Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/80140

Registo completo
Campo DCValorIdioma
dc.contributor.authorFaria, Bruno Miguel Silvapor
dc.contributor.authorSilvestre, Nunopor
dc.date.accessioned2022-10-14T10:14:59Z-
dc.date.available2022-10-14T10:14:59Z-
dc.date.issued2022-09-16-
dc.identifier.citationBruno Faria, Nuno Silvestre, Mechanical properties of phenine nanotubes, Extreme Mechanics Letters, Volume 56, 2022, 101893,por
dc.identifier.issn2352-4316por
dc.identifier.urihttps://hdl.handle.net/1822/80140-
dc.description.abstractPhenine Nanotubes (PhNT) are cylinder-shaped molecules synthetized from 1,3,5-trisubstituted benzene ring building blocks that can form tubular segments of different sizes. Small nanotube segments have been recently synthetized, and efforts are being made to increase the nanotubes’ length by adding more “phenine” units. To the authors’ best knowledge, a complete characterization of the mechanical properties of these nanotubes has not yet been accomplished. In this work, Reax and AIREBO forcefields were used to model armchair and zigzag PhNTs and Molecular Dynamics simulations were employed to determine their mechanical properties for tensile, compressive, bending and twisting loadings. It was found that PhNTs have a much lower Young’s modulus (about 30%) and tensile strengths (about 45%) than carbon nanotubes (CNTs), but can endure longer tensile strains without breaking apart. Although possessing a lower bending and twisting stiffness than CNTs, PhNT have highly flexible sidewalls due to their superior porosity, and therefore can withstand higher angles of twist and angles of bend without breaking bonds. This extra flexibility; extended porosity; possibility for heteroatom doping and reasonable strength, make PhNTs very promising candidates for a wide range of applications, such as sensing, ionic transistors or molecular sieving. Finally, a brief study on the application of elastic continuum shell formulas to predict the critical stress (compression), critical moment (bending) and critical torque (twisting) is also presented.por
dc.description.sponsorshipThis work was supported by FCT, Portugal, through IDMEC, under LAETA, project UIDB/50022/2020 and by IPC-Institute for Polymers and Composites, Portugal. The first author gratefully acknowledges the financial support given by FCT in the context of CEECINST/00156/2018.por
dc.language.isoengpor
dc.publisherElsevier 1por
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50022%2F2020/PTpor
dc.relationCEECINST/00156/2018por
dc.rightsopenAccesspor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/por
dc.subjectCarbon allotropespor
dc.subjectMechanical propertiespor
dc.subjectPhenine nanotubespor
dc.subjectMolecular dynamicspor
dc.subjectBucklingpor
dc.titleMechanical properties of phenine nanotubespor
dc.typearticle-
dc.peerreviewedyespor
dc.relation.publisherversionhttps://doi.org/10.1016/j.eml.2022.101893por
oaire.citationVolume56por
dc.identifier.doi10.1016/j.eml.2022.101893por
dc.subject.fosEngenharia e Tecnologia::Engenharia dos Materiaispor
dc.subject.wosScience & Technologypor
sdum.journalExtreme Mechanics Letterspor
oaire.versionVoRpor
dc.identifier.articlenumber101893por
dc.subject.odsProdução e consumo sustentáveispor
Aparece nas coleções:IPC - Artigos em revistas científicas internacionais com arbitragem

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Mechanical properties of Phenine Nanotubes.pdf4,04 MBAdobe PDFVer/Abrir

Este trabalho está licenciado sob uma Licença Creative Commons Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID