Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/71980

TítuloImpact of dietary phosphorus on turbot bone mineral density and content
Autor(es)Suarez-Bregua, P.
Pirraco, Rogério P.
Hernandez-Urcera, J.
Reis, R. L.
Rotllant, J.
Palavras-chaveAcellular bone
Bone mineralization
Dietary phosphorous
dietary phosphorus
growth
skeletal physiology
turbot
DataMar-2021
EditoraWiley
RevistaAquaculture Nutrition
CitaçãoSuarez-Bregua P., Pirraco R. P., Hernandez-Urcera J., Reis R. L., Rotllant J. Impact of dietary phosphorus on turbot bone mineral density and content, Aquaculture Nutrition, doi:10.1111/anu.13253, 2021
Resumo(s)Fish are largely dependent on dietary phosphorus for skeletal development and mineralization. In aquaculture, commercial diets commonly have higher phosphorus concentration than the basal requirements in most fish species to ensure growth and prevent bone mineral disorders. Excessive phosphorus in feeds is harmful for metabolism and results in an increase of wastes in farm effluents, which impact aquatic ecosystems. Previous studies have shown that depletion/excess of dietary phosphorus cause skeletal malformations and reduced/enhanced mineralization in fish. There is scarce information on dietary phosphorus requirements for optimal bone mineralization in species with different types of bone (cellular vs. acellular bone), which is particularly relevant for sustainable aquaculture. Thus, the aim of our study was to analyse the effect of dietary phosphorus concentrations on bone mineralization of turbot, a demersal acellularâ boned fish and valuable aquaculture species. Our results show that the dietary phosphorus concentration did not cause changes to the bone mineral density and the phosphate/calcium concentrations. No apparent skeletal malformations were detected. Additionally, we did not find an altered expression of genes involved in bone mineral metabolism. Taken together, our data show that the phosphorus requirements for optimum growth and bone mineralization in turbot are below those currently used commercially at least for the time period examined: 55â 195 days postfertilization (dpf).
TipoArtigo
URIhttps://hdl.handle.net/1822/71980
DOI10.1111/anu.13253
ISSN1365-2095
Versão da editorahttps://onlinelibrary.wiley.com/doi/10.1111/anu.13253
Arbitragem científicayes
AcessoAcesso aberto
Aparece nas coleções:3B’s - Artigos em revistas/Papers in scientific journals

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
20511-anu13253.pdf544,78 kBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID