace and time random-effectspor
dc.subjectNested random-effectspor
dc.titleMixed-effects modelling for crossed and nested data: an analysis of dengue fever in the state of Goias, Brazilpor
dc.typearticle-
dc.peerreviewedyespor
dc.relation.publisherversionhttps://www.tandfonline.com/doi/full/10.1080/02664763.2020.1736528por
oaire.citationStartPage2912por
oaire.citationEndPage2926por
oaire.citationIssue13-15por
oaire.citationVolume47por
dc.date.updated2021-02-05T18:25:32Z-
dc.identifier.doi10.1080/02664763.2020.1736528por
dc.subject.wosScience & Technology-
sdum.export.identifier7928-
sdum.journalJournal of Applied Statisticspor
Aparece nas coleções:CMAT - Artigos em revistas com arbitragem / Papers in peer review journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Mixed effects modelling for crossed and nested data an analysis of dengue fever in the state of Goias Brazil.pdf
Acesso restrito!
3,35 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID