Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/86972

TítuloDevelopment of MWCNT/Magnetite flexible triboelectric sensors by magnetic patterning
Autor(es)Esteves, David Seixas
Pereira, Manuel F. C.
Ribeiro, Ana
Durães, Nelson
Paiva, Maria C.
Sequeiros, Elsa W.
Palavras-chaveMWCNT
Ferromagnetic
Flexible and stretchable sensors
Smart composites
Sensor fabrication
Polymer composites
Polymer actuators
Soft robotics
Data29-Jun-2023
EditoraMultidisciplinary Digital Publishing Institute (MDPI)
RevistaPolymers
CitaçãoEsteves, D.S.; Pereira, M.F.C.; Ribeiro, A.; Durães, N.; Paiva, M.C.; Sequeiros, E.W. Development of MWCNT/Magnetite Flexible Triboelectric Sensors by Magnetic Patterning. Polymers 2023, 15, 2870. https://doi.org/10.3390/polym15132870
Resumo(s)The fabrication of low-electrical-percolation-threshold polymer composites aims to reduce the weight fraction of the conductive nanomaterial necessary to achieve a given level of electrical resistivity of the composite. The present work aimed at preparing composites based on multiwalled carbon nanotubes (MWCNTs) and magnetite particles in a polyurethane (PU) matrix to study the effect on the electrical resistance of electrodes produced under magnetic fields. Composites with 1 wt.% of MWCNT, 1 wt.% of magnetite and combinations of both were prepared and analysed. The hybrid composites combined MWCNTs and magnetite at the weight ratios of 1:1; 1:1/6; 1:1/12; and 1:1/24. The results showed that MWCNTs were responsible for the electrical conductivity of the composites since the composites with 1 wt.% magnetite were non-conductive. Combining magnetite particles with MWCNTs reduces the electrical resistance of the composite. SQUID analysis showed that MWCNTs simultaneously exhibit ferromagnetism and diamagnetism, ferromagnetism being dominant at lower magnetic fields and diamagnetism being dominant at higher fields. Conversely, magnetite particles present a ferromagnetic response much stronger than MWCNTs. Finally, optical microscopy (OM) and X-ray micro computed tomography (micro CT) identified the interaction between particles and their location inside the composite. In conclusion, the combination of magnetite and MWCNTs in a polymer composite allows for the control of the location of these particles using an external magnetic field, decreasing the electrical resistance of the electrodes produced. By adding 1 wt.% of magnetite to 1 wt.% of MWCNT (1:1), the electric resistance of the composites decreased from 9 × 104 to 5 × 103 Ω. This approach significantly improved the reproducibility of the electrode’s fabrication process, enabling the development of a triboelectric sensor using a polyurethane (PU) composite and silicone rubber (SR). Finally, the method’s bearing was demonstrated by developing an automated robotic soft grip with tendon-driven actuation controlled by the triboelectric sensor. The results indicate that magnetic patterning is a versatile and low-cost approach to manufacturing sensors for soft robotics.
TipoArtigo
URIhttps://hdl.handle.net/1822/86972
DOI10.3390/polym15132870
e-ISSN2073-4360
Versão da editorahttps://www.mdpi.com/2073-4360/15/13/2870
Arbitragem científicayes
AcessoAcesso aberto
Aparece nas coleções:IPC - Artigos em revistas científicas internacionais com arbitragem

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
polymers-15-02870.pdf11,82 MBAdobe PDFVer/Abrir

Este trabalho está licenciado sob uma Licença Creative Commons Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID