Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/74727

Registo completo
Campo DCValorIdioma
dc.contributor.authorBartolomeu, Fláviopor
dc.contributor.authorCosta, M. M.por
dc.contributor.authorAlves, N.por
dc.contributor.authorMiranda, G.por
dc.contributor.authorSilva, Filipe Samuelpor
dc.date.accessioned2021-11-17T10:07:36Z-
dc.date.available2021-11-17T10:07:36Z-
dc.date.issued2020-
dc.identifier.issn0143-8166-
dc.identifier.urihttps://hdl.handle.net/1822/74727-
dc.description.abstractThe amount of hip revision surgeries is significantly increasing due to the loss of fixation between implant and bone, that leads to implant failure. The stiffness mismatch between Ti6Al4V hip implants and bone tissue, the non-uniform implant-bone contact pressure, and the poor wear resistance of Ti6Al4V are pointed as three critical issues that contribute to these implant's failure. In this study, a multi-material design and fabrication concept was exploited aiming to change traditional manufacturing paradigms, by allocating different biomaterials in a single component targeting a multi-functional hip implant. Selective Laser Melting technology was explored to fabricate NiTi-Ti6Al4V multi-material cellular structures with a Ti6Al4V inner region and a NiTi outer region. This work was focused on the SLM fabrication and processing parameters validation on a commercial SLM equipment. The morphological analyses allowed to assess a successful solidification and bond between NiTi and Ti6Al4V materials in the transition region. The shear tests revealed a high bond strength of the transition region with an average strength of 33 MPa. The nano-indentation results showed that the Ti6Al4V region exhibits a higher hardness and elastic modulus when compared with the NiTi region. This work is a part of a broader objective that aims to create a NiTi-Ti6Al4V multi-material and cellular structured hip implant capable to provide customized stiffness, superior wear resistance and a controlled NiTi outer region volume change.por
dc.description.sponsorshipThis work was supported by FCT (Fundação para a Ciência e a Tecnologia) through the grant SFRH/BD/128657/2017 and the projects PTDC/EMS-TEC/5422/2014_ADAPTPROSTHESIS and UID/EEA/04436/2019.por
dc.language.isoengpor
dc.publisherElsevier 1por
dc.relationSFRH/BD/128657/2017por
dc.relationPTDC/EMS-TEC/5422/2014_ADAPTPROSTHESISpor
dc.relationUID/EEA/04436/2019por
dc.rightsopenAccesspor
dc.subjectNiTi-Ti6Al4Vpor
dc.subjectMulti-materialpor
dc.subjectSelective Laser Meltingpor
dc.subjectShape-memory effectpor
dc.subjectCellular structurespor
dc.subjectImplantspor
dc.titleAdditive manufacturing of NiTi-Ti6Al4V multi-material cellular structures targeting orthopedic implantspor
dc.typearticlepor
dc.peerreviewedyespor
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0143816620300993por
oaire.citationVolume134por
dc.identifier.doi10.1016/j.optlaseng.2020.106208por
dc.subject.wosScience & Technologypor
sdum.journalOptics and Lasers in Engineeringpor
Aparece nas coleções:CMEMS - Artigos em revistas internacionais/Papers in international journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
23 - Additive manufacturing.pdf4,52 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID