Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/17672

TítuloSynthesis and characterization of electrical conductive bacterial cellulose-graft-polyaniline
Autor(es)Nunes, Catarina Rodrigues Lopes
Orientador(es)Dourado, Fernando
Data2011
Resumo(s)In recent years, conductive polymeric nanomaterials have received considerable attention because of the increasing demand of new technologies for the development of electronic devices, sensors, scaffolds, to be used in the most diverse research areas such as biology, tissue engineering, food industry, etc. In this context interest in polyaniline (PANI) has grown exponentially, being regarded as one of the most technologically capable electrical conducting polymers, due to its high electrical conductivity, easy synthesis, low cost, and stable electrical conductivity. Bacterial cellulose (BC) nanofibers appear as very promising support material for these conductive additives due to their high strength and stiffness associated to high purity, high porosity, and biocompatibility. The combination of these two materials opens a new field of potential applications for bacterial cellulose. This project aim was to develop an electrical conductive bacterial cellulose-graft-polyaniline composite by means of the oxidative-radical copolymerization using ammonium persulfate in acidic medium. The grafting conditions were studied by varying grafting parameters: monomer concentration and polymerization time. Different methods were studied for the producing of the conductive BC-graft-PANI composites: in situ direct polymerization of aniline in BC discs; surface modification of BC; and sulfonation of BC. The electrical conductivity increased from 7.5*10-11 S/cm to 2.26*10-4 S/cm by controlling the time of polymerization and the molar Ratio of CB:aniline. Under the assayed experimental conditions, the optimum grafting efficiency was find at a CB:aniline ratio of 1:10 and with a time reaction of 6 hours. The produced BC-graft-PANI composites were characterized using conductivity assays, scanning electron microscopy (SEM), fourier-transformed infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and viability assay (MTS test) taking BC as reference.
Nos últimos anos, os polímeros condutores tem recebido especial atenção devido há crescente necessidade de novas tecnologias para o de envolvimento de dispositivos electrónicos, sensores, suportes porosos, que poderão ser usados nas mais diversas áreas como a biologia, a engenharia de tecidos, a industria alimentar, etc.. Neste contexto, o interesse na polianilina (PANI) tem crescido exponencialmente, sendo considerada um dos polímeros condutores mais promissores, devido à sua elevada condutividade eléctrica, fácil síntese, baixo custo e estabilidade térmica. No que diz respeito às nanofibras de celulose bacteriana, estas surgem como um material de suporte muito interessante para este tipo de polímeros condutores devido às excelentes propriedades mecânicas, associadas á elevada pureza, elevada porosidade, e biocompatibilidade. Com a combinação destes dois materiais abre-se um novo campo de aplicações para a celulose bacteriana. Este projecto tem como objectivo o desenvolvimento de um material compósito condutor à base de celulose bacteriana e polianilina através da polimerização oxidativa in situ da anilina em meio acido e usando persulfato de amónia como agente oxidante. As condições de polimerização foram estudadas fazendo variar os parâmetros de reacção: concentração do monómero e tempo de polimerização. Para a produção dos compósitos BC/PANI foram estudados diferentes métodos: a polimerização directa in situ da anilina na celulose bacteriana em meio ácido; modificação da superfície da celulose bacteriana, através da activação inicial da superfície da CB e posterior polimerização oxidativa; e sulfonação da celulose bacteriana. A condutividade eléctrica aumentou de 7.5*10-11 S/cm para 2.26*10-4 S/cm controlando o tempo de polimerização e a razão molar BC:anilina. Para as condições analisadas, os melhores resultados obtidos foram a razão molar CB:anilina de 1:10 e um tempo de reacção de 6 horas. Os materiais obtidos foram caracterizados através de ensaios de condutividade, microscopia electrónica de varrimento (SEM), espectroscopia de infravermelho (FTIR), analise termogravimétrica (TGA), calorimetria diferencial de varrimento (DSC), e ensaios de viabilidade (teste MTS), usando a celulose bacteriana como referência.
TipoDissertação de mestrado
DescriçãoDissertação de mestrado em Micro-Nano Tecnologias
URIhttps://hdl.handle.net/1822/17672
AcessoAcesso aberto
Aparece nas coleções:BUM - Dissertações de Mestrado
CEB - Dissertações de Mestrado / MSc Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Catarina Rodrigues Lopes Nunes.pdf3,89 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID