Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/87900

Registo completo
Campo DCValorIdioma
dc.contributor.authorRocha, Jorgepor
dc.contributor.authorPereira, E. N. B.por
dc.contributor.authorMichels, Julienpor
dc.contributor.authorSena-Cruz, Josépor
dc.date.accessioned2024-01-03T13:55:47Z-
dc.date.issued2023-10-13-
dc.identifier.issn0950-0618por
dc.identifier.urihttps://hdl.handle.net/1822/87900-
dc.description.abstractThe strengthening of glass for structural applications is challenging. EBR (External Bonded Reinforcement) reinforcement is often preferred, although limitations result from stress concentrations especially in the case of post-tensioning. This study explores the use of CFRP (Carbon Fiber Reinforced Polymers) and/or Fe-SMA (Iron-based Shape Memory Alloys) as reinforcement in hybrid and alternative configurations. Five full size laminated glass beams were tested in flexure, combining NSM (Near-Surface Mounted) and EBR techniques and exploring the efficiency of different alternative strengthening layouts (i.e. reinforcement material versus application technique) to overcome the current shortfalls of glass strengthening for structural applications. Even for lower reinforcement ratios, hybrid strengthening systems performed better and increased load-carrying capacity while delaying crack-induced deboning failure, when compared to conventional EBR systems. Residual strength ratio increased from 87 % to 160.8 % and ductility from 407 % to 971 %. The hybrid system combining NSM-CFRP and EBR-SMA reinforcements showed the best performance, increasing the initial fracture stress of glass and maintaining sufficient residual strength capacity, while allowing the safe post-tensioning.por
dc.description.sponsorshipThe first author wishes to acknowledge the grant SFRH/BD/122428/2016 provided by Fundação para a Ciência e a Tecnologia, IP (FCT), financed by European Social Fund and by national funds through the FCT/MCTES. This work was partly financed by FCT / MCTES through national funds (PIDDAC) under the R&D Unit Institute for Sustainability and Innovation in Structural Engineering (ISISE), under reference UIDB/04029/2020, and under the Associate Laboratory Advanced Production and Intelligent Systems ARISE under reference LA/P/0112/2020.por
dc.language.isoengpor
dc.publisherElsevier 1por
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04029%2F2020/PTpor
dc.relationinfo:eu-repo/grantAgreement/FCT/POR_NORTE/SFRH%2FBD%2F122428%2F2016/PTpor
dc.relationLA/P/0112/2020por
dc.rightsembargoedAccess (1 Year)por
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/por
dc.subjectFe-SMA stripspor
dc.subjectCFRP laminatespor
dc.subjectLaminated glasspor
dc.subjectPost-tensioningpor
dc.subjectRecovery stresspor
dc.subjectHybrid strengthening systempor
dc.titleHybrid strengthening and flexural behaviour of post-tensioned laminated glass beamspor
dc.typearticle-
dc.peerreviewedyespor
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S095006182303355Xpor
oaire.citationVolume408por
dc.identifier.eissn1879-0526por
dc.identifier.doi10.1016/j.conbuildmat.2023.133637por
dc.date.embargo2024-10-13-
dc.subject.fosEngenharia e Tecnologia::Engenharia Civilpor
sdum.journalConstruction and Building Materialspor
oaire.versionAMpor
dc.identifier.articlenumber133637por
dc.subject.odsIndústria, inovação e infraestruturaspor
Aparece nas coleções:ISISE - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
CONBUILDMAT-D-23-00750R1_Manuscript.pdf
  Até 2024-10-13
Manuscript (Final version)2,62 MBAdobe PDFVer/Abrir

Este trabalho está licenciado sob uma Licença Creative Commons Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID