Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/28157

Registo completo
Campo DCValorIdioma
dc.contributor.authorZhang, Zhenhua-
dc.contributor.authorXu, Liang-
dc.contributor.authorFlores, Paulo-
dc.contributor.authorLankarani, H. M.-
dc.date.accessioned2014-02-26T14:40:16Z-
dc.date.available2014-02-26T14:40:16Z-
dc.date.issued2014-07-
dc.identifier.issn1555-1415por
dc.identifier.urihttps://hdl.handle.net/1822/28157-
dc.description.abstractOver the past two decades, extensive work has been conducted on the dynamic effect of joint clearances in multibody mechanical systems. In contrast, little work has been devoted to optimizing the performance of these systems. In this study, the analysis of revolute joint clearance is formulated in terms of a Hertzian-based contact force model. For illustration, the classical slider-crank mechanism with a revolute clearance joint at the piston pin is presented and a simulation model is developed using the analysis/design software MSC.ADAMS. The clearance is modeled as a pin-in-a-hole surface-to-surface dry contact, with an appropriate contact force model between the joint and bearing surfaces. Different simulations are performed to demonstrate the influence of the joint clearance size and the input crank speed on the dynamic behavior of the system with the joint clearance. In the modeling and simulation of the experimental setup and in the followed parametric study with a slightly revised system, both the Hertzian normal contact force model and a Coulomb-type friction force model were utilized. The kinetic coefficient of friction was chosen as constant throughout the study. An innovative design-of-experiment (DOE)-based method for optimizing the performance of a mechanical system with the revolute joint clearance for different ranges of design parameters is then proposed. Based on the simulation model results from sample points, which are selected by a Latin hypercube sampling (LHS) method, a polynomial function Kriging meta-model is established instead of the actual simulation model. The reason for the development and use of the meta-model is to bypass computationally intensive simulations of a computer model for different design parameter values in place of a more efficient and cost-effective mathematical model. Finally, numerical results obtained from two application examples with different design parameters, including the joint clearance size, crank speed, and contact stiffness, are presented for the further analysis of the dynamics of the revolute clearance joint in a mechanical system. This allows for predicting the influence of design parameter changes, in order to minimize contact forces, accelerations, and power requirements due to the existence of joint clearance.por
dc.description.sponsorshipFundação para a Ciência e a Tecnologia (FCT)por
dc.language.isoengpor
dc.publisherASMEpor
dc.rightsopenAccesspor
dc.subjectRevolute joint clearancepor
dc.subjectContact forcespor
dc.subjectMultibody dynamicspor
dc.subjectKriging metamodelpor
dc.subjectGenetic algorithmspor
dc.titleA kriging model for dynamics of mechanical systems with revolute joint clearancespor
dc.typearticlepor
dc.peerreviewedyespor
sdum.publicationstatuspublishedpor
oaire.citationStartPage1por
oaire.citationEndPage13por
oaire.citationIssue3por
oaire.citationTitleJournal of Computational and Nonlinear Dynamicspor
oaire.citationVolume9por
dc.identifier.doi10.1115/1.4026233por
dc.subject.wosScience & Technologypor
sdum.journalJournal of Computational and Nonlinear Dynamicspor
Aparece nas coleções:DEM - Artigos em revistas de circulação internacional com arbitragem científica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
6.7.42 2014.pdfDocumento principal5,68 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID