Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/20360

Registo completo
Campo DCValorIdioma
dc.contributor.authorMartins, A.-
dc.contributor.authorChung, S.-
dc.contributor.authorPedro, A. J.-
dc.contributor.authorSousa, R. A.-
dc.contributor.authorMarques, A. P.-
dc.contributor.authorReis, R. L.-
dc.contributor.authorNeves, N. M.-
dc.date.accessioned2012-09-28T15:33:24Z-
dc.date.available2012-09-28T15:33:24Z-
dc.date.issued2009-
dc.identifier.issn1932-7005por
dc.identifier.urihttps://hdl.handle.net/1822/20360-
dc.description.abstractFibrous structures mimicking the morphology of the natural extracellular matrix are considered promising scaffolds for tissue engineering. This work aims to develop a novel hierarchical starch-based scaffold. Such scaffolds were obtained by a combination of starch-polycaprolactone micro- and polycaprolactone nano-motifs, respectively produced by rapid prototyping (RP) and electrospinning techniques. Scanning electron microscopy (SEM) and micro-computed tomography analysis showed the successful fabrication of a multilayer scaffold composed of parallel aligned microfibres in a grid-like arrangement, intercalated by a mesh-like structure with randomly distributed nanofibres (NFM). Human osteoblast-like cells were dynamically seeded on the scaffolds, using spinner flasks, and cultured for 7 days under static conditions. SEM analysis showed predominant cell attachment and spreading on the nanofibre meshes, which enhanced cell retention at the bulk of the composed/hierarchical scaffolds. A significant increment in cell proliferation and osteoblastic activity, assessed by alkaline phosphatase quantification, was observed on the hierarchical fibrous scaffolds. These results support our hypothesis that the integration of nanoscale fibres into 3D rapid prototype scaffolds substantially improves their biological performance in bone tissue-engineering strategies.por
dc.description.sponsorshipThis work was partially supported by the European Integrated Project GENOSTEM (Grant No. LSH-STREP-CT-2003-503161) and the European Network of Excellence EXPERTISSUES (Grant No. NMP3-CT-2004-500283). We also acknowledge the Portuguese Foundation for Science and Technology for the project Naturally Nano (Grant No. POCI/EME/58982/2004) and a PhD grant to A. Martins (Grant No. SFRH/BD/24382/2005).por
dc.language.isoengpor
dc.publisherWileypor
dc.rightsopenAccesspor
dc.subjectelectrospinningpor
dc.subjectrapid prototypingpor
dc.subjectstarch-based fibrespor
dc.subjectmicro/nano multilayer scaffoldspor
dc.subjecthuman osteoblastic cellspor
dc.subjectbioreactorpor
dc.titleHierarchical starch-based fibrous scaffold for bone tissue engineering applicationspor
dc.typearticlepor
dc.peerreviewedyespor
sdum.publicationstatuspublishedpor
oaire.citationStartPage37por
oaire.citationEndPage42por
oaire.citationIssue1por
oaire.citationTitleJournal of Tissue Engineering and Regenerative Medicinepor
oaire.citationVolume3por
dc.identifier.doi10.1002/term.132por
dc.identifier.pmid19021239por
dc.subject.wosScience & Technologypor
sdum.journalJournal of Tissue Engineering and Regenerative Medicinepor
Aparece nas coleções:3B’s - Artigos em revistas/Papers in scientific journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
file.pdf234,45 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID