Utilize este identificador para referenciar este registo: https://hdl.handle.net/1822/76300

TítuloExploring gravitational-wave detection and parameter inference using deep learning methods
Autor(es)Alvares, Joao D.
Font, Jose A.
Freitas, Felipe F.
Freitas, Osvaldo G.
Morais, Antonio P.
Nunes, Solange
Onofre, A.
Torres-Forne, Alejandro
Palavras-chavegravitational waves
deep learning
machine learning
black hole
LIGO
Virgo
parameter inference
Data2021
EditoraIOP Publishing
RevistaClassical and Quantum Gravity
CitaçãoAlvares, J. D., Font, J. A., Freitas, F. F., Freitas, O. G., Morais, A. P., Nunes, S., . . . Torres-Forné, A. (2021). Exploring gravitational-wave detection and parameter inference using deep learning methods. [Article]. Classical and Quantum Gravity, 38(15). doi: 10.1088/1361-6382/ac0455
Resumo(s)We explore machine learning methods to detect gravitational waves (GW) from binary black hole (BBH) mergers using deep learning (DL) algorithms. The DL networks are trained with gravitational waveforms obtained from BBH mergers with component masses randomly sampled in the range from 5 to 100 solar masses and luminosity distances from 100 Mpc to, at least, 2000 Mpc. The GW signal waveforms are injected in public data from the O2 run of the Advanced LIGO and Advanced Virgo detectors, in time windows that do not coincide with those of known detected signals. We demonstrate that DL algorithms, trained with GW signal waveforms at distances of 2000 Mpc, still show high accuracy when detecting closer signals, within the ranges considered in our analysis. Moreover, by combining the results of the three-detector network in a unique RGB image, the single detector performance is improved by as much as 70%. Furthermore, we train a regression network to perform parameter inference on BBH spectrogram data and apply this network to the events from the GWTC-1 and GWTC-2 catalogs. Without significant optimization of our algorithms we obtain results that are mostly consistent with published results by the LIGO-Virgo Collaboration. In particular, our predictions for the chirp mass are compatible (up to 3 sigma) with the official values for 90% of events. From these results we conclude that the combination of computer vision techniques and deep-learning methods put forward in this work is a worthy addition to the GW astronomer's toolbox.
TipoArtigo
DescriçãoThe data that support the findings of this study are openly available at the following URL/DOI: https://arxiv.org/abs/2011.10425.
URIhttps://hdl.handle.net/1822/76300
DOI10.1088/1361-6382/ac0455
ISSN0264-9381
e-ISSN1361-6382
Versão da editorahttps://iopscience.iop.org/article/10.1088/1361-6382/ac0455
Arbitragem científicayes
AcessoAcesso aberto
Aparece nas coleções:LIP - Artigos/papers

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Alvares_2021_Class._Quantum_Grav._38_155010.pdf3,7 MBAdobe PDFVer/Abrir

Partilhe no FacebookPartilhe no TwitterPartilhe no DeliciousPartilhe no LinkedInPartilhe no DiggAdicionar ao Google BookmarksPartilhe no MySpacePartilhe no Orkut
Exporte no formato BibTex mendeley Exporte no formato Endnote Adicione ao seu ORCID