Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/69394

Registo completo
Campo DCValorIdioma
dc.contributor.authorRomão, M. Crispimpor
dc.contributor.authorCastro, Nuno Filipepor
dc.contributor.authorPedro, R.por
dc.contributor.authorVale, T.por
dc.date.accessioned2021-01-18T00:21:11Z-
dc.date.available2021-01-18T00:21:11Z-
dc.date.issued2020-
dc.identifier.issn2470-0010-
dc.identifier.urihttps://hdl.handle.net/1822/69394-
dc.description.abstractIn this work we assess the transferability of deep learning models to detect beyond the standard model signals. For this we trained deep neural networks on three different signal models: tZ production via a flavor changing neutral current, pair production of vectorlike T-quarks via standard model gluon fusion and via a heavy gluon decay in a grid of three mass points: 1, 1.2 and 1.4 TeV. These networks were trained with t¯t, Z+jets and dibosons as the main backgrounds. Limits were derived for each signal benchmark using the inference of networks trained on each signal independently, so that we can quantify the degradation of their discriminative power across different signal processes. We determine that the limits are compatible within uncertainties for all networks trained on signals with vectorlike T-quarks, whether they are produced via heavy gluon decay or standard model gluon fusion. The network trained on flavor changing neutral current signal, while struggling the most on the other signals, still produces reasonable limits. These results indicate that deep learning models are capable of providing sensitivity in the search for new physics even if it manifests itself in models not assumed during training.por
dc.description.sponsorshipWe would like to thank A. Peixoto and J. Santiago foruseful discussions and help with signal generation. We alsoacknowledge the support from FCT Portugal, Lisboa2020,Compete2020, Portugal2020 and FEDER under ProjectNo. PTDC/FIS-PAR/29147/2017 and through GrantNo. PD/BD/135435/2017. The computational part of thiswork was supported by Infraestrutura Nacional deComputação Distribuída (INCD) (funded by FCT andFEDER under Project No. 01/SAICT/2016 n° 022153)and by the Minho Advanced Computing Center (MACC).The Titan Xp GPU card used for the training of the deepneural networks developed for this project was kindlydonated by the NVIDIA Corporation.por
dc.language.isoengpor
dc.publisherAmerican Physical Society (APS)por
dc.relationPTDC/FIS-PAR/29147/2017por
dc.relationPD/BD/135435/2017por
dc.rightsopenAccesspor
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/por
dc.titleTransferability of deep learning models in searches for new physics at colliderspor
dc.typearticlepor
dc.peerreviewedyespor
dc.relation.publisherversionhttps://journals.aps.org/prd/abstract/10.1103/PhysRevD.101.035042por
oaire.citationIssue3por
oaire.citationVolume101por
dc.identifier.eissn2470-0029-
dc.identifier.doi10.1103/PhysRevD.101.035042por
dc.subject.fosCiências Naturais::Ciências Físicaspor
dc.description.publicationversioninfo:eu-repo/semantics/publishedVersion-
dc.subject.wosScience & Technologypor
sdum.journalPhysical Review Dpor
oaire.versionVoRpor
Aparece nas coleções:LIP - Artigos/papers

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
PhysRevD.101.035042.pdf645,41 kBAdobe PDFVer/Abrir

Este trabalho está licenciado sob uma Licença Creative Commons Creative Commons

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID