Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/79859

TítuloInterplay of magnetic properties and doping in epitaxial films of h-REFeO3 multiferroic oxides
Autor(es)Baghizadeh, Ali
Vaghefi, Pegah Mirzadeh
Huang, Xing
Borme, Jerome
Almeida, B. G.
Salak, Andrei N.
Willinger, Marc-Georg
Amaral, Vitor B.
Vieira, Joaquim M.
Palavras-chaveelectron microscopy
epitaxy
ferroelectricity
first-principles calculations
magnetic oxides
first&#8208
principles calculations
Data2021
EditoraWiley VCH Verlag
RevistaSmall
CitaçãoBaghizadeh, A., Vaghefi, P. M., Huang, X., Borme, J., Almeida, B., Salak, A. N., Willinger, M. -G., Amaral, V. B., Vieira, J. M., Interplay of Magnetic Properties and Doping in Epitaxial Films of h-REFeO3 Multiferroic Oxides. Small 2021, 17, 2005700. https://doi.org/10.1002/smll.202005700
Resumo(s)Multiferroic materials demonstrating coexistence of magnetic and ferroelectric orders are promising candidates for magnetoelectric devices. While understanding the underlying mechanism of interplaying of ferroic properties is important, tailoring their properties to make them potential candidates for magnetoelectric devices is challenging. Here, the antiferromagnetic Neel ordering temperature above 200 K is realized in successfully stabilized epitaxial films of (Lu,Sc)FeO3 multiferroic oxide. The first-principles calculations show the shrinkage of in-plane lattice constants of the unit cells of the films on different substrates which corroborates well the enhancement of the Neel ordering temperature (TN). The profound effect of lattice strain/stress at the interface due to differences of in-plane lattice constants on out of plane magnetic properties and on spin reorientation temperature in the antiferromagnetic region is further elucidated in the epitaxial films with and without buffer layer of Mn-doped LuFeO3. Writing and reading ferroelectric domains reveal the ferroelectric response of the films at room temperature. Detailed electron microscopy shows the presence of lattice defects in atomic scale. First-principles calculations show that orbital rehybridization of rare-earth ions and oxygen is one of the main driving force of ferroelectricity along c-axis in thin films of hexagonal ferrites.
TipoArtigo
URIhttps://hdl.handle.net/1822/79859
DOI10.1002/smll.202005700
ISSN1613-6810
Versão da editorahttps://doi.org/10.1002/smll.202005700
Arbitragem científicayes
AcessoAcesso restrito UMinho
Aparece nas coleções:PHYSICS OF QUANTUM MATERIALS AND BIONANOSTRUCTURES (2018 - ...)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Small, 17, 2005700 (2021).pdf
Acesso restrito!
Artigo4,27 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID